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In the paper the authors present the results obtained during a direct numeri-
cal simulation of the transitional Taylor–Couette flow in closed cavity. The spectral
vanishing viscosity method is used to stabilize computations for higher Reynolds
numbers. The Taylor–Couette flow is widely used for studying the primary pattern
formation, transitional flows and fully turbulent flows. The Taylor–Couette flow is
also important from engineering point of view: the results can be interesting for engi-
neers dealing with gas turbines and axial compressors. In the paper the attention is
focused on the influence of the end-wall boundary conditions on the flow structures
and on statistics (i.e. the radial profiles of the angular velocity, angular momentum,
torque, the Reynolds stress tensor components). The results are discussed in the light
of experimental and numerical data published in literature (F. Wendt, Ing.-Arch., 4,
1933; H. Brauckmann, B. Eckhardt, J. Fluid Mech., 718, 2013).
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1. Introduction

In the classic Taylor–Couette system with the rotating inner cylinder
and the stationary outer one the flow undergoes a series of the following subse-
quent transitions: Beyond a certain critical Reynolds number the circular Cou-
ette flow becomes unstable, which results in the appearance of pairs of counter-
rotating axisymmetric vortices filling in the annulus. Each pair of vortices has
an axial wavelength equal to dimensionless value λz/(R2 −R1) = 2. Then, a su-
percritical Hopf bifurcation leads to a state with waves on the vortices (in wavy
vortex flow the Taylor–Couette vortical structure is retained but vortices are
modified). With further increase of Re the modulated waves state and turbulent
Taylor vortex flows appear. The Taylor–Couette flows are, among others, very
useful from numerical and experimental points of view because of the simplicity
of their geometry. These model flows provide opportunities for detailed compar-
isons between the experimental and numerical results. Knowledge of the local
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bifurcations can lead to a better understanding of the organization of more com-
plex dynamics (global bifurcation and chaos). From application point of view
these flows are particularly suitable for investigating the phenomena which oc-
cur in gas turbines, ventilations, chemical mixing equipment, in geophysics and
in astrophysics.

The Taylor–Couette flow is governed by parameters defined below. The cav-
ity is characterized by radii ratio η = R1/R2 (where R1 and R2 are the radii
of the inner and outer cylinders respectively, Fig. 1), by curvature parameter
Rm = (R2 + R1)/(R2 − R1) = (1 + η)/(1 − η) and by aspect ratio Γ = 1/L =
H/(R2 − R1), where H is the axial dimension of the domain. In Figure 1 the
cavity is confined by the bottom and the top end-walls. The Reynolds number is
defined in the following way: Re = Ω(R2 − R1)R1/ν where Ω is the rotation of
the inner cylinder and the bottom disk, ν is the kinematic viscosity of the fluid.

Literature on the Taylor–Couette flow is very broad and includes experimen-
tal and numerical studies. The experimental measurements are the main source
of our knowledge about the turbulent Taylor–Couette flows. Insights into the
turbulent Taylor–Couette flow structure, the scaling of the torque were obtained
experimentally, among others, by Wendt [1], Lathrop et al. [2], Lewis, Swin-
ney [3], Racina, Kind [4]. Barcilon et al. [5] studied coherent structures in
the turbulent Taylor–Couette flow in configuration of η = 0.908 and observed
a fine herringbone-like pattern of streaks at the outer cylinder area. The re-
view of papers in the field of the Taylor–Couette experimental research can be
found in Dubrulle et al. [6]. The numerical investigations, as opposed to the
experimental ones, are limited to much lower Reynolds numbers. The overview
of literature indicates that almost all numerical simulations, so far, have concen-
trated on the laminar and transitional flow cases (see Mujumdar, Spalding [7],
Cliffe, Mullin [8], Czarny et al. [9], Coughlin, Marcus [10, 11]). Based
on the concentration of perturbations on the outflow jets boundary layers Vas-
tano and Moser [12] have found that the chaos-producing mechanism leading
to turbulence is a Kelvin–Helmholtz instability. Dong [13] and Brauckmann,
Eckhardt [14] have recently investigated the turbulent Taylor–Couette flow by
DNS (direct numerical simulation) providing detailed information on the flow
structure and torque distributions.

Different configurations are considered by researchers e.g. with co- and coun-
ter-rotating cylinders, with and without an imposed axial flow and with different
end-wall boundary conditions. In most numerical investigations the periodicity
condition in the axial direction is applied [13, 14], which significantly reduces
computational time. Such numerical results can be compared to the experimen-
tal data obtained in cavities of very large Γ . In configurations of large Γ the
influence of the end-walls on a flow structure is small, but of course it exists
and should be estimated. In the experimental investigations, the presence of the
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end-walls influences the flow structures by constraining the axial motion near
the end-walls and by causing Ekman pumping. The influence of the asymmetric
end-wall conditions on the flow structures in configurations of aspect ratio from
the range Γ = 2.4 − 3.5, η = 0.5 (Re from 75 to 400) was studied by Mullin,
Blohm [15]. They investigated numerically and experimentally the formation of
the three-cell Taylor–Couette structure and its transition to the one-cell struc-
ture over the critical Re. Mullin, Blohm [15] plotted critical points of the
transition as a function of Re and Γ (the general features of such bifurcations
are reviewed and discussed). Theoretical analysis of the Taylor–Couette flow
with the end-wall boundary conditions is beyond the scope of the present ar-
ticle but a lot of information the reader can find in Cliffe et al. [16] where
the Taylor–Couette flows with the independently rotating end-walls are stud-
ied. Cliffe et al. [16] discussed (among others) whether the normal branch and
the disconnected branch of the steady Taylor–Couette flow could be brought
together in a pitchfork bifurcation at any intermediate value of the end-walls
rotation rate. Problem is also investigated in Abshagen et al. [17]. Avila [18]
performed computations for the co-rotating cylinders with the end-walls and he
showed that instabilities stemming from the axial boundary conditions affect the
flow globally and enhance angular momentum transport.

