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Many titanium alloys and even materials such as concrete exhibit a nonlinear
relationship between strain and stress, when the strain is small enough that the square
of the norm of the displacement gradient can be ignored in comparison to the norm
of the displacement gradient. Such response cannot be described within the classical
theory of Cauchy elasticity wherein a linearization of the nonlinear strain leads to
the classical linearized elastic response. A new framework for elasticity has been put
into place in which one can justify rigorously a nonlinear relationship between the
linearized strain and stress. Here, we consider one such model based on a power-law
relationship. Previous attempts at describing such response have been either limited
to the response of one particular material, e.g. Gum Metal, or involved a model
with more material moduli, than the model considered in this work. For the uniaxial
response of several metallic alloys, the model that is being considered fits experimental
data exceedingly well.
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1. Introduction

In material science there is an ongoing effort to develop new titanium
alloys in virtue of their beneficial properties. An illustrative example is Gum
Metal1, a material that has been developed by Toyota Central R&D Labs. Gum
Metal is a designation for a class of beta titanium alloys with unique elastic
properties that include low Young’s modulus, high strength and high yield strain

1GUMMETAL is a trademark owned by the Toyota Tsusho Material Inc. company (as of
2017).
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in comparison to other conventionally used materials and titanium alloys, see [1].
Cold swagged Gum Metal has a reversible nonlinear elastic response up to the
strains of 2.5%, which is referred to as super elasticity, see [2, 3].

Gum Metal, however, is not the only titanium alloy that exhibits a nonlinear
relationship between the strain and the stress, when the strain is small enough
that the square of the norm of the displacement gradient can be neglected in
comparison to the norm of the displacement gradient. Such nonlinear elastic be-
havior seems to be typical for many beta-phase titanium alloys, see [4–6]. Their
nonlinear response cannot be described within the context of any Cauchy elastic
model (and hence any Green elastic model) as the linearization of a nonlinear
constitutive expression for the stress leads to the classical linearized elastic model
which is a linear relationship between the stress and linearized strain. While the
response can be curve-fitted by using a nonlinear relationship between the stress
and the strain, one cannot justify it or show that it follows from the lineariza-
tion of a model to describe elastic response. Recently, Rajagopal [7] (see also [8])
recognized that the class of bodies that are elastic, if by elastic body one under-
stands the body that is incapable of dissipation and which converts mechanical
working into thermal energy (heat), is far larger than Cauchy elastic bodies. He
proposed a class of implicit relationships between the Cauchy stress and defor-
mation gradient to describe elastic response, Cauchy elasticity being a very small
special sub-class of them. Rajagopal and Srinivasa [9, 10] provided a rigor-
ous thermodynamic basis for the same. In the case of isotropic elastic bodies
described by implicit constitutive relations, we have the relationship

(1.1) G(ρ, T , B) = 0,

where ρ denotes the density, T is the Cauchy stress tensor and B is the left
Cauchy-Green strain tensor, i.e., B = FF

T , where F is the deformation tensor.
A very special sub-class of the bodies defined by the above implicit relation
are classical isotropic compressible Cauchy elastic bodies described with the
following constitutive expression for the stress:

(1.2) T = δ0I + δ1B + δ2B
2,

where the material moduli depend on the density and the principal invariants
of B. We note that the above equation presents an explicit expression for the
Cauchy stress in terms of the Cauchy-Green tensor.

A different set of constitutive relations is given by

(1.3) B = α0I + α1T + α2T
2,

where the material moduli are functions of the density and the principal invari-
ants of the stress. Moon and Truesdell [11] have obtained conditions under
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which the representation (1.2) is invertible. However, they were considering the
invertibility of isotropic functions and were not interested in delineating models
of the form (1.3) that do not belong to (1.2), or to put it differently whether
there are models of the form (1.3) that are not Cauchy elastic. It is important
to recognize that many models belonging to the class defined by (1.3) do not
belong to the class defined by (1.2).

