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Heat transfer enhancement in natural convection
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In this work an analysis of momentum, angular momentum and heat transfer
during unsteady natural convection in micropolar nanofluids is presented. Selected
nanofluids treated as single phase fluids, contain small particles. In particular, two
ethylene glycol-based nanofluids were analyzed. The volume fraction of these solu-
tions was 6%, 3.5% and 0.6%. The first ethylene glycol solution contained Al2O3

nanoparticles (d = 38.4 nm), and the second ethylene glycol solution contained Cu
nanoparticles (d = 10 nm).
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Notations

ρ density, kg/m3,
dp diameter of the nanoparticle, nm,
µv dynamic viscosity, Pa · s,
ν∞ kinematic viscosity ν∞ = (µv/ρ)

∞
, m2/s,

kb Boltzmann constant, J/K
t temperature, K,
c specific heat at constant pressure of nanofluid,
M molecular weight of base fluid,
NA Avogadro number,
β coefficient of thermal expansion, 1/K
τ time, s
u, v components of velocity field, m/s,
κv rotational viscosity coefficient, Pa · s,

ν
(z)
r microrotation component normal to (x, y)-plane, 1/s,

γv spin gradient viscosity, N · s,
j microinertia density, m2,
a fluid thermal diffusivity, m2/s,
P, ∆ dimensionless micropolar fluid parameters,
q0 constant heat flux through the vertical plate,
K total number of spatial steps in x directions,
L total number of spatial steps in y directions,
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τw shear stress of a vertical surface, Pa,
λ thermal conductivity, W/(m · K),
T dimensionless temperature,
ϕ nanoparticle volume fraction.

Subscripts
f refers to properties of base fluid,
f0 refers to properties of base fluid at temperature 293K,
s refers to properties of solid nanoparticles.

1. Introduction

Conventional fluids that are widely used in heat exchange devices,
such as water, oil, alcohol, and glycol ethylene, have a relatively low thermal
conductivity coefficient. Recently, a new generation of heat carriers known as
nanofluids has been developed [1]–[4]. These types of fluids consist of conven-
tional fluid and nanoparticles with particle diameters between 10 and 100 nm
mixed uniformly with fluid. Generally, they contain particles of substances such
as Al2O3, TiO2, CuO and Cu [1, 4]. The discussed nanofluids are characterized
by increased effective thermal conductivity and dynamic viscosity. During exper-
imental studies, the nanofluids behave like a single phase Newtonian fluid in the
convectional heat exchange process [2]–[5]. Recently, methods presented in the
literature [4, 5] which were based on large numbers of experimental data were
used to determine the thermophysical parameters of nanofluids. These correla-
tions provide theoretical and practical analysis of heat exchange due to natural
convection. One paper [1] analyzes the process of steady natural convection in
nanofluid in the vicinity of a vertical plate heated by constant heat flux. In
particular, the water suspension of Al2O3 and CuO was analyzed. The volume
fraction of these suspensions did not exceed 10%. Similar work [2] described nat-
ural convection in the water suspension of Al2O3 with the same thermodynamic
conditions. Another paper [3] describes the numerical solution of equations of
conservation of mass, momentum and energy in the natural convection process
in the water suspensions of Al2O3 and CuO placed in six different closed ar-
eas. Increased heat exchange was observed only in the triangle-shaped area. The
amount of increase was only 5% compared to water without nanoparticles [3].

Due to the miniaturization of heat exchange devices, micropolar fluids as
refrigerant or heating media are also analyzed in the literature [6]–[8]. A useful
model of micropolar fluid is the model proposed by Eringen [6]. This model takes
into account fluid microrotation [6]–[8].

The aim of the work described in this paper is the analysis of increased
heat exchange due to natural unsteady convection in ethylene glycol solutions
of Al2O3 and Cu with properties of micropolar nanofluids in the vicinity of
a vertical plate heated by heat flux of q0 that rises suddenly.
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2. Estimating properties of nanofluids

The typical approach used to study the thermodynamic properties of nanoflu-
ids is based on the assumption that nanofluids behave like single phase fluids.
There are empirical equations, proposed by the authors, which are used to de-
termine different features of nanofluids such as thermal conductivity, viscosity,
density and thermal expansion [4, 5]. It is worth mentioning that all the models
are applicable only in specific range of nanofluid parameters.