In [15, 16] the effect of the end-wall conditions on the bifurcations has been
studied in the configurations of small aspect ratios Γ and η = 0.5 (in these
flow cases the effect of the end-walls is large). In the present paper we present
the results obtained for the classic Taylor–Couette flows, with the rotating in-
ner cylinder and the stationary outer one, of aspect ratio Γ = 11.75 and radii
ratio 0.9. Computations are performed for the asymmetric end-wall boundary
conditions, i.e., the rotating bottom disk and the stationary top one, however,
for comparison the symmetric stationary end-walls also are used. We chose the
configuration of aspect ratio Γ = 11.75 because it is believed that for Γ > 10
the influence of the end-walls on the flow structure and on the statistics is negli-
gibly small. However, our results have shown that in spite of aspect ratio greater
than 10 the influence of the end-walls are still visible, particularly in the radial
profiles of torque (we have tried to estimate this impact quantitatively). The ra-
dial profiles of torque we analyze in the light of the experimental data obtained
by Wendt [1] and the theoretical results obtained by Eckhardt et al [26].

The outline of the paper is as follows. After a brief introduction (Section 1) in
Section 2 we define the problem, describe the numerical method and analyze the
precision of numerical computations. The flow structure, the radial profiles of
the mean angular velocity and the mean angular momentum, and the Reynolds
stress tensor components are presented in Section 3. The variation of torque with
increasing rotation rate and the influence of the end-wall boundary conditions
on it are discussed in Section 4. The conclusions are given in Section 5.
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2. Mathematical and numerical approaches

We consider the incompressible flow in the Taylor–Couette cavity schemat-
ically presented in Fig. 1. The cylinder axis is aligned with the z axis of the
coordinate system. The inner cylinder of radius R1 rotates counter-clockwise
(viewed toward the z direction) at a constant angular velocity Ω while the outer
cylinder of radius R2 is at rest. The top disk is stationary and the bottom one is
attached to the inner rotating cylinder (for comparison the computations have
also been performed for the cavity with both end-walls attached to the stationary
outer cylinder).

Fig. 1. Schematic picture of the Taylor–Couette flow.

The flow is described by the Navier–Stokes and continuity equations written
with respect to a rotating frame of reference.

∇ · V = 0,(2.1a)

ρ
∂V

∂τ
+ ρ(V · ∇)V + ρΩ × (Ω × R) + 2ρΩ × V = −∇P + µ∆V,(2.1b)

where τ is time, R is radius, P is pressure, ρ is density, V is the velocity vector
and µ is the dynamic viscosity. The dimensionless axial and radial coordinates
are: z = Z/(H/2), z ∈ [−1, 1], r = [2R − (R2 + R1)]/(R2 − R1), r ∈ [−1, 1].
The dimensionless time is t = τ/(1/Ω). The velocity components are normalized
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by ΩR2; the dimensionless components of the velocity vector in radial, azimuthal
and axial directions are denoted by u = U/ΩR2, v = V/ΩR2, w = W/ΩR2. No-
slip boundary conditions are applied to all rigid walls u = w = 0. For the
azimuthal velocity component, the boundary conditions are: v = 0 on the ro-
tating walls and v = −(Rm + r)/(Rm + 1) on the stationary walls. In order
to eliminate singularities of the azimuthal velocity components at the junctions
between the rotating and stationary walls, the azimuthal velocity is regularized
by exponential profiles.

v = −1 + e(−z−1)/a,(2.2a)

v = −[(Rm − 1)/(Rm + 1)]e(z−1)/a(2.2b)

with a = 0.002 − 0.005. All presented results are obtained with the use of
DNS/SVV (direct numerical simulation/spectral vanishing viscosity) method.
The governing equations are approximated in time using the second-order semi-
implicit scheme [19, 20, 23]. This scheme combines an implicit treatment of the
diffusive term and an explicit Adams–Bashforth scheme for the non-linear con-
vective terms. The predictor/corrector method is used. The spatial scheme is
based on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation approxima-
tion:

