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Fåhræus effect revisited
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A consistent hydrodynamic analysis of blood flow through capillaries is
proposed. The approach, while suggested by empirical observations, is based solely
on the properties of Newtonian fluids and suspensions. Blood flow is divided into
three phases: the first is a thin erythrocyte-free layer near the wall, the second a
core flow of constant hematocrit and the third an intermediate layer wherein the
hematocrit varies. Based on the observation that viscosity depends exponentially
on the local hematocrit, blood flow velocity profiles are obtained and the direct
connection between the Fåhræus and the Fåhræus-Lindqvist effects is established.
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1. Introduction

Sometime before 1929, Robin Fåhræus (1888–1968), a pathologist at the Uni-
versity of Uppsala in Sweden, conducted a set of experiments on blood flow in
capillaries. Although crude by today’s standards, these investigations opened a
new area of research in hemodynamics. By counting the number of red cells sus-
pended in blood flowing through narrow glass tubes with radii R < 250 µm,
Fåhræus discovered that their volumetric concentration (i.e., the proportion of
blood volume occupied by them) in the tubes, the tube hematocrit,HT = HT (R),
is lower than their reservoir hematocrit HF , or concentration in the feeding reser-
voir. In the second of his two papers on the subject [1], he wrote that different
distribution of blood cells “has been overlooked (. . . ) [because of] the fact that
a drop of blood from the finger or the ears shows-at least regarding the red cells-
the same composition as blood from an artery or a vein. But the composition of
a drop from bleeding narrow vessels is not the same as the composition of the
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blood in the vessels themselves”. Fåhræus explained the observed discrepancy
by noting that the average velocity of erythrocytes in the capillaries is greater
than that of plasma (extracellular liquid).

Fåhræus’ painstaking experiments were repeated more than 40 years later
by Barbee and Cockelet [2] using a more reliable apparatus and with more
careful preparation of blood (e.g., removing all particles except for erythrocytes,
preventing the formation of rouleaux, etc.). The results of both the original ex-
periments, which proved remarkably accurate despite the simplicity of Fåhræus’
setup, and those of Barbee and Cockelet’s experiments, conducted at the same
value of reservoir hematocrit HF = 0.405, were summarized in a plot showing
the dependence of the relative hematocrit, defined as Hr = HT /HF , on the tube
radius R. This graph, referred to as the Barbee graph in the present work, is
reproduced in Fig. 1.

Fig. 1. The Barbee graph.

In his 1929 paper [1], Fåhræus also pointed out that the observed phe-
nomenon must correspond to the reduction of the relative viscosity of blood
in capillaries. This insight led to a second series of experiments, conducted by
Fåhræus and his coworker, pathologist Torsten Lindqvist [3]. They measured
the relative viscosity, ηrel, defined as the ratio of the output of blood plasma Qp

– and in later experiments, the ratio of the output of water Qw at the same
value of the pressure drop – to the total output of blood Q. As Q depends on
HF and R, and Qw depends on R alone, ηrel is a function of HF and R:

(1.1) ηrel(HF , R) =
Qw(R)

Q(HF , R)
.

The results of a large number of such experiments, and for various values of HF,

in addition to the “standard” HF ≈ 0.4, were collected and discussed by Pries

et al. [4]. A monotonic decrease of the relative viscosity ηrel with the diminishing
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tube radius R was indeed observed, but there was a considerable scatter to the
data overall, caused by the differences in experimental apparatus. Pries et al. [4]
proposed an empirical formula for the relative viscosity ηrel, which incorporates
both the tube radius R and the reservoir hematocrit HF .

Fåhræus and Lindqvist did not offer a theoretical framework linking the two
phenomena they investigated separately – now usually referred to as the Fåhræus
effect and the Fåhræus–Lindqvist effect, respectively. Numerous later analyses
(see the historical review by Goldsmith et al. [5] and references therein) en-
deavored to elucidate the relation between these two effects using either heuristic
reasoning or rheological considerations for suspensions.

An attempt to connect the two phenomena was undertaken by Sharan and
Popel [6], who proposed a two-phase hydrodynamic model (see also Wang

and Bassingthwaighte [7]). In their approach, the tube is divided into two
separate cylindrical regions: the central “core” region containing the axis where
the flow viscosity is ηC , and the outer, cell-free boundary layer where the viscosity
is that of the plasma ηP l. However, accommodation between these two flows
of different viscosities is given in terms of a complicated and purely empirical
formula suggested by Pries et al. [4].