Several authors are proposing different methods to estimate the heat con-
ductivity of nanofluid. This parameter is the most important with respect to the
heat transfer process [4, 5]. Based on the large amount of data presented in [4],
a method of heat conductivity calculation was proposed:

(2.1) λ = λf + 4.4 · Re0.4 · Pr0.66
f ·

(

t

tfr

)10

· λf ·
(

λs

λf

)0.03

· ϕ0.66.

Equation (2.1) is suggested especially when nanofluid is based on water and
glycol ethylene with Al2O3, TiO2, CuO or Cu nanoparticles. In Eq. (2.1), the
Reynolds number is given by the equation defined for nanofluids in [4]:

(2.2) Re =
2 · ρf · kb · t
π · µ2

f · dp

and the Prandtl number is:

(2.3) Pr =
µv · (c · ρ)
λ · ρ .

Equation (2.3) shows that the Prandtl number increases after adding nano-
particles to the base fluid.

Many models determining dynamic viscosity have been developed [5]. For
example, classic models such as Einstein’s (2.4) or Brinkman’s (2.5) models:

µv = (1 + 2.5 · ϕ) · µf ,(2.4)

µv =
µf

(1 − ϕ)2.5 .(2.5)

For the water suspension of the nanoparticles of Al2O3, the authors recom-
mend the following relationship [4]:

(2.6) µv = (123 · ϕ2 + 7, 3 · ϕ+ 1) · µf .

Recently, using a large amount of experimental data from many authors, an
empirical equation to determine dynamic viscosity has been proposed [4]:

(2.7) µv =
µf

1 − 34.87(dp/df )−0.3 · ϕ1.03
.
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To calculate the equivalent diameter of a base fluid molecule from equation
(2.7), an equation proposed by [4] was used:

(2.8) df =
6 ·M

NA · π · ρf0
.

One of the methods to determine the density, heat capacity and thermal
expansion coefficient is the conventional approach [4, 5]. It can be assumed that
nanofluid is a single phase fluid. Thus, those parameters can be calculated as in
the case of mixtures. It is given by:

ρ = (1 − ϕ) · ρf + ϕ · ρs,(2.9)

ρc = (1 − ϕ) · (ρc)f + ϕ · (ρc)s,(2.10)

ρβ = (1 − ϕ) · (ρβ)f + ϕ · (ρβ)s.(2.11)

In energy equations, the heat capacity and thermal expansion coefficient are
always considered with fluid density; thus Eqs. (2.10) and (2.11) will be used.

3. Problem formulation

The field equations of the micropolar fluids are [6]:

∂ρ

∂τ
+ (ρvk),k = 0,(3.1)

−π,k + (λ+ µv)vl,kl + (µv + κv)vk,ll + κvǫklmνm,l + ρ(fk − v̇k) = 0,(3.2)

(αv + βv)νl,kl + γvνk,ll + κvǫklmvm,l − 2κvνk + ρ(lk − jν̇k) = 0,(3.3)

ρǫ̇ = tkldlk + tklǫklr(ωr − νr) +mklνl,k + qk,k + ρh,(3.4)

v̇k ≡ ∂vk

∂τ
+ vk,lvl, ν̇k ≡ ∂νk

∂τ
+ νk,lvl.(3.5)

In the above equations ǫklr is the alternating tensor. The axial vector νr will
be called microrotation vector. Thermodynamic pressure π is defined in [6] by
π ≡ − ∂ǫ

∂ρ−1 |η,i.
In this paper unsteady laminar momentum, angular momentum and heat

exchange in micropolar nanofluids in terms of natural convection will be con-
sidered. Micropolar nanofluid is in the vicinity of a vertical plate. The heat flux
through the plate rises suddenly to the value of q0.

The problem presented in this work will be solved using the following as-
sumptions:

• the Oberbeck–Boussinesq approximation is assumed;
• the geometry of the analyzed flows justifies the use of the boundary layer

theory;
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Fig. 1. Considered fluid schema.