(2.3) Ψ(r, ϕ, z) =

Nϕ/2−1
∑

k=−Nϕ/2

Nr−1
∑

l=0

Nz−1
∑

m=0

Ψ̂lmkTl(r)Tm(z)eikϕ

− 1 ≤ r, z ≤ 1, 0 ≤ ϕ ≤ 2π,

where Ψ = [up, vp, wp, pp, φ]T , up, vp, wp depict predictor of the radial, azimuthal,
axial velocity components, and pp depicts the predictor of pressure, φ is a new
variable which corrects velocity field (φ is described beneath in this section).
In (2.3) Tl(r) and Tm(z) are Chebyshev polynomials of degrees l and m, re-
spectively. N r, Nϕ and N z are numbers of collocation points in radial, az-
imuthal and axial directions, respectively. In every time iteration the compu-
tations start with obtaining pressure predictor by solving Poisson equation with
Neumann boundary condition. Then the velocity predictor is obtained by solving
Helmholtz equation with the appropriate boundary conditions. The correction
of the velocity field is done by taking into account the pressure gradient at itera-
tion ti+1, so that the final velocity field satisfies the incompressibility constraint
3(V i+1−V p)/[L(Rm+1)2δt] = −(∇pi+1−∇pp), ∇·V i+1 = 0 with the boundary
condition (V i+1 · n = V p · n, where δt denotes increment of time, n is normal
versor). Corrected velocity components are obtained by computing new variable
φ = 2δt(pi+1 − pp)/3 from the equation ∇φ = div(V p)/[L(Rm + 1)] with the
boundary condition ∇(φ) ·n = 0. Ultimately, the solutions of Navier–Stokes and
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continuity equations are obtained by solving Helmholtz equation which can be
written in the following form:

1

L2

∂2Ψ

∂r2
+

1

L2(Rm + r)

∂Ψ

∂r
+

1

L2(Rm + r)2
∂2Ψ

∂ϕ2
+

∂2Ψ

∂z2
− qΨ = S,(2.4a)

q =
1

L2(Rm + r)2
+

3Re

4δtL2(Rm − 1)
for vp and up,(2.4b)

q =
3Re

4δtL2(Rm − 1)
for wp,(2.4c)

q = 0 for pp and φ.(2.4d)

Function S contains terms from the previous iterations and from the predictor
stage. In next step equation (2.4a) is expanded into Fourier series; S and Ψ are
described in the following way:

(2.5a) Ψ =

K/2−1
∑

k=−K/2

Ψ̂k(r, z)eikϕ, S =

K/2−1
∑

k=−K/2

Ŝk(r, z)eikϕ.

After expanding into Fourier series equation (2.4a) is written in the following
form for each harmonic k:

(2.5b)
1

L2

∂2Ψ̂k

∂r2
+

1

L2(Rm + r)

∂Ψ̂k

∂r
+

∂2Ψ̂k

∂z2
−

[

q +
k2

L2(Rm + r)2

]

Ψ̂k = Ŝk

k ∈ [−Nϕ/2, . . . , Nϕ/2 − 1].

Finally, after spatial discretization in radial and axial directions Helmholtz equa-
tion (2.4a) can be written in the following form:

AΨ + ΨB = S,(2.6a)

Ψ = Ψ̂ijk = Ψ̂k(ri, zj), S = Ŝijk = Ŝk(ri, zj), −1 ≤ ri, zj ≤ 1,(2.6b)

where:

A =
1

L2
(Dr)

(2)
ij +

1

L2(Rm + ri)
(Dr)

(1)
ij −

[

qi +
k2

L2(Rm + ri)
2

]

δij,(2.7a)

B = (Dz)
(2)
ij ,(2.7b)

(Dr)
(1)
ij , (Dr)

(2)
ij , (Dz)

(2)
ij are differentiating matrices. The final system of equa-

tions is solved with full diagonalization. The described algorithm (with the en-
ergy equation) can also be used for investigation of the non-isothermal fluid flow
in rotating cavity [20, 23].
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To stabilize computations for higher Reynolds number we use SVV method
proposed by Tadmor [21], in which an artificial viscous operator is added to
Laplace operator. The Tadmor operator written in one direction has the form of

∆̃NuN ≡ εN

∂

(

QN
∂uN

∂x

)

∂x
,

where uN is a discrete approximation of velocity component u, εN is the viscosity
amplitude (limN→∞ εN = 0), QN is the spectral operator active only for high
frequencies and N is the number of collocation points. After adding Tadmor
operator (written in one direction) the Laplace operator takes the form of:

(2.8) ν∆SV V uN = ν∆uN + εN

∂

(

QN
∂uN

∂x

)

∂x
.

The Tadmor operator in Fourier space is written as follows:

(2.9) εN

∂

(

QN
∂uN

∂x

)

∂x
= −εN

∑

kT≤|k|≤N/2

k2Q̂N/2(k)ûke
ikx.

In Eq. (2.9) kT is the threshold mode above which the Tadmor [21] operator
is activated. N is the number of Fourier modes. In Chebyshev space QN can be
written in the following form:

(2.10) QN

(

∂uN

∂x

)

=

N
∑

k=kT

Q̂N (k)

(

∂ûN

∂x

)

Tk,

where Tk are Chebyshev polynomials, Q̂N (k) = 0 for 0 ≤ |k| ≤ kT and Q̂N (k) =
exp[−[(N − |k|)/(kT − |k|)]2] for kT < |k| ≤ N . The SVV modes are activated
above assumed k

T
. The 3D version of Eq. (2.8) takes the form:

(2.11) ν∆SV V uN ≡ ν∆uN + ∇ · (εNQN · (∇uN )) = ν(∇ · GN · ∇)uN ,

where

GN = I +
1

ν
εNQN =





1 + εr
NrQr

Nr/ν 0 0
0 1 + εϕ

NϕQϕ
Nϕ/ν 0

0 0 1 + εz
NzQz

Nz/ν



(2.12)