While the linearization of (1.2) under the assumption that the displacement
gradient is small leads to the classical linearized elastic model, linearizing (1.3)
under the same assumption leads to the approximation

(1.4) ε = β0I + β1T + β2T
2,

and thus it is possible for the linearized strain to bear a nonlinear relationship to
the stress. Rajagopal [12] and Devendiran et al. [13] used models belonging
to the above class to describe the response of titanium alloys. In this paper, we
shall also use a power-law model that belongs to the above class of constitutive
relations to describe the response of titanium alloys. Our model has fewer ma-
terial constants than the model used by Devendiran et al. [13] to corroborate
experimental data on titanium alloys. While Rajagopal [12] used a model with
fewer material moduli to describe the response of Gum Metal, he did not de-
scribe the response of other titanium alloys. Here, we model numerous titanium
alloys within the framework of the same form of constitutive relation, the only
difference being the values for the material moduli.

2. Experimental data and the new class of constitutive relations

The recent studies by Rajagopal [12] and Devendiran et al. [13] have em-
ployed a new class of constitutive relations to corroborate the experimental data
for tensile loading of beta-phase titanium alloys, see Saito et al. [3], Sakaguch

et al. [4], Hao et al. [5], and Hou et al. [6].
A tensile loading experiment is described by the set of pairs (σi, ηi),

i = {1 . . . N}. Each pair contains the value of strain ηi corresponding to the
loading stress σi. There is no loss of generality in assuming that the tensile
stress is applied along the direction of the first Cartesian coordinate. Therefore,
the stress tensor takes the form

(2.1) T = (e1 ⊗ e1)σ =





σ 0 0
0 0 0
0 0 0



 ,

where T11 = σ is its only nonzero component2. We shall also identify the normal
2Symbol e1 denotes the unit vector in the direction of the first Cartesian coordinate and

symbol ⊗ denotes the tensor product.
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strain components (ε11, ε22, ε33) with (η, γ, γ), i.e., we assume that ε22 = ε33.
Note that to our best knowledge there are no data regarding the transverse
strain γ.

The reversible elastic response of cold swagged Gum Metal can be observed up
to the strains of 2.5%, see [3] and Fig. 1. Since the elastic response of Gum Metal
and many other titanium alloys is in the range |ε| < 0.025, such strains could be
regarded as large by researchers as most metals do not exhibit the elastic response
for the magnitude of such strains. On the other hand, from the modeling point
of view we can use the small displacement gradient approximation and model
the response using the small strain tensor since the displacement gradient norm
is so small that its square can be neglected in comparison to itself, see [12].

Two models were proposed by Rajagopal in [12] to fit the experimental data
for cold swagged Gum Metal. The first model is a power-law model in which the
strain is given by

(2.2) ε = λ1 trTI + λ2(1 + α trT
2)n

T ,

where λ1, λ2, α and n are the material moduli. The second, exponential model
is of the form

(2.3) ε = λ1 trTI + λ2 exp(β trT )T ,

where λ1, λ2 and β are the material moduli. For the uniaxial loading of the form
(2.1), when setting λ1 = 0, the model (2.3) reduces to

(2.4)
η = λ2σ exp(βσ),

γ = 0.
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Fig. 1. Stress strain response to tensile loading of considered titanium alloys in the elastic
regimen.
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The actual material parameters that were used in [12] are

(2.5) λ2 = 1.57 × 10−11 Pa−1, β = 3.22 × 10−10 Pa−1.

The model (2.4) with the parameters (2.5) provides a very good agreement with
experimental data, see Fig. 2. If we linearize this model around σ = 0, we obtain
an estimate for Young’s modulus

(2.6)
1

E
=

dη

dσ
(0) = λ2,

which yields

(2.7) E = 63.7 GPa.