• the viscous dissipation and pressure work are neglected;
• Eringen’s theory of thermomicrofluid is assumed.
Taking into account the simplification resulting from the boundary layer the-

ory and fluid density changes according to the Oberbeck–Boussinesq approxima-
tion the following system of equations can be obtained:

∂u

∂x
+
∂v

∂y
= 0,(3.6)

∂u

∂τ
+ u

∂u

∂x
+ v

∂u

∂y
=

1

ρ
(µv + κv)

∂2u

∂y2
+
κv

ρ

∂ν
(z)
r

∂y
+ gβ(t− t∞),(3.7)

∂ν
(z)
r

∂τ
+ u

∂ν
(z)
r

∂x
+ v

∂ν
(z)
r

∂y
=
γv

ρj

∂2
ν

(z)
r

∂y2
− κv

ρj

(

2ν(z)
r +

∂u

∂y

)

,(3.8)

∂t

∂τ
+ u

∂t

∂x
+ v

∂t

∂y
= a

∂2t

∂y2
.(3.9)

The above system of partial differential equations together with the following
boundary conditions:

τ < 0, u = v = 0, t = t∞,(3.10)

τ ≥ 0, x = 0, u = v = 0, t = t∞,(3.11)

y = 0, u = v = 0,
∂t

∂y
= −q0

λ
, ν

(z)
r = −n∂u

∂y
,(3.12)

y → ∞, u = 0, ν
(z)
r = 0, t = t∞,(3.13)
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formulates the mathematical description of momentum, angular momentum and
heat transfer driven by the unsteady convection in micropolar nanofluids.

In Eqs. (3.6) to (3.9), u and v are the velocity components in the x and y

directions, ν
(z)
r is the microrotation component in the xy-plane, τ the time, ρ

the density, µv the dynamic viscosity, κv the rotational viscosity coefficient, γv

the spin-gradient viscosity, j the microinertia density, a the thermal diffusivity,
β the coefficient of volumetric expansion and t the fluid temperature. In the
present analysis, the spin gradient viscosity is assumed to be [7, 8]:

(3.14) γv =

(

µv +
κv

2

)

j.

In the condition listed in (3.12) we have assumed that the microcirculation
on the boundary layer is equal to the angular velocity, namely,

ν
(z)
r (x, 0, τ) = −n∂u

∂y
.

As the suspended particle cannot get closer than its radius to the wall, the mi-
crostructure effect must be negligible on the boundary. Therefore, in the vicinity
of the boundary, the rotation is due to fluid shear and thus the microrotation
must be equal to the angular velocity of the boundary.

In condition (3.12), the parameter n is a number between 0 and 1 that relates
microgyration vector to the shear stress. The value n = 0 corresponds to a high
density of liquid microparticles that prevents them from performing rotational
movements in the vicinity of the wall. The value n = 0.5 is indicative of weak
concentrations; at n = 1 flows, are believed to represent turbulent boundary
layers [7, 8].

The fluid differential equations are recast in a dimensionless form by intro-
ducing:

T =
t− t∞

[

ν2
∞

( q
λ

)3 1
gβ

]1/4
, τ =

τ
[(

λ
q0

)

1
gβ

]1/2
,(3.15)

U =
u

[

ν2
∞

q0

λ gβ
]1/4

, V =
v

[

ν2
∞

q0

λ gβ
]1/4

,(3.16)

X =
x

[

ν2
∞

λ
q0

1
gβ

]1/4
, Y =

y
[

ν2
∞

λ
q0

1
gβ

]1/4
=
y

x
(Grx)1/4,(3.17)

Grx =
gβ

ν2
∞

q0
λ
x4, ν

(z)
r = ν

(z)
r

[

gβ
q0
λ

]−1/2

,(3.18)

∆ =
κv

ν∞ρ
, P =

ν∞
j

1
( q0

λ gβ
)1/2

=
x2

j
(Grx)−1/2.(3.19)
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The set of partial differential equations (3.6)–(3.9), together with the ini-
tial and boundary conditions (3.10)–(3.13) in dimensionless form, will be solved
numerically using the finite difference method [8, 9].