=





Gr
Nr 0 0
0 Gϕ

Nϕ 0
0 0 Gz

Nz



 .
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In Eq. (2.11) ∇uN is the velocity gradient tensor, in Eq.(2.12) εi
N i is a viscos-

ity amplitude for i direction and Qi
N i is a viscosity operator defined in spectral

space. The modified Laplace operator can be written as follows:

∆SV V ≡ 1

L2

∂

∂r
Gr

Nr

∂

∂r
+

1

L2(Rm + r)
Gr

Nr

∂

∂r
(2.13)

+
1

L2(Rm + r)2
∂

∂ϕ
Gϕ

Nϕ

∂

∂ϕ
+

∂

∂z
Gz

Nz

∂

∂z
.

In next step Eq. (2.11) is expanded into Fourier series [22, 23, 20].
A series of calculations have been performed to validate the computational

DNS/SVV approach and construct a foundation upon which further analysis
can be performed with confidence. Such validation has been partly done in
[23, 20]. The numerical details of the flow case Γ = 11.75, η = 0.9, Re =
2475 are provided in Table 1. The parameters presented in Table 1 are de-
fined in the following manner: ∆R+

2 = ∆Ruσ/ν, ∆R+
1 = ∆Ruσ/ν, where

uσ = {ν2[(∂W/∂R)2 + (∂V/∂R)2]}0.25 is friction velocity computed at the outer
and inner cylinders respectively, and ∆R = L(H/2)∆rmin; ∆z+

2 = ∆Zuσ/ν,
∆z+

1 = ∆Zuσ/ν, where uσ = {ν2[(∂V/∂Z)2 + (∂U/∂Z)2]}0.25 is friction velocity
computed at the top and bottom disks respectively, and ∆Z = (H/2)∆zmin. The
parameters (R2∆ϕ)+ = R2∆ϕuσ/ν, (R1∆ϕ)+ = R1∆ϕuσ/ν are obtained for
friction velocity computed at the outer and inner cylinders, and ∆ϕ = 2π/Nϕ.
As it is shown in the Table 1 the distance of the first grid point along the
wall-normal axis is smaller than one wall unit for all presented meshes. From
Table 1 we can also see that compared to mesh (50, 250, 201), the radial res-
olution in mesh (100, 300, 201) is refined by a factor of two; this results in
decreasing of ∆R+

2 = ∆Ruσ/ν by factor four. The time step is from the range
δt = 0.01 − 0.0005.

Table 1. Numerical details for the narrow-gap cavity of Γ = 11.75, η = 0.9,
Re = 2475, the results obtained for different numbers of collocation points

(Nr, Nϕ, Nz).

Re=2475 ∆R+
2 ∆R+

1 (R2∆ϕ)+ (R1∆ϕ)+ ∆z+
2 ∆z+

1

(50, 250, 201) 0.176 0.089 43.143 19.693 0.075 0.117

(100, 300, 201) 0.04349 0.02349 36.2210 17.6095 0.076 0.116

(150, 300, 201) 0.01905 0.01079 35.9458 18.3226 0.0768 0.116

(100, 400, 201) 0.04311 0.02438 26.9254 13.7079 0.076 0.116

(100, 400, 301) 0.04393 0.02423 27.4383 13.6234 0.034 0.0518

From the identification techniques based on pointwise analysis of the velocity
gradient tensor we choose the λ2 criterion which captures the regions of local
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pressure minimum [24, 25]. The iso-surfaces of λ2 (the second, in magnitude,
eigenvalue of the tensor SikSkj + ΩikΩkj, where Sij =

(

∂ui

∂xj
+

∂uj

∂xi

)

/2, Ωij =
(

∂ui

∂xj
− ∂uj

∂xi

)

/2) show perfectly well the flow structure in three-dimensional space.

3. The selected result

3.1. The structure of the Taylor–Couette flow with the asymmetric end-wall
boundary conditions

3.1.1. The flow case of Γ = 3.76. The purpose of this article is the investigation of
the flow case of medium aspect ratio (Γ = 11.75) with the asymmetric end-wall
boundary conditions, however, this investigation is a part of our wider numerical
study which has been carried out, among other, in configurations of Γ = 3.76 and
radii ratios η = 0.375, 0.523, 0.615, 0.756, 0.82. Those studies have shown that
the influence of the end-walls depends on Γ and η. For the configuration of aspect
ratio Γ = 3.76, η = 0.375 with a rotating inner cylinder and bottom disk, and
with a stationary outer cylinder and top disk the three-cell structure is formed at
Reynolds number Re = 77. The odd number of vortices is a characteristic feature
of the Taylor–Couette flow with the asymmetric end-wall boundary conditions.
The inward flow towards the rotating inner cylinder occurs along the stationary
top disk and an outward flow along the rotating bottom disk. At about Re = 270
the middle vortex is squeezed by the growth of the vortex adjacent to the bot-
tom rotating disk. Finally, the steady three-cell structure collapses to a one-cell
state at the critical Reynolds number via a saddle-node bifurcation. We estimate
this critical Re at 281. The transition to unsteadiness for cavity of aspect ratio
Γ = 3.76 (η = 0.375) occurs at Re = 492. At this Re we observe six spirals of
the dimensionless azimuthal wavelength λa/(H/2) = (2πR/n)/(H/2) = 0.6128,
where n is number of vortices [20]. For Γ = 3.76, η = 0.375 we observe a kind
of competition between the Taylor–Couette and Batchelor flow patterns, as to
which pattern will dominate the flow. The computations performed for the as-
pect ratio Γ = 3.76 and for different η have shown that the transition from the
there-cell structure to the one-cell structure occurs for the lower η. For higher
radii ratios (η = 0.82, for example) we observe the typical Taylor–Couette flow
transition process. Figure 2a shows the modulated wave flow structure obtained
for Γ = 3.76, η = 0.82, Re = 989.