The aim of the present paper is to bridge the gap between the Fåhræus and
the Fåhræus–Lindqvist effects based entirely on the classical hydrodynamics. In
contrast to the model employed by Sharan and Popel [6], the flow of blood is
treated here as a flow of suspension through a tube and no ad hoc assumptions
are employed except for the well-established functional form of the viscosity of
dense suspensions. The proposed approach is based on considering the flow sep-
arately in three distinct regions of the cylindrical vessel, whose defining radii are
determined from experiments. This hydrodynamic model, unlike the two-phase
models mentioned above, leads to velocity profiles and other relevant quantities
directly from the equation of motion.

The paper is organized as follows. The second section describes how, using
the Barbee relationship, the blood vessel (tube) is divided into three regions
and suggests expressions for the local hematocrit in each region. In the third
section, the Navier–Stokes equation with the appropriate boundary conditions is
formulated and solved numerically in each of the regions, leading to expressions
for blood viscosity and flow velocity profiles. The relative viscosity is then calcu-
lated as a function of the tube’s radius and compared with experiments. The last
section provides a summary of the proposed approach and concluding remarks.

2. Local hematocrit and the Barbee graph

To capture the salient characteristics of blood flow in a capillary, the tube
is divided into three separate regions: a particle-free region close to the wall,
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a cylindrical core region around the axis, and an intermediate, accommodation
region between the two.

The particle-free region is defined as the layer in which the center of volume of
none of the suspended particles is located. The width of this region is determined
by the size and form of the suspended particles. For a suspension of rigid spherical
particles of uniform radius, this width δ would be equal to their radius. For
particles of more complicated shape, like erythrocytes, the effective δ must be
measured or estimated. Since erythrocytes are flexible, bi-concave disks with
a diameter of about 8 µm, and the maximum cross-section diameter of about
2–3 µm (see, e.g., [8]), it is assumed here that δ = 2.5 µm. Consequently, the
inner radius of the particle-free region is taken to be R1 = R−δ. The hematocrit
in the core region of radius R2 is assumed to be the same as that of the feeding
reservoir HF . The intermediate region is the annular space between radii R2

and R1, R2 < R1. However, the boundary of the core region R2 is somewhat
imprecisely defined, as observed and photographed already by Fåhræus (Fig. 2
in [1]), due to the formation of temporary clusters of erythrocytes.

In each of the three regions delineated above, the local hematocrit h(r) is
different: h(r) = HF in the core r < R2, h(r) = 0 in the particle-free boundary
region R1 ≤ r ≤ R, and h(r) is a monotonically decreasing function in the
intermediate region R2 ≤ r ≤ R1. Experiments suggest that h(r) should be
a smooth function everywhere.

It is sufficient to posit the simplest possible form of the local hematocrit,

(2.1) h(r) = HF f(r),

where f(r) is a smooth, continuous function satisfying the following three con-
ditions:

(i) f(r) = 1 for 0 ≤ r ≤ R2;
(ii) f(r) is monotonic for R2 ≤ r ≤ R1, f ′(R1) = 0 and f ′(R2) = 0;
(iii) f(r) = 0 for R1 ≤ r ≤ R;

and where R2 = R2(Hr, R) is a continuous function of its two arguments. It
should be noted that condition (i), which implies that the concentration of ery-
throcytes in the core remains the same as in the reservoir after they are squeezed
into a capillary, is not a priori evident and is a basic assumption of the present
model.

Since the total volume Ve occupied by erythrocytes within a segment of the
tube (capillary) of length l is given by

Ve =

R
∫

0

h(r)2πrl dr,
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and HT = Ve/πR
2l, the relative hematocrit can be expressed as

(2.2) Hr =
2

R2

R
∫

0

f(r)r dr.

The integral on the right side of (2.2) depends on R2 and can be evaluated by
casting it as a sum of two terms, which will be evaluated separately:

R
∫

0

f(r)r dr =

R2
∫

0

f(r)r dr +

R1
∫

R2

f(r)r dr.

Denote now

F (Hr, R) =
2

R2

R
∫

0

f(r)r dr

and define

(2.3) Φ(Hr, R) = Hr − F (Hr, R).

According to the implicit function theorem, it follows from Φ(Hr, R) = 0 that
there exists a unique continuous function Hr = Hr(R) satisfying (2.2), provided
Φ and ∂Φ/∂Hr are continuous functions and ∂Φ/∂Hr 6= 0. These conditions are
satisfied in the case considered here.