4. Problem solution

Equations (3.6)–(3.9) in dimensionless form will be solved using the explicit
finite difference scheme. The spatial distribution grid contains K × L points in
the X and Y directions, respectively, and ∆τ is the dimensionless time step. Due
to the intensive heat, momentum, angular momentum and mass transfer, only
in the direct vicinity of the considered vertical surface, the maximum values of
the dimensionless coordinates X = 100 and Y = 30 were assumed [8]. A char-
acteristic feature of the difference equations was to determine the temperature

field, the velocity field components and the microrotation component ν
(z)
r at

time τn+1 depending on certain parameters, but determined at time τn. The
convection terms of balance equations comprising time τ derivatives and spa-
tial Y coordinate derivatives were approximated by “forward” formulas, whereas
spatial X coordinate derivatives were approximated by “backward” formulas.
Diffusion terms were approximated by central differences. Derivatives appearing
in the boundary conditions (3.12) were approximated by higher order difference
formulas taken in the form [9]:

(4.1)
∂T

∂Y|ij
=

1

6∆Y
(−11Tij + 18Ti,j+1 − 9Ti,j+2 + 2Ti,j+3) +O[∆Y ]3,

(4.2) − 1

n
ν

(z)
r |i,j =

∂U

∂Y|ij
=

1

12∆Y
(−25Ui,j + 48Ui,j+1

−36Ui,j+2 + 16Ui,j+3 − 3Ui,j+4) +O[∆Y ]4.

These difference formulas are statically stable and exhibit characteristics of
conservation [9].

Before performing basic calculations for the established, non-zero values of
parameters ∆ and P describing the properties of micropolar fluid, calculation
tests were done similarly to [8]. In the process of steady natural convection in
a Newtonian fluid, exact analytical solutions are known [10], and were compared
to the corresponding calculation results. On the basis of trial calculations, fur-
ther ones taking into account the non-zero values of ∆ and P parameters were
performed with the following spatial area division: K × L = 250 × 150, the set
dimensionless time step size ∆τ = 0.002. The assumed area division is smaller
than the area division in work [8] and the time step is two times greater. This
change of area division and time step needs to be done to obtain greater accuracy
for the applied differential forms.
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5. Results and discussion

The set of Eqs. (3.6)–(3.9) with the initial condition (3.10) and boundary
conditions (3.11)–(3.13) were integrated for the selected values of parameters
Pr∞, P, ∆ and n. Ethylene glycol (G) in temperature of 60 ◦C was the base
fluid. The Prandtl number of the base fluid was Pr∞ = 56.310. In the next stage
of the analysis it was assumed that the base fluid has micropolar features with
the following parameters: ∆ = 5.0, P = 1.0 and n = 0.5. These parameters were
assumed based on the literature and the authors’ previous work [8].

The main analysis was focused on the effects occurring in nanofluids. In this
work, the following homogeneous ethylene glycol solutions of nanoparticles were
analyzed:

• the ethylene glycol solution of Al2O3 nanoparticles with a mean diameter
of 38.4 nm (G + Al2O3);

• the ethylene glycol solution of Cu nanoparticles with a mean diameter of
10 nm (G + Cu).

The nanoparticle volume fraction for the above solutions was ϕ: 6%, 3.5% and
0.6%. The parameters describing these solutions for the temperature of 60◦C,
which were calculated using Eqs. (2.1)–(2.11) were presented in Table 1.

Table 1. Thermophysical parameters of water-based nanofluids in the
temperature t∞ = 60◦C.

Fluid

d
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ρ
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ρ
β
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/
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s
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X
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∆

/
∆

f
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d
p
a
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m
et

er
P

/
P

f

Ethylene glycol (G) ϕ = 0% 1088.1 5.706 0.2598 2789779.6 0.6202 56.310 1.000 1.000 1.000

G+Al2O3 (38.4 nm) ϕ=6% 1255.61 12.47 0.4630 2800485.0 0.5850 60.052 0.598 0.458 2.798

G + Cu (10 nm) ϕ = 6% 1559.21 30.39 0.633 2828907.0 0.6104 87.180 0.378 0.188 6.999

G + Cu (10 nm) ϕ = 0.6% 1135.21 6.174 0.3413 2793692.3 0.6192 44.520 0.907 0.924 1.220

G + Cu (10 nm) ϕ = 3.5% 1362.92 10.69 0.5209 2812603.8 0.6145 42.350 0.648 0.534 2.380
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Fig. 2. Profiles of the velocity component U at selected moments of the process.