The behavior in time of the chosen dependent variables we monitor in the
middle section of the cavity (r = 0) and in three different axial positions corre-
sponding to the stationary disk layer, the geostrophic core and the rotating disk
layer. The histories of the dependent variables allow us to monitor the amplitudes
and angular frequency of disturbances. The exemplary history of the azimuthal
velocity component obtained near the top stationary disk and in the middle sec-
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a)

b)

Fig. 2. a) The iso-surfaces of λ2 obtained along the cylindrical surface near the inner
cylinder, b) the azimuthal velocity component v as a function of the dimensionless time t,

Γ = 3.76, η = 0.82, Re = 989, the inner cylinder and the bottom disk rotate.

tion of cavity (Fig. 2b, η = 0.82) shows that on the fundamental wave, another
wave of smaller angular frequency is superimposed. For the cavity of Γ = 3.76,
η = 0.82 we observe fifteen vortices coming from the Ekman boundary layer
of λa/(H/2) = 1.136 (Fig. 2a). For this flow case we do not observe collapsing
procedure, which takes place in the configuration of Γ = 3.76, η = 0.375, but
we can see that the influence of the end-walls is strong. Detailed analysis of the
flow cases of Γ = 3.76 with radii ratio η from 0.375 to 0.82 will be the object of
a separate paper.

3.1.2. The flow case of Γ = 11.75. The study of this flow case has allowed us to an-
alyze all the subsequent bifurcations which appear with an increasing Reynolds
number for both symmetric and asymmetric end-wall boundary conditions. The
Taylor–Couette vortices are formed slightly above Re = 80 which agrees well
with 84 < Re < 86 obtained by Pirro, Quadrio [27] for η = 0.95, and
68.2 < Re < 68.4 obtained for η = 0.5 (in both flow cases the periodicity condi-
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a) b)

c)

Fig. 3. a) The iso-surfaces of λ2 obtained along the cylindrical surface near the inner
cylinder, Re = 200, b) the meridian flow, Re = 200, c) the azimuthal velocity component v as

a function of time, Re = 200.

tions in the axial direction have been used). Above Re = 80 we observe eleven
Taylor–Couette vortices (the Taylor–Couette vortices in the meridian section are
presented in Fig. 3b).

The transition to unsteadiness takes place at Re = 200 which is manifested by
the appearance of wavy vortices i.e. the Taylor–Couette vortices undergo a wavy
azimuthal deformation. The wave flow structure is illustrated in Fig. 3a, where we
observe nine waves of λa/(H/2) = 1.128 propagating in the azimuthal direction.
Figure 3c presents the history of the azimuthal velocity component (obtained
at collocation point: r = 0, z = 0.8, ϕ = 0) from which we can see that the
change of rotation initiates disturbance, which is then rapidly damped. After
this, the flow temporarily reaches steady state that lasts up to dimensionless
time t = 350. From t = 350 up to t = 420 we observe the exponential growth of
disturbance which finally reaches an asymptotic state of the angular frequency
σ = 2π/∆t = 5.02, where ∆t is a period of time.
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d) e)

f)

Fig. 3. [cont.] d) The iso-surfaces of λ2 obtained along the cylindrical surface near the inner
cylinder, Re = 1161, e) the meridian flow, Re = 1161, f) the azimuthal velocity component v

as a function of time, Re = 1161, Γ = 11.75, η = 0.9, the asymmetric end-wall boundary
conditions.

With further increase of Re, the bifurcation to modulated vortices appears
(critical Re is estimated at 981). From the history of the azimuthal velocity
component v obtained for Re = 1161 we can see that on the fundamental wave
(of angular frequency σ = 5.02) the second wave of angular frequency σ = 0.287
is superimposed (Fig. 3f). With increasing Re the flow becomes gradually chaotic.
The structures of the flow obtained for Re = 2475 along the cylindrical surfaces
near the inner cylinder (Fig. 4a) and the outer cylinder (Fig. 4b) show the
existence of many small-scale vortices extended along the azimuthal direction.
However, the large-scale Taylor vortices still occupy the entire gap, with well-
defined inflow and outflow jets. Nine vortices coming from the Ekman boundary
layer are slightly growing in axial direction with the increasing Re, but, their
influence on the entire flow is small in comparison to the flow case of Γ = 3.76
shown in Fig. 2.
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a)

b)

Fig. 4. The iso-surfaces of λ2 obtained along the cylindrical surface: a) near the inner
cylinder, b) near the outer cylinder, Γ = 11.75, η = 0.9, Re = 2475, the asymmetric end-wall

boundary conditions.