Devediran et al. [13] use two models to capture the response of beta-phase
titanium alloys. One is a fully implicit model (that is not further discussed here)
and the other is an explicit model for the linearized strain, namely

(2.8) ε = β1 trTI + (β2 + β3 exp (1 + β4 tr (T 2))
n
2 )T ,

with the material moduli β1, β2, β3, β4 and n. For the uniaxial stress setting
(2.1), under the assumption γ := ε22 = ε33, the model (2.8) reduces to

(2.9)
η = (β1 + β2 + β3 exp (1 + β4(σ

2))
n
2 )σ,

γ = β1σ.

Here

(2.10) Eβ =
1

β1 + β2 + β3e
.

is the expression for Young’s modulus for model (2.8). In [13], the model (2.9)
was used to fit the experimental data of Ti-30Nb-10Ta-5Zr alloy, Ti-24Nb-4Zr-

7.9Sn alloy and Ti-30Nb-12Zr alloy. For the values of material moduli of these
alloys, we refer to [13, Table 2]. In Figs. 3, 4 and 5 the explicit model (2.9) is
included as dashed line.

3. Fitting tensile loading experiments to power-law models

In this section, we corroborate the experimental data that is available for
titanium alloys to a power-law model defined as

(3.1) ε =
1

9K̂(|tr(T )|2)
(trT )I +

1

2µ̂(|T d|2)
T

d,
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where T
d = T − 1

3(trT )I is the deviatoric part of stress, and the generalized
bulk and shear moduli K̂ = K̂(|tr(T )|2) and µ̂ = µ̂(|T d|2) are of the form

K̂(|tr(T )|2) = K

(

τ2
0

τ2
0 + |tr(T )|2

)
s−2

2

µ̂(|T d|2) = µ

(

τ2
0

τ2
0 + 3

2 |T
d|2

)
q−2

2

,

(3.2)

where τ0 > 0, q ∈ (1,∞), s ∈ (1,∞), µ > 0 and K > 0 are the material moduli.
The parameter s and the coefficient K describe volume changes in response to
the mean normal stress, while the parameter q and the coefficient µ describe the
isochoric part of deformation. We refer to parameters K and µ as bulk and shear
moduli, respectively. Note that we obtain Hooke’s law with K̂ = K and µ̂ = µ
upon setting s = q = 2 in (3.2). In addition, note that from (3.1) it follows that

K̂ =
tr(T )

3 tr(ε)
and µ̂ =

|T d|

2|εd|
.

There is a reason for the decomposition of the stress as expressed in (3.1).
Criscione and co-workers, see [14, 15], have shown that it is best to describe
the experimental data for the stored energy using an integrity basis that is not
collinear. That is, it is best to describe the stored energy using an integrity basis
that captures the effect of shear and dilatation separately. The decomposition
(3.1) is in keeping with such idea in that the stress response is split into a part
that represents the volume change and the shear response.

Note that the parameter τ0 is chosen in such a manner that we are guaranteed
that the response of the nonlinear model is reasonably close to the linearized
model if |T | is small. This means that upon linearizing the model (3.1) around
T = 0, we obtain the classical linearized elastic model as long as

(3.3) |T | ≪ τ0.

Finally, we also wish to remark that the model (3.1) can be put in the appropriate
thermodynamic setting (see [9, 10, 16]). In particular, there is a (Gibbs) potential
G(T ) of the form (see also [17])

G(T ) =
1

2

| tr T |2
∫

0

1

9K

(

τ2
0 + ξ

τ2
0

)
s−2

2

dξ +
1

2

|Td|2
∫

0

1

2µ

(

τ2
0 + 3

2ξ

τ2
0

)
q−2

2

dξ,

so that (3.1) can be written in the form

ε =
∂G

∂T
.
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Since G is strictly convex, there is a function W depending on ε so that T = ∂W
∂ε

,
its explicit form is however not known in general.

3.1. Procedure of corroborating experimental data

Since we assume that the Cauchy stress tensor T is of the form (2.1) and
T11 = σ is its only nonzero component, it immediately follows that

(3.4) T
d =





2
3σ 0 0
0 −1

3σ 0
0 0 −1

3σ



 , |T d| =

√

2

3
σ, tr T = σ.