The implicit function theorem does not provide the function Hr(R), it only
guarantees that the function exists and is unique. However, the dependence of
Hr on R is already given by the Barbee relationship, the function implied by
the Barbee graph. It follows that the Barbee relationship represented in Fig. 1,
although established experimentally only for one particular value of the reservoir
hematocrit HF = 0.405 remains valid for all other values of HF provided only
that equation (2.1) and the conditions following it are satisfied. It will be so
under the assumption that erythrocytes are not too densely packed and blood
flow is adequately described by the suspension theory.

The exact mathematical form of the function f(r) in the intermediate region,
describing the transition between the core flow and the particle-free boundary
layer, does not substantially change the physically significant results such as
flow velocity profiles and the relative blood viscosity, provided f obeys all three
conditions listed under (2.1). The function f(r) is assumed here to have the
simple form

(2.4) f(r) =
1

2

[

1 + sin

(

π

2

R1 +R2 − 2r

R1 −R2

)]

for R2 ≤ r ≤ R1.

Evaluation of the integrals in (2.2) for the above function yields

(2.5) Hr =
R2

1 +R2
2

2R2
−

2(R1 −R2)
2

π2R2
.
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For any R, the value of R1 = R−δ is known, and thus comparing Hr(R) obtained
in (2.5) with the Barbee relationship one can deduce the value of R2 = R2(R). In
Table 1, the values of R2 for R = 10, 20, 50, 80, and 250 µm are given showing,
as expected, that the local hematocrit becomes increasingly uniform with the
rise of tube’s diameter.

Table 1. Values of R2/R, R1/R, and (R1 −R2)/R for various radii R.

R, µm R2/R R1/R (R1 −R2)/R

10 0.73 0.75 1.2 × 10−2

20 0.76 0.88 6.0 × 10−3

50 0.88 0.95 1.4 × 10−3

80 0.95 0.97 2.5 × 10−4

250 0.989 0.990 4.0 × 10−6

Furthermore, for any fixed value of R, and with R2 determined using the
Barbee graph, it is now possible to obtain from (2.1) and (2.5) the local hemat-
ocrit h(r). Local hematocrit profiles at various values of the reservoir hematocrit
(including the traditional value HF = 0.405) are shown in Fig. 2.

Fig. 2. Profiles of the local hematocrit h(r) for R = 50 µm in tubes with the reservoir
hematocrits HF = 0.2, HF = 0.4, HF = 0.5 and HF = 0.6.

3. Viscosity and velocity profiles

The link between the first set of experiments conducted by Fåhræus, mea-
suring the relative hematocrit, and the second set of experiments conducted by
Fåhræus and Lindqvist, concerning blood viscosity, can be established using the
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Navier–Stokes equation. The linearized, steady-state form of this equation, em-
ployed by Stokes to derive the Poiseuille formula, in cylindrical coordinates reads

(3.1)
1

r

d

dr

(

rη(r)
dv

dr

)

= −
∆p

l
,

where η(r) is the viscosity of the fluid as a function of the distance from the tube
axis, v(r) is the fluid velocity (parallel to the axis), p is the pressure, and l is the
tube length. As usual, it is assumed that the velocity profile has zero derivative
at the center and that the no-slip boundary condition is obeyed at the tube wall,

(3.2)
dv

dr

∣

∣

∣

∣

r=0

= 0 and v(R) = 0.

In the case of uniform viscosity, η(r) = η0 = const., the Poiseuille formula for
the velocity inside the tube is easily recovered by solving (3.1) subject to the
boundary conditions (3.2):

(3.3) v(r) = V0
R2 − r2

R2
,

where V0, the velocity along the tube axis, depends on the pressure gradient
∆p/l, R and viscosity ηo, namely V0 = ∆pR2/4η0l.

In the suspension flow considered here, however, viscosity is not constant
but depends on the local concentration of erythrocytes, i.e., on the local hema-
tocrit. Since viscosity will increase if the erythrocytes are packed more densely,
η will vary monotonically with the local hematocrit. Furthermore, experiments
suggest that viscosity varies exponentially within the intermediate region of the
tube. Notably, Barbee [9] himself reported the exponential dependence of η on
the reservoir hematocrit HF with the shear rate at the wall, γ = dv/dr|r=R, as
a parameter.