3.2. The radial profiles of statistical data (the flow case of Γ = 11.75)

The change in flow dynamics with increasing Re is visible in the radial profiles
of angular velocity and angular momentum as it has been pointed out in [14].
The angular velocity and the angular momentum normalized by their values at
the inner cylinder and averaged along cylindrical surfaces and time are presented
in Fig. 5a. The averaged values are written in the following way:

〈(V/R)/(V/R)1〉A(R),t(3.1a)

= 〈[v + (Rm + r)/(Rm + 1)] · [(Rm − 1)/(Rm + r)]/η〉A(R),t,

〈(V R)/(V R)1〉A(R),t(3.1b)

= 〈[v + (Rm + r)/(Rm + 1)] · [(Rm + r)/(Rm − 1)]/η〉A(R),t,

where 〈. . . 〉A(R),t stands for average over a cylindrical surface of radius R and
time [14]. The results presented in Fig. 5a are obtained for Re = 2025 and
Re = 2655. We observe very narrow shear-driven boundary layers at the inner
and outer cylinders. At the central part of cavity the angular velocity profiles



408 E. Tuliszka-Sznitko, K. Kiełczewski

decrease very slowly with r, while the angular momentum profiles are almost
constant. This constant value is close to (V R1)/2. The similar value was ob-
tained in [14] numerically for η = 0.71 (Re = 16875), and experimentally by
Taylor [28] and Smith, Townsend [29]. Figure 5b shows the comparison of
the radial profile of the azimuthal velocity component (obtained for Re = 60 in
the middle section of the cavity using DNS/SVV) and the theoretical solution
obtained for laminar flow [27]:

(3.2) V/ΩR1 = (R1/R − η2R/R1)/(1 − η2).

We can see an agreement between the present DNS result and the theoretical one.
In contrast to turbulent flow the laminar solution constitutes almost a straight
line.

a)

b)

Fig. 5. a) The radial profiles of the mean angular velocity (AV) and the mean angular
momentum (AM) obtained using DNS/SVV for Re = 2025 and 2655, b) the radial profile of
the azimuthal velocity component obtained using DNS/SVV for Re = 60 compared with the

theoretical solution, Eq. (3.2), Γ = 11.75, η = 0.9.
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a)

b)

c)

Fig. 6. The radial profiles of the Reynolds stress tensor components: a) 〈u′u′〉A(R),
b) 〈v′v′〉A(R), c) 〈w′w′〉A(R), Γ = 11.75, η = 0.9.
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The radial profiles of the Reynolds stress tensor components averaged over a
cylindrical surface are showed in Fig. 6. The results are obtained for Re = 2655,
2475 and 2065. From Fig. 6 we can see that the level of fluctuations increases
with increasing Re. The highest levels of fluctuations are observed within the
boundary layers for the azimuthal component (Fig. 6b). Those radial profiles
show asymmetry (Fig. 6b). The profiles of the axial components are more sym-
metric than azimuthal ones (Fig. 6c). The profiles of radial components differ
from the others, i.e., the profiles have the highest values in the middle part of
cavity (Fig. 6a).

4. Variation of torque with increasing Reynolds number (the flow case
of Γ = 11.75)

In the Taylor–Couette system intensive molecular and convective transfer of
azimuthal momentum takes place. The azimuthal momentum needed to drive
the cylinder can be measured as a torque. This issue was discussed among other
by Lathrop et al. [2] and Lewis, Swinney [3]. The dependence of torque
on the Reynolds number is of great interest for understanding the global fea-
tures of the flow. The dimensionless torque is defined in the following manner
G = T/(2πHρν2), where ρ is the density of the fluid, ν is the kinematic vis-
cosity and H is the length of the cylinders. The main object of interest is the
relation between the dimensionless torque G and Reynolds number described as
follows: G ∝ Reα, where α is a scaling exponent. The value of α depends on
Re and ranges from 1.6 to 1.8 for Re = 104–106. Wendt [1] proposed value
α = 1.5 for Re = 4 · 102–104 and α = 1.7 for Re = 104–105. Eckhardt et

al. [26] and Brauckmann, Eckhardt [14] performed theoretical and numer-
ical investigations of the turbulent Taylor–Couette flows in the infinitely long
cavity. In [14, 26] the torque is studied via the transverse current

jω = R3

[

UV

R
− ν

∂
(

V
R

)

∂R

]

which measures the transport of angular momentum. Eckhardt et al. [26]
showed theoretically that the mean current

Jω = 〈jω(R,ϕ,Z, t)〉A(R),τ =

〈

R3

[

UV

R
− ν

∂
(

V
R

)

∂R

]〉

A(R),τ

(4.1)

= R3

[

〈

UV

R

〉

A(R),τ

− ν
∂

〈(

V
R

)〉

A(R),τ

∂R

]



Direct numerical simulation of the Taylor–Couette flow. . . 411

is independent of radius. The mean current is related to the dimensionless torque
in the following way G = T/(2πHρν2) = Jω/ν2. By analogy to the Nusselt
number (describing the heat flux in thermal convection) the mean current is
often normalized by its laminar value Nuω = Jω/Jω

lam = G/Glam, where Jω
lam is

the value obtained for the circular Couette flow

Jω
lam =

2νR2
1R

2
2 V1

[R1(R2
2 − R2

1)]
.