When fitting the tensile loading data to the model (3.1) with parameters (τ0, s,
q, K, µ), the model reduces to

(3.5)
η =

1

9K

(

1

τ0

)s−2

(τ2
0 + σ2)

s−2

2 σ +
1

3µ

(

1

τ0

)q−2

(τ2
0 + σ2)

q−2

2 σ,

γ =
1

9K

(

1

τ0

)s−2

(τ2
0 + σ2)

s−2

2 σ −
1

6µ

(

1

τ0

)q−2

(τ2
0 + σ2)

q−2

2 σ.

We use two approaches for fixing τ0 in (3.5). For all experimental data that
we use |T | takes the values in the range of 107 − 109 (10 MPa–1 GPa), and for
|T | > 5.108 the response is nonlinear, see Fig. 1. In the first approach, we set
τ0 = 5.108 for all the materials that were studied. In the second approach, we set
τ0 = σmax, where σmax represents the maximal loading in the elastic regime; the
explicit values for each titanium alloy are specified below in the first column of
Table 2. In both approaches we always meet the assumption (3.3) in the linear
regime.

Thus, upon fixing τ0, our model (3.5) is completely characterized by four
parameters. The model (2.4) used by Rajagopal [12] to corroborate the exper-
imental data for cold swagged Gum Metal has two parameters but as mentioned
earlier the model was not used to corroborate the experiments on other titanium
alloys other than Gum Metal, while the explicit model used by Devendiran

et al. [13] to describe the tensile response of titanium alloys has five parameters.
For corroborating the experimental data that is available we use linear regres-

sion. We understand that Eq. (3.5)1 for particular values of (τ0, s, q) is a linear
model of the form

(3.6) η = c1f1(σ) + c2f2(σ),

where

(3.7) f1(σ) =

(

τ2
0 + σ2

τ2
0

)
s−2

2

σ, f2(σ) =

(

τ2
0 + σ2

τ2
0

)
q−2

2 2

3
σ.
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Let σi, i ∈ 1 . . . N , represent the particular experimental tensile stress and ηi,
i ∈ 1 . . . N represent the observations of the strain. The values of functions f1(σ

i)
and f2(σ

i) are understood as independent variables and the value of the strain ηi

is understood as the observed value. Using linear regression we obtain estimates
for the coefficients c1 and c2 in (3.6) and derive estimates of the bulk and shear
moduli

(3.8) K =
1

9c1
, µ =

1

2c2
.

Using this procedure we can estimate optimal values of the parameters K
and µ for a given (τ0, s, q). Since the parameter τ0 is fixed, we need to estimate
optimal values of the exponents s and q. We decided to perform this estimation
by comparing the quality of fit for different pairs (s, q). For measuring the quality
of fit in the model we need the following definitions:

Definition 1 (Mean of observations).

(3.9) η =
1

N

N
∑

i=1

ηi.

Definition 2 (Total sum of squares).3

(3.10) Stot =
N

∑

i=1

(ηi − η)2.

Definition 3 (Residual sum of squares).

(3.11) Sres =
N

∑

i=1

(ηi − (c1f1(σ
i) + c2f2(σ

i)))2.

Definition 4 (Coefficient of determination R2).

(3.12) R2 = 1 −
Sres

Stot
.

The coefficient of determination R2 ≤ 1 is a standard measure of the quality
of fit in the linear regression. The closer the value of the coefficient of determi-
nation is to 1, the better the fit is.

3For linear models without intercept, as is the case (3.6), the formula (3.10) for the total
sum of squares is often used with η = 0. We decided to use the formula (3.10) involving η in
order to obtain more realistic coefficients of determination R2.
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3.2. Implementation

We outline the algorithm used for fitting a tensile loading data for an alloy
to the model (3.6) as follows:

• We fix some particular value of τ0, derived from a characteristic magnitude
of stress for which the response can be modeled as linear for small strain
tending to zero.