Consistent with these observations, it is postulated that viscosity varies ex-
ponentially with the local hematocrit:

(3.4) η(r) = η0 exp(αh(r)),

where η0 and α are the fitting parameters to be determined from the second
series of experiments performed by Fåhræus and Lindqvist. In particular, the
value of α can be deduced once the velocity profile is known by comparing the
relative viscosity given in (1.1) with the experimental data. Since the scatter in
the measured values of the relative viscosity ηrel(R) for HF ≈ 0.4 is relatively
small for large values of tube radius R, it is sufficient to choose a single point in
this region to determine the value of α. This procedure yields the approximate
value α = 3.0, which corresponds to the shear rate γ ≈ 60 s−1 in Barbee’s pa-
per [9]. It should be emphasized that the form of (3.4) is an assumption requiring
a consistency check.
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To find the velocity profile v = v(r), numerical integration of (3.1) with (3.4)
subject to the boundary conditions of (3.2) was performed separately in each of
the three sub-regions of the tube: in the core (0 ≤ r ≤ R2), in the intermediate
region (R2 ≤ r ≤ R1), and in the particle-free region near the wall (R1 ≤ r ≤ R).
In each of these regions, the Newton–Coates sixth-order integration method was
employed using 10 evenly spaced grid points. The results are shown in Fig. 3 with
R = 50 µm and the reservoir hematocrit HF as the parameter, and in Fig. 4

Fig. 3. Profiles of the local velocity of blood v(r) for R = 50 µm for reservoir hematocrits
HF = 0.2, HF = 0.5 and HF = 0.6 as a function of r/R. The parabolic velocity profile at

HF = 0 is added for comparison.

Fig. 4. Profiles of the local velocity of blood v(r) for reservoir hematocrit HF = 0.405 in
tubes of different radii: R = 15 µm, R = 50 µm and R = 250 µm.
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with HF = 0.4 and the tube’s outer radius R as the parameter. These velocity
profiles can be described as quasi-parabolic, flattened slightly at the center of the
tube. By comparison, Cox and Mason [10] reported velocity profiles completely
flat at the central axis for suspensions of rigid spherical particles. Note in Fig.
3 that due to the presence of the particle-free region near the wall, the values
of v(r) coincide for all HF in this region, that is, for R1/R ≤ r/R ≤ 1. It can
be seen in Table 1 that R1/R ≈ 0.95 in this case. Furthermore, the limiting
value of Rdv/dr as r/R → 1 is the same for all values of R as can be seen
in Fig. 4.

Once v = v(r) has been obtained, several other quantities of interest can be
calculated in the same loop of the numerical code, which integrates (3.1). The
total output of blood can be determined from

(3.5) Q(HF , R) = 2π

R
∫

0

v(r)r dr,

whereas the output of erythrocytes is given by

(3.6) QT (HF , R) = 2π

R
∫

0

v(r)h(r)r dr.

Note that v(r) and thus Q and QT depend on h(r) and therefore on HF . A com-
parison of the calculated output of water Qw with its known theoretical value
Qw,th is an indication of the accuracy of the proposed method: the relative dif-
ference is

|Qw −Qw,th|/Qw,th ≈ 0.03.

Furthermore, the output of the erythrocytes QT = QT (HF , R) given in (3.6)
can be used to compare the hematocrit at the tube’s outlet,

Hout = QT (HF , R)/Q(HF , R),

with that in the feeding reservoir HF . As noted already by Fåhræus [1], Hout

should be equal to HF . The results compiled in Table 2 show that the two values
converge with the increase in tube’s radius R, and are within 10% for R ≥ 50 µm
and with HF in the range of 0.1–0.6.

Finally, using (3.5) it is now also possible to calculate the relative viscosity
ηrel(HF , R) defined by (1.1) and to compare the results with the experiment. Cal-
culations were carried out for three cases: HF = 0.2, HF = 0.405 and HF = 0.6,
but experimental data is available only for the standard reservoir hematocrit
HF = 0.405. A comparison of η as a function of R and HF with the experi-
mental data is given in Fig. 5. For standard hematocrit, the calculated relative
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Table 2. Values of the output hematocrit Hout for a given reservoir hematocrit

HF in tubes with different radii.