We have employed an azimuthal average in addition to the temporal one and
define the turbulent velocity U = Ū + U ′ with the mean velocity U = 〈U〉ϕ,τ .
The velocity decomposition to the turbulent velocity and the mean velocity
(U ′V ′ = UV − Ū V̄ ) allows to analyze the contribution of the turbulent term
R3

〈

U ′V ′

R

〉

A(R)
, the mean convection term R3

〈

Ū V̄
R

〉

A(R)
and the viscous term

−ν
∂〈 V̄

R
〉A(R)

∂R to the total value. Values with crossbar at the top are obtained by
averaging in time. After decomposition and normalization the equation (4.1) can
be written in the following form, [14]:

Nuω = R3

[

〈

UV

R

〉

A(R),τ

− ν
∂

〈(

V
R

)〉

A(R),τ

∂R

]

/Jω
lam(4.2)

= R3

〈

Ū V̄

R

〉

A(R)

/Jω
lam + R3

〈

U ′V ′

R

〉

A(R)

/Jω
lam

− ν

∂
〈(

V̄
R

)〉

A(R)

∂R
/Jω

lam.

The following terms

〈

U ′V̄

R

〉

A(R),τ

,

〈

ŪV ′

R

〉

A(R),τ

,
∂
〈(

V ′

R

)〉

A(R),τ

∂R

are zero by definition. Following [14], in Fig. 7 we analyze contributions of the
mean convective term, the turbulent term and the viscous term to Nuω (Re =
2475). The largest contribution to the total current in the central part derives
from the mean convective term (this term vanishes near the cylinders). The
contribution of the turbulent term in considered range of Re is small. The viscous
term dominates near the cylinders, which results from the shape of the angular
velocity profile presented in Fig. 5a (almost flat profile in the central region with
large gradients at the boundaries).

Figures 8a and 8b present the radial profiles of Nuω obtained for different
Re, and for the asymmetric and symmetric end-wall boundary conditions, re-
spectively. All profiles indicate a slight dependence on r. We also observe that
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Fig. 7. The radial profiles of contributions to Nuω obtained for Re = 2475, Γ = 11.75,
η = 0.9.

the maximum of Nuω occurs at the outer cylinder (r = 1) in the flow cases with
the asymmetric end-wall conditions and at the inner cylinder for the symmet-
ric conditions (r = −1) (Fig. 8). The differences result from the different flow
structures and also from location of singularities between the rotating and sta-
tionary walls. In the flow cases with the asymmetric end-walls the singularities
of the azimuthal velocity component occur at the junction between the rotating
bottom disk and the stationary outer cylinder, and at the junction between the
stationary top disk and the rotating inner cylinder. In the flow cases with the
symmetric end-walls the singularities of the azimuthal velocity component occur
at the junction between the stationary bottom and top disks, and the rotating
inner cylinder.

In Fig. 8c we analyze the value of (Nuω
2 −Nuω

1 )/Nuω
1 as a function of Re. The

results presented in Fig. 8c are obtained for the flow cases with the asymmetric
end-wall boundary conditions using the mesh N r = 100, Nϕ = 300, N z = 201
(for Re = 2475 the results obtained for the meshes of (100, 400, 201), (150, 300,
201) and (50, 250, 201) are also presented for comparison). From Fig. 8c we can
see that the difference (Nuω

2 −Nuω
1 )/Nuω

1 takes values from the range 0.03–0.042.
The total torque Nuω is obtained as the spatial average over a local quan-

tity. The fluctuations of the local quantity are influenced by flow-structures and
show different characteristics near the cylindrical walls and in the middle of the
cavity. This is visible in Fig. 9b, 9c and 9d, where the axial profiles of the local
current averaged in time and in azimuthal direction, and normalized by Jω

lam

(〈jω〉ϕ,t/J
ω
lam), are presented (the horizontal scaling is not identical to increase

readability of the results). The extreme values are observed in the middle sec-
tion, where values are about 20 times larger than these along the inner and outer
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a)

b)

c)

Fig. 8. The radial profiles of Nuω obtained for different Re, and for: a) the asymmetric
end-wall boundary conditions (the bottom disk and inner cylinder rotate), b) the symmetric
end-wall boundary conditions (the inner cylinder rotates), c) (Nuω

2 − Nuω
1 )/Nuω

1 as a function
of Re, the asymmetric end-wall boundary conditions, Γ = 11.75, η = 0.9.

cylinders. Despite of these large fluctuations, the averaged values over z direc-
tion are equaled to these presented in Fig. 8. The local peaks are observed at
a junction between the rotating bottom disk and the stationary outer cylinder
(r = 1, z = −1, Fig. 9b), and between the stationary top disk and the rotating
inner cylinder (r = −1, z = 1, Fig. 9d). The comparison of Fig. 9a, where the
meridian flow is displayed, with Fig. 9b, 9c and 9d shows that the local extreme
values of 〈jω〉ϕ,t/J

ω
lam are connected with the inflow and outflow jets. At the

locations of the outflow jets we observe the maximum values of 〈jω〉ϕ,t/J
ω
lam at

the outer cylinder and in the middle section, and the minimum at the inner
cylinder. At the locations of the inflow jets we observe minimum values at the
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a) b) c) d)

Fig. 9. a) The meridian flow structure. The axial profiles of the local current averaged in
time and in azimuthal direction, and normalized by Jω

lam along: b) the outer cylinder, c) in
the middle section, d) along the inner cylinder. The comparison of 〈jω〉ϕ,t/Jω

lam with
the Nuω. The asymmetric end-wall boundary conditions (the bottom disk and inner cylinder

rotate), Γ = 11.75, η = 0.9, Re = 2475.

outer cylinder and in the middle section (negative), and the maximum values at
the inner cylinder.