• We choose an admissible set of the model parameters (s, q). In particular,
we use s ∈ {1.01, 1.02, . . . , 100}, q ∈ {1.01, 1.02, . . . , 100}. The values of s
and q are discrete values from the finite sequence {1.01, 1.02, . . . , 100} of
numbers incremented by 0.01.

• For each admissible pair of (s, q) we obtain estimates of the coefficients
(c1, c2) of the model (3.6) using linear regression of the experimental data.
From (3.12) we get the value of the coefficient of determination R2.

• We choose the pair (s, q) that maximizes the coefficient of determination
R2 among all admissible pairs of the model exponents.

• For the pair (s, q) that maximizes R2, we substitute the least square esti-
mate of (c1, c2) into Eq. (3.8) to compute the parameters K and µ of the
model. By this procedure we obtain the best fit (τ0, s, q, K, µ).

Without any additional assumption, the best fit is not unique as the alter-
native choice to the best fit (τ0, s, q, K, µ) of the form (τ0, q, s,

µ
3 , 3K) fits the

tensile test data identically. To fix this apparent ambiguity, we have added an
extra condition to the algorithm, namely

(3.13) |s − 2| > |q − 2|.

If we assume that, instead of (3.13), the condition is

(3.14) |s − 2| ≤ |q − 2|,

then the corresponding linearized elastic model will have a negative Poisson’s
ratio, which contradicts the experiments. This issue is illustrated below, see
Table 3 and Fig. 12. A more detailed analysis can be found in [18].

4. Results

The best fit obtained by the algorithm outlined above maximizes the coef-
ficient of determination and minimizes the residual sum of squares among all
admissible pairs of (s, q). Linear regression was performed using the function lm

from the R software environment and language, see [19, 20]. Source code of the
algorithm has been deposited to https://bitbucket.org/kulvait/fittingtitanium-
alloys.
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In Tables 1 and 2, we present the values of the best fit for each titanium alloy
studied, assuming the validity of the condition (3.13). Table 1 lists the material
moduli when τ0 = 5.108. Table 2 lists the material moduli when τ0 = σmax spec-
ified in the first column of Table 2. In Table 4, we compare the quality of the
obtained fits with the fits for the models (2.4) and (2.9) considered in [12, 13].
In Table 3, we present the values of the best fit when assuming (3.14) instead
of (3.13), and as the outcome we observe that Poisson’s ratio is negative, which
contradicts the experiments. Thus the condition (3.13) eliminates physically ir-
relevant values.

Table 1. The values of the best fit, Young’s modulus E and Poisson’s ratio ν for
τ0 = 0.5GPa; these values are achieved under the assumption |s − 2| > |q − 2|.

Alloy τ0 s q K µ R2 E ν

Gum Metal 0.5 GPa 7.65 2.23 6223 GPa 20.2 GPa 0.9998 60.5 GPa 0.50

Ti-30Nb-10Ta-5Zr 0.5 GPa 9.15 2.49 334 GPa 22.3 GPa 0.9998 65.6 GPa 0.47

Ti-24Nb-4Zr-7.9Sn 0.5 GPa 15.68 2.99 1126 GPa 16.5 GPa 0.9997 49.3 GPa 0.49

Ti-30Nb-12Zr 0.5 GPa 56.49 4.29 180252 GPa 25.1 GPa 0.9980 75.4 GPa 0.50

Table 2. The values of the best fit, Young’s modulus E and Poisson’s ratio ν for
τ0 specified in the first column; these values are achieved under the assumption

|s − 2| > |q − 2|.

Alloy τ0 s q K µ R2 E ν

Gum Metal 1.1 GPa 28.5 2.82 1283552 GPa 20.0 GPa 0.9999 60.1 GPa 0.50

Ti-30Nb-10Ta-5Zr 0.6 GPa 9.81 2.58 291 GPa 22.4 GPa 0.9998 65.5 GPa 0.46

Ti-24Nb-4Zr-7.9Sn 0.4 GPa 12.13 2.65 1201 GPa 16.5 GPa 0.9997 49.4 GPa 0.49

Ti-30Nb-12Zr 0.4 GPa 37.89 3.39 804644 GPa 25.7 GPa 0.9980 77.0 GPa 0.50

Table 3. The values of the best fit, Young’s modulus E and Poisson’s ratio ν for
τ0 specified in the first column; these values are obtained under the assumption

|s − 2| ≤ |q − 2|.