Figure 2 shows the dimensionless U velocity component in the X-axis di-
rection of the ethylene glycol (Pr∞ = 56.310) and nanofluids with the Prandtl
number Pr∞ = 87.180 at fixed times of the process τ = 15, 30, 120 and 255.
In order to simplify the analysis of the thermophysical parameters values of ∆
and P were considered to equal zero. Figure 2 shows two different cases with
the characteristic value of the Grashof number Grx = 108. For the assumed
Grashof number, the dimensionless coordinate X adopts values from Table 1.
For nanofluids (G + Cu), this X value equals XCu = 0.378Xf . The lines marked
with circles represent the results for pure ethylene glycol as the base fluid. The
lines marked with triangles represent the results of velocity component U in
nanofluids. Additionally, to obtain an unambiguous description, the U compo-
nent of the velocity profiles obtained for the process of τ = 255 is marked with
black symbols. The maximum values of velocity component U in nanofluids are
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Fig. 3. Profiles of the fluid temperature changes.

lower than the correspondent values for pure ethylene glycol, especially at the
initial times of heating.

Figure 3 presents the temperature profiles in the considered liquids at certain
moments of the process τ = 15, 30, 120 and 255. Similarly, as for the U velocity
component, the proper values of parameters describing the thermophysical prop-
erties of the fluid were assumed. The temperature of the heated plate is lower
for fluid with nanoparticles (∆ = 0; P = 0). The maximal relative decrease in
temperature of the heated plate for nanofluids in the last stage of the process is
σCu = (Ts − Ts

f )/Ts
f = −0.198. The lower temperature of the heated vertical

plate indicates a significantly larger intensity of heat transfer by the analyzed
nanofluids than by the pure ethylene glycol. Figure 3 shows a larger rate of heat
transfer intensity in nanofluids in the entire range of time in comparison with
pure ethylene glycol.
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On the basis of the temperature profile, the specified changes in the local
Nusselt number Nux in the analyzed fluid on the heated vertical plate are:

(5.1) Nux =
q0

tw − t∞

x

λ
.

Using dimensionless equations (3.14)–(3.18) with the Nusselt number (5.1)
we obtain:

(5.2)
Nux

Gr
1/5
x

= X1/5 1

Tw
,

where

(5.3) Tw =
tw − t∞

[

ν2
∞

( q0

λ

)3 1
gβ

]1/4
.

0 100 200 300
τ

1

10

 Nu x

Grx
1/5

GrX=108

Pr = 60.052;  ∆ = 2.29;  Ρ = 2.80 (ϕ = 0.06) G+Al2O3

Pr = 87.180;  ∆ = 0.94;  Ρ = 7.00 (ϕ = 0.06) G+Cu

Pr = 56.130;  ∆ = 5.00;  Ρ = 1.00 G

Pr = 44.520;  ∆ = 4.62;  Ρ = 1.22 (ϕ = 0.006) G+Cu

Pr = 42.350;  ∆ = 2.67;  Ρ = 2.38 (ϕ = 0.035) G+Cu

_

Fig. 4. Transient changes of the local Nusselt number.
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The relationship (5.2) is shown graphically in Fig. 4. For the sake of compar-
ison, Fig. 4 comprises the corresponding curve obtained for the selected values
of parameters Pr∞, P, ∆. The values of ∆ and P from Table 2 result from the
assumption based on [5, 7, 8], which indicates the parameters of fluids with-
out nanoparticles. In particular, the values of ∆: 5.0, 2.29, 0.94 etc. result from
the conversion of characteristic values describing the physical properties of flu-
ids without nanoparticles to values describing fluids with nanoparticles. It is
worth mentioning that with an increase of the naoparticle volume fraction in the
ethylene glycol solution, the Prandtl number decreased in comparison with pure
ethylene glycol. Also, for the volume fraction greater than about 4%, the Prandtl
number increases according to the equations presented in [4]. The presented cal-
culation shows that the decrease in the parameter ∆ increases the intensity of
the heat transfer in comparison with changes in P parameter.