Eckhardt et al. [26, 30] investigated theoretically the dependence of Nuω

on radii ratio η and on Reynolds number (they also interpreted measurements

Fig. 10. The total current Nuω obtained in present paper in cavity of Γ = 11.75, η = 0.9
with the asymmetric and symmetric end-wall boundary conditions. Comparison with the
experimental data obtained by Wendt [1] and with the theoretical results obtained by

Eckhardt et al. [26], η = 0.93 and η = 0.68.
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obtained by Lewis and Swinney [3]). In [14] the numerically obtained Nuω

for co- and counter rotating cylinders was rescaled by Re0.76
s (Res is the shear

Reynolds number – for the stationary outer cylinder Res = 2Re/(1 + η)). The
exponent 0.76 was found for very large Re.

Eckhardt et al. [26] rescaled angular momentum current obtained theo-
retically for the flow case with the stationary outer cylinder Nuω/Re0.75 and
presented it as a function of Re and η (Fig. 7 in [26]). The results obtained
theoretically in [26] for η = 0.68 and 0.93 were compared to the experimen-
tal data of Wendt [1]. This analysis showed that for large Re the dependence
of Nuω/Re0.75 on radii ratio η and on Re is vanishing. In the light of these
data in Fig. 10 we analyze our results obtained for the asymmetric and sym-
metric end-wall boundary conditions. Due to the slight dependence of Nuω on
radius (see Fig. 8) we introduce the averaged values. From Fig. 10 we can see
that the present results are located above two lines obtained experimentally by
Wendt [1] and above theoretical results obtained by Eckhardt et al. [26].
This can be attributed to the enhancement of the angular momentum transport
caused by the end-wall boundary conditions. We also notice the slight differ-
ence between our results obtained for the asymmetric and symmetric end-wall
boundary conditions.

5. Summary

In the paper the DNS/SVV results of the transitional Taylor–Couette flows
have been presented. Investigations performed up to Reynolds number 3000 have
allowed us to analyze all consecutive bifurcations appearing in the cavity of
Γ = 11.75, η = 0.9 (with the rotating inner cylinder and bottom disk, and with
the stationary outer cylinder and top disk). The DNS/SVV method based on
Chebyshev and Fourier polynomials used in our investigations has proven to be
an effective tool for solving the considered problem.

We have found that the radial profiles of the angular momentum (averaged
in space and time) are almost constant in the central core. These constant val-
ues in the cores are in agreement with the experimental observations of Tay-
lor [28] and Smith, Townsend [29] and numerical results of Brauckmann,
Eckhardt [14]. We have also presented the radial profiles of the Reynolds
stress tensor components averaged over cylindrical surfaces. The highest value is
achieved by the azimuthal component 〈v′v′〉A(R) with a maximum in the inner
cylinder boundary layer. The profiles of the axial component 〈w′w′〉A(R) also
clearly demonstrate the existence of the boundary layers on both cylinders, but
their values are smaller than the azimuthal ones. The radial component achieves
maximum in the center of the cavity.
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The presented snapshots of the velocity field show that there are two types of
vortices: the large eddies generated by the instability mechanism connected with
the curvature and small eddies resulting from the near-wall shear. The large scale
structures retain their basic shape, despite the fact that they are surrounded by
the small eddies. The snapshots show also vortices created in the bottom rotating
disk boundary layer and in the top stationary one. In the Ekman boundary layer
we observe nine vortices of the dimensionless wavelength λa = 1.128.

The statistical analysis of 〈jω〉ϕ,t/J
ω
lam have shown that the fluctuations in the

middle sections are 20 times larger than the fluctuations at the inner and outer
cylinders. The location of the local 〈jω〉ϕ,t/J

ω
lam extreme values are connected

with the inflow and outflow jets. At the location of the outflow jets we observe
the local maximum values of 〈jω〉ϕ,t/J

ω
lam at the outer cylinder and in the middle

section, and the minimum at the inner cylinder. At the location of the inflow jets
we observe the local minimum values at the outer cylinder and in the middle
section, and the maximum values at the inner cylinder. The radial profiles of
the total current normalized by its laminar value Nuω show slight dependences
on the radius which is attributed to the influence of the end-wall boundary
conditions. We observe this dependence for the symmetric and asymmetric end-
wall boundary conditions. The rescaled angular momentum currents Nuω/Re0.75

obtained for different Reynolds numbers are compared with the experimental
results of [1] and theoretical results of [26] (η = 0.93 and η = 0.68). The obtained
results are slightly larger than these published in [1, 26], which can be attributed
to the enhancement of the angular momentum transport caused by the end-wall
boundary conditions. The study also shows that it would be of great interest to
perform wider comparisons between experiments and simulations for the flow at
moderate Reynolds numbers (Re < 3000), where the largest influence of radii
ratio on the Nuω distributions is observed.
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