Alloy τ0 s q K µ R2 E ν

Gum Metal 0.5 GPa 2.23 7.65 6.7 GPa 18668 GPa 0.9998 60.5 GPa -1.00

Ti-30Nb-10Ta-5Zr 0.5 GPa 2.49 9.15 7.4 GPa 1001 GPa 0.9998 65.6 GPa -0.97

Ti-24Nb-4Zr-7.9Sn 0.5 GPa 2.99 15.68 5.5 GPa 3378 GPa 0.9997 49.3 GPa -0.99

Ti-30Nb-12Zr 0.5 GPa 4.29 56.49 8.4 GPa 540755 GPa 0.9980 75.4 GPa -1.00

In Figs. 2–5 there is a comparison of the best fit of the power law model
(3.5) for τ0 = 5.108 with the predictions of the explicit models considered in [12]
and [13] when fitting the axial strain η.
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Table 4. Comparison of the quality of fit characterized by the coefficient of
determination R2 and Young’s modulus estimates E between the power-law

model (3.5) (see the third and second to the last columns in Tables 1–3) and the
models (2.4) and (2.9) studied earlier in [12, 13]. Here, R2 is the coefficient of

determination for the models (2.4) and (2.9), E is the estimate of Young’s
modulus for the model (2.4) for Gum Metal and for the model (2.9) for the

remaining titanium alloys.

Material R2 E

Gum Metal 0.9982 63.7 GPa

Ti-30Nb-10Ta-5Zr 0.9997 63.8 GPa

Ti-24Nb-4Zr-7.9Sn 0.9996 48.1 GPa

Ti-30Nb-12Zr 0.9966 75.6 GPa
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Fig. 2. Plot of the best fit for the model (3.5) compared with the exponential model (2.4)
for Gum Metal, see [12].
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Fig. 3. Plot of the best fit for the model (3.5) compared with the exponential model (2.9)
for Ti-30Nb-10Ta-5Zr, see [13].
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Fig. 4. Plot of the best fit for the model (3.5) compared with the explicit exponential model
(2.9) for Ti-24Nb-4Zr-7.9Sn, see [13].
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Fig. 5. Plot of the best fit for the model (3.5) compared with the explicit exponential model
(2.9) for Ti-30Nb-12Zr, see [13].

4.1. Predicted bulk and shear responses of power-law model

A set of values (τ0, s, q, K, µ) associated with the best fit can be used to
predict character of the response for general deformation based on the equations
(3.1) and (3.2). The bulk and shear responses take the form

tr ε =
1

3K

(

τ2
0 + | trT |2

τ2
0

)
s−2

2

trT ,(4.1a)

|εd| =
1

2µ

(

τ2
0 + 3

2 |T
d|2

τ2
0

)
q−2

2

|T d|.(4.1b)
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In Figs. 6–9 we plot these predicted bulk and shear responses for Gum Metal,
Ti-30Nb-10Ta-5Zr, Ti-24Nb-4Zr-7.9Sn, and Ti-30Nb-12Zr respectively with the
best fit data listed in Table 1. In Fig. 10 we compare the bulk responses (4.1a)
in tension and in compression for all studied alloys.

Fig. 6. Bulk and shear response (4.1) of the model (3.1)–(3.2) for Gum Metal.

Fig. 7. Bulk and shear response (4.1) of the model (3.1)–(3.2) for Ti-30Nb-10Ta-5Zr alloy.
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Fig. 8. Bulk and shear response (4.1) of the model (3.1)–(3.2) for Ti-24Nb-4Zr-7.9Sn alloy.