Curves in Fig. 4 represent the local Nusselt number with respect to the
local Grashof number (Nux/(Grx)1/5) specific to the value Grx = 108. It is
worth mentioning that the corresponding lines of parameter (Nux/(Grx)1/5) have
a different dimensionless X coordinate. For pure ethylene glycol, the coordinate
X = Xf = 100 corresponds, due to equations (3.17) and (3.18), to Grashof num-

Table 2. A comparison of results.

Pr∞ ∆ P (Nux/(Grx)1/5) τw

56.310
G

0.0 0.0 1.3795* 0.16189*

0.0 0.0 1.4117 0.15302

5.0 1.0 1.1311 0.0691

60.052
G+Al2O3

(38.4 nm)
ϕ = 6%

0.0 0.0 1.39844* 0.15778*

0.0 0.0 1.4351 0.14886

2.290 2.798 1.2402 0.09164

87.180
G + Cu
(10 nm)
ϕ = 6%

0.0 0.0 1.5126* 0.13592*

0.0 0.0 1.5632 0.12753

0.940 6.999 1.45053 0.09924

44.520
G + Cu
(10 nm)
ϕ = 0.6%

4.62 1.22 1.0696 0.07946

42.350
G + Cu
(10 nm)
ϕ = 3.5%

2.67 2.38 1.2658 0.08000
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ber Grx = 108. For the same Grashof number, the dimensionless coordinate X is
respectively for nanofluids XAl2O3 = 0.598Xf and XCu = 0.378Xf . As indicated
in Fig. 4, the intensity of the heat exchange in micropolar nanofluid is signif-
icantly lower than in corresponding nanofluids. On the basis of the calculated
velocity field, a shear stress on the vertical plate was determined. Taking into
account the constitutive equations for micropolar nanofluids [6]–[8] we obtain:

(5.4) τw =

[

(µv + κv)
∂u

∂y
+ κvν

(z)
r

]

|y=0

.

After adding dimensionless equations (3.15)–(3.19) to the above equation
(5.4) we obtain:

(5.5) τw =
τw

ρ∞ν∞2

x2 52/5Gr
3/5
x (1 + ∆ − n∆)

=
1

(5X)2/5

∂U

∂Y |y=0
.

Fig. 5. Transient changes in dimensionless temperature on vertical plate.
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In order to make a comparative analysis, Table 2 summarizes: the Nusselt
number values according to the (5.2) formula and the dimensionless shear stress
in accordance with the (5.5) formula, obtained from the numerical calculations
performed for the variable parameters ∆, P, Pr∞ and the constant n param-
eter (n = 0.5). The summarized results relate to the steady state with the
Grashof number 108, which is reached for nanofluid when the dimensionless co-
ordinate X is lower than the X coordinate for pure ethylene glycol (Xf = 100).
This coordinate is measured along the vertical plate. The exact values of quo-
tient X/Xf and Y/Yf (Table 1) according to the relationships (2.1), (2.7),
(2.9), (2.10), (3.16) take into account the respective values of the thermophys-
ical parameters of pure ethylene glycol and considered nanofluids. In Table 2,
the values with * were taken from [10]. The result from [10] was calculated
with the exact analytical solution of conservation equations for a Newtonian
fluid.

Fig. 6. Transient changes in dimensionless shear stress on vertical plate.
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Figure 5 shows changes in the vertical plate temperature heated with constant
heat flux q0. Due to the high value of the Prandtl number of the analyzed fluids,
the fixed temperature values are reached after time τ > 200. The steady state
temperature value distinctly depends on the micropolar properties of analyzed
nanofluids. With the higher value of a ∆ parameter, the temperature of vertical
plate reaches a higher value at the end of the process.

The dimensionless shear stress component on the vertical plate, according to
equation (5.5), is presented in Fig. 6. This shear stress component (τw) depends
on the parameters describing the micropolar properties of nanofluid near the
vertical plate. The constant values of shear stress are reached in the steady state
for dimensionless time τ > 200.