HF R = 10 R = 20 R = 50 R = 150 R = 350 R = 600

0.1 0.078 0.089 0.087 0.092 0.10 0.10

0.2 0.15 0.192 0.173 0.20 0.20 0.20

0.3 0.23 0.26 0.286 0.30 0.30 0.30

0.405 0.30 0.38 0.403 0.405 0.405 0.405

0.5 0.37 0.42 0.47 0.5 0.5 0.5

0.6 0.44 0.49 0.56 0.6 0.6 0.6

Fig. 5. The relative viscosity of blood, ηrel(R), as a function of tube radius R for various
hematocrit values in the feeding reservoir: HF = 0.2, HF = 0.405 and HF = 0.6. The range of
experimental data for HF = 0.405, taken from Pries et al. [4], is delineated by dotted curves.

viscosity curve lies well within the experimentally determined region in Fig. 5,
delineated with dash lines.

4. Discussion and concluding remarks

The analysis and results offered here do not provide the full theory of blood
flow through capillaries. No satisfactory theory for the flow of dense suspension
through the tube has been proposed thus far, not even for the simplest case of
the suspension of rigid spheres. The purpose of the present paper, however, goes
beyond devising a purely empirical formula that would neatly agree with avail-
able experimental data for the suspension of erythrocytes. Rather, the present
approach – although suggested by empirical observations and referring to ex-
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periments – aims to provide a simple hydrodynamic description based on the
properties of Newtonian fluids and suspension flows.

The principal assumptions of the proposed analysis are:

(i) The local hematocrit h(r) can be described by (2.1) and (2.4);
(ii) The flow can be considered separately in three regions defined by R1 =

R − δ with δ ≈ 2.5 µm and R2 which is a continuous function of Hr

and R;
(iii) Local viscosity depends exponentially on h(r), as given in (3.4) with

α = 3.

These three assumptions establish a direct link between the Fåhræus and the
Fåhræus–Lindqvist effects for blood flow through capillaries based on the Navier–
Stokes equation, and lead to the following conclusions and results:

(i) The Barbee graph (Fig. 1) is universal, valid for all HF and R for which
blood could be treated as a suspension.

(ii) The radius of the core region R2 can be deduced from (2.5) and the
Barbee relationship.

(iii) Hematocrit and velocity profiles in the tube can be obtained by integrat-
ing (3.1) subject to the boundary conditions ((3.2) and the matching
conditions).

For very narrow capillaries, whose diameter is of the same order as the dimension
of erythrocytes, the above description is no longer adequate and the flow should
instead be treated as that of individual particles (erythrocytes) interacting with
one another and with the tube’s wall. Experiments show that at the threshold
value of the capillary’s diameter, the relative viscosity rises sharply as compared
to that in slightly larger vessels. A theoretical investigation of such flows, in
tubes with a radius R in the range of 3–10 µm, was given by Secomb et al. [11]
and Secomb and Pries [12].

A few concluding remarks are in order. It seems that more than 80 years
after the original Fåhræus experiments, the basic physics underlying his findings
has not yet been fully appreciated either in the literature on blood or on fluid
dynamics of dense suspensions.

In physiology, the Fåhræus–Lindqvist effect, the phenomenon assuring that
the viscosity of blood in capillaries is substantially lower than in large vessels, is
critical for the adequate supply of blood to all body organs. The well-established
fact that the maximal drop of resistance in the circulatory system is at the
level of arterioles was ascribed, from the XIX century onwards, to the large
number of capillaries, however, the enhanced flow in them due to decreased
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viscosity has been overlooked. Even today, the Fåhræus effect is rarely included
in textbooks on physiology, and is sometimes omitted in monographs on the
circulatory system.

In hydrodynamics, Fåhræus observations indicate that the very presence of
boundaries in a suspension flow forces an ordering of suspended particles close to
the vessel’s walls. Theories of suspension based on random distribution of par-
ticles in the whole domain do not satisfactorily describe such flows, particularly
near boundaries. The well-known discrepancies in measurements of the viscosity
of suspensions depending on the type of viscometer used are manifestly due to
different geometry of these measuring devices, i.e. due to different shapes of their
internal boundaries.

This paper concerns a very specific type of suspension, that of erythrocytes in
plasma or saline, a suspension of flexible particles of complicated shape. A ques-
tion arises, therefore, as to whether the proposed approach could be employed
more broadly. For example, could one find the equivalent of the Barbee graph for
any particular suspension? Although the method presented here is closely tied
to the experiments on blood flow, there are reasons to believe that it will prove
applicable to other types of suspensions as well.
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Closing Note

This article, written by Ryszard Herczyński mostly in 2008, is his last sci-
entific contribution, which he was not able to complete. The author would have
almost certainly objected to some of the changes that were introduced in the
manuscript, but it is hoped that they do not detract too much from his ideas
and results. (Andrzej Herczyński)
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