Fig. 9. Bulk and shear response (4.1) of the model (3.1)–(3.2) for Ti-30Nb-12Zr alloy.

In a simple tension, we are also interested in the behavior of the ratio

ν̂(σ) = −γ(σ)/η(σ).

It can be expressed from (3.5) as follows:

(4.2) ν̂(σ) = −
γ(σ)

η(σ)
= −

1
9K

( 1
τ0

)s−2(τ2
0 + σ2)

s−2

2 − 1
6µ

( 1
τ0

)q−2(τ2
0 + σ2)

q−2

2

1
9K

( 1
τ0

)s−2(τ2
0 + σ2)

s−2

2 + 1
3µ

( 1
τ0

)q−2(τ2
0 + σ2)

q−2

2

.



Modeling Gum Metal and other newly developed titanium. . . 237

−0.010

−0.005

0.000

0.005

0.010

−1000 −500 0 500 1000

tr(T) [MPa]

tr
(ε

)

Alloy

Gum Metal

Ti-24Nb-4Zr-7.9Sn

Ti-30Nb-10Ta-5Zr

Ti-30Nb-12Zr

Fig. 10. Bulk responses (4.1a) for all alloys under the assumption |s − 2| > |q − 2|.

Fig. 11. Transversal strain γ for all alloys under the assumption |s − 2| > |q − 2|.

Letting σ → 0 in Eq. (4.2), we obtain Poisson’s ratio

(4.3) ν =
3K − 2µ

2(3K + µ)
.

The plot of the dependence of γ on σ is given in Fig. 11 for all studied alloys.



238 V. Kulvait, J. Málek, K. R. Rajagopal

Fig. 12. Transversal strain γ under the assumption |s − 2| < |q − 2|.

Fig. 13. The ratio −γ/η (4.2) for all alloys under the assumption |s − 2| > |q − 2|.

We recall that these results are for the best fit values fulfilling (3.13). For the
sake of completeness, we also add, in Fig. 12, the plot of the dependence of γ
on σ for the best fit values satisfying the alternative condition (3.14). Figure 12
confirms that the setting fulfilling (3.14) is incorrect, because it predicts positive
transversal strains γ. In Fig. 13 we show the graph of function ν̂ defined in (4.2)
for all the alloys under the condition (3.13).



Modeling Gum Metal and other newly developed titanium. . . 239

4.2. Discussion and concluding remarks

All beta titanium alloys that have been studied behave nonlinearly in their
small strain regime. Thus it would be inappropriate to describe them using the
linearized elastic model, see Figs. 2–5.

We have considered a class of power-law models where the nonlinear depen-
dence of the strain on the deviatoric part of the stress and its trace are mutually
separated and can have different polynomial growth. As pointed out by Criscione
and his co-workers, see [14, 15], such decomposition is more appropriate for cap-
turing experimental data as the experiments focus on measuring the effect of
shear, dilatation, etc., separately.

We have observed that the power-law models are able to describe the tensile
loading behavior of Gum Metal and other beta-phase titanium alloys in the full
range of nonlinear elastic response as can be seen from Figs. 2–5. It is also evident
from Tables 1 and 4 that the power-law model (3.1) outperforms or at least is as
good as the existing models considered in [12] and [13] for describing the tensile
loading behavior of the beta-phase titanium alloys. There is a compelling reason
for our choice of the exponents. If we reverse the exponents and assume that
|s − 2| < |q − 2|, then the transversal strain γ is (in tensile loading) positive
and Poisson’s ratio is negative, which contradicts the available data, see Table 3
and Fig. 12. The parameter τ0 has been set up a priori in such a way that
the models are close to the classical linearized model if |T | is much smaller
than τ0.

In the performed corroboration of the experimental data, the coefficient of
determination R2 is very close to the ideal value of 1 for all the above mentioned
models, see Table 1. Of course, one needs to consider more general deformations
in order to validate the model, but such experiments are not available with regard
to the metallic alloys being considered at this point in time.
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