Figure 7 presents the dimensionless component profiles of microrotation in
selected moments of the heating process. The greatest microrotation changes

0 10 20 30
Y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

__
νr

(z) GrX=108

Pr = 56.310;  ∆ = 5.00;  Ρ = 1.00

Pr = 87.180;  ∆ = 0.94;  Ρ = 7.00

Pr = 60.052;  ∆ = 2.29;  Ρ = 2.80

_
τ=30

_
τ=255

Fig. 7. The changes in the profiles of dimensionless microrotation at certain moments of the
process.
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Table 3. A comparison of results.

Fluid ∆ P (Nux/(Grx)1/5) E [%]

G 0.0 0.0 1.4117f -

G + Al2O3 (38.4 nm), ϕ = 6% 0.0 0.0 1.4351 1.66

G + Cu (10 nm), ϕ = 6% 0.0 0.0 1.5632 10.7

G (micropolar) 5.0 1.0 1.1311f -

G + Al2O3 (38.4 nm), ϕ = 6% 2.290 2.792 1.2502 9.6

G + Cu (10 nm), ϕ = 6% 0.94 6.999 1.45053 28.2

G + Cu (10 nm), ϕ = 0.6% 4.62 1.22 1.0696 -5.4

G + Cu (10 nm), ϕ = 3.5% 2.67 2.38 1.2658 11.9

are observed in the analyzed nanofluids in the vicinity of vertical plate (Y < 5)
heated with constant heat flux q0. Additionally, in order to obtain an unambigu-
ous description, profiles of the dimensionless microrotation obtained for the time
τ = 255 are marked with black symbols.

Heat transfer enhancement during the natural convection in the considered
nanofluids is represented by the following equation:

(5.6) E =

Nux

Gr
1/5
x

Nux

Gr
1/5
x

∣

∣

f

− 1.

Table 3 presents the values of the E parameters calculated with relationship
(5.6) for the considered nanofluid in a stationary position case. While calculating
these values, corresponding results from table (2) were used. The maximum value
of the E parameter is for nanofluid with Cu nanoparticles with a mean diameter
of 10 nm.

6. Concluding remarks

In this paper, a process of heat and momentum exchange during natural
convection in nanofluids with micropolar properties was analyzed. To describe
the analyzed phenomena of exchange, the equations of hydrodynamic and ther-
mal boundary layer were used. It is worth noting that the coupled system of
differential equations describing the analyzed exchange process also includes, in
accordance with the boundary layer theory, a simplified equation for the micro-
rotation component, arising from the angular momentum principle. In order to
solve this problem, the method of finite difference was applied. The obtained
results were presented in graphs and tables.
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Parameter E describing heat transfer enhancement between the heated plate
and the nanofluid shown in Table 3, appears to have a maximum value equal
to 10.7%, which was obtained for the nanofluid with Cu nanoparticles with
a mean diameter of 10 nm and parameters ∆ and P equal to zero. For the
same fluid, a relative decrease of temperature of the heated vertical plate was
σCu = −19.8% at the end of the analyzed process in time τ = 255. The presented
calculation shows that the largest increase in the intensity of the heat transfer
occurs for ethylene glycol, based nanofluid with Cu nanoparticles with a volume
fraction greater than 3.5%.

Micropolar fluids are fluids with non-zero values of ∆ and P parameters.
These fluids are characterized by different behavior during natural convection.
The calculation results obtained in this work for fluids with parameters ∆ =
5.0 and P = 1.0 show that dimensionless shear stress for micropolar fluids on
a heated plate has lower values than the corresponding values for Newtonian fluid
during entire process of heating. The maximal relative change of τw is equal to
57.3% (∆ = 5.0, P = 1.0) and the maximal relative change of (Nux/(Grx)1/5)
for micropolar fluid with respect to the Newtonian fluid equals 18.0%.

The significantly higher temperature value of the heated plate after time
τ > 150 in the vicinity of micropolar fluid indicates lower intensity of heat
transfer by the analyzed micropolar fluid compared to the Newtonian fluid.

The highest changes in the microrotation component are observed in the
vicinity of the vertical plate (Y < 5).

In order to perform a comparative analysis of the results presented in this
work, the exact result for Newtonian fluids was quoted from the literature.
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