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The response of many new metallic alloys as well as ordinary materials such
as concrete is elastic and nonlinear even in the small strain range. Thus, using the
classical linearized theory to determine the response of bodies could lead to a miscal-
culation of the stresses corresponding to the given strains, even in the small strain
regime. As stresses can determine the failure of structural members, such miscal-
culation could be critical. We investigate the quantitative impact of the material
nonlinearity in the Euler–Bernoulli type beam theory. The governing equations for
the deflection are found to be nonlinear integro-differential equations, and the equa-
tions are solved numerically using a variant of the spectral collocation method. The
deflection and the spatial stress distribution in the beam have been computed for
two sets of models, namely the standard linearized model and some recent nonlinear
models used in the literature to fit experimental data. The predictions concerning the
deflection and the spatial stress distribution based on the standard linearized model
and the nonlinear models are considerably different.
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1. Introduction

A new class of constitutive relations for elastic solids wherein the stress
T and the deformation gradient F are related by an implicit relation f(T,F) = 0

has been introduced by Rajagopal [1, 2]. These implicit models have been
shown to be suitable in describing the response of various elastic materials, in
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particular soft tissues, see for example Freed and Einstein [3] and Freed [4].
An interesting subclass of models of type f(T,F) = O are models for isotropic
elastic bodies defined through

(1.1) B = α0I + α1T + α2T
2,

where B =def FF⊤ denotes the left Cauchy–Green tensor, and {αi}
2
i=0 are scalar

functions of mutually independent invariants of the Cauchy stress tensor T such
as TrT, TrT2 and TrT3.

A notable feature of models of type (1.1) is that they provide an elegant way
to justify models wherein the linearized strain1 ε is a nonlinear function of the
stress, see for example Rajagopal [2, 5] for details. Indeed, in the small strain
range the constitutive relation (1.1) can be linearized as

(1.2) ε = β0I + β1T + β2T
2.

The fact that one can appeal to the linearization with respect to the kinemat-
ical variables and yet consider nonlinear response of the material can not be
overemphasised. Actually, the response of many materials is nonlinear even in
the small strain range. For example, the response of portland-cement is nonlinear
even if the displacement gradients are in the range where the linearized strain
is definitely a fully acceptable approximation, see Grasley et al. [6] where the
non-linear relation ε = γ1(TrT)I + sinh[(TrT)γ2/γ3]I + γ4T is used to fit experi-
mental data. The same observation holds for modern metallic alloys such as gum
metal, see Saito et al. [7] and Kuramoto et al. [8], and other metallic alloys,
see references in Bustamante and Rajagopal [9]. The experimental results of
Saito et al. [7] have been correlated by Rajagopal [5] using the non-linear re-
lation ε = λ1(TrT)I+2λ2e

ηTrTT. Thus, clearly for many materials the linearized
elastic approximation cannot be used to correlate experimental data.

Since some materials exhibit nonlinear behaviour in the small strain range,
using the classical linearized elastic response could lead to a miscalculation of
the stresses even in the small strain regime. This error in the estimation of the
stress can lead to serious errors in the estimation of the failure of structural
members comprised of materials that exhibit such a nonlinear relationship be-
tween the strain and the stress. It is thus necessary to investigate carefully the
response of structural members like beams, rods, plates and columns comprised
of such materials, since an accurate analysis of their load bearing capacity is
technologically important.

A simple but very useful and elegant beam theory is the classical Euler–
Bernoulli beam theory, see for example Timoshenko and Goodier [10], which
is yet widely used. This type of beam theory provides an excellent balance be-
tween mathematical complexity and accuracy of the descripiton of the behaviour

1Recall that B ≈ I + 2ε.
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of the given structural element in a complex structural system. In what follows,
we investigate the quantitative behaviour of nonlinear models of type (1.2) within
the Euler–Bernoulli type setting.

We study the behaviour of a beam with fixed ends that is subject to uniform
load or to a concentrated load in the middle of the beam. We derive a counterpart
of the classical fourth order ordinary differential equation for the deflection of
the beam. Unlike in the classical setting, see (2.20), the governing equations for
the nonlinear material are given as a system of integro-differential equations,
see (2.23). We solve the resulting system of integro-differential equations using a
variant of the spectral collocation method. Quantitative differences between the
stress and the deformation field for linear and nonlinear constitutive relation are
discussed in the case of the quantitative material parameters that correspond to
the data in Saito et al. [7] and Grasley et al. [6].

2. Euler–Bernoulli type beam theory

Let us briefly recall the classical derivation of the Euler–Bernoulli type beam
theory. The aim is to clearly indicate the assumptions that are related to the
assumed geometry of the motion and the assumptions concerning the constitutive
relation for the given material.

Most of the assumptions that lead to the classical Euler–Bernoulli beam
theory are the assumptions regarding the motion of the beam. As such, these
assumptions are independent of the material model under consideration. This
observation is essential in formulating beam theory for implicitly constituted
materials of type (1.2) or other materials generalising the standard linearized
elastic solid.

Following the classical approach, we consider the problem of small deflections
of a beam of length 2L that is subjected to lateral loads only (see Fig. 1).

h
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eŷ
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eẑ−qeŷ

Fig. 1. Geometry of the beam.
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For simplicity, we assume that the beam has a rectangular cross-section, and
that the load on the upper surface is given in terms of its surface density q.
Thus, the corresponding traction boundary condition on the upper surface reads
Teŷ|y=h = −qeŷ. Other surfaces are assumed to be traction free.

2.1. Stress field

The stress field in the beam is assumed, as in the classical setting, to have
the plane stress structure. Therefore, the ansatz for the stress tensor reads

(2.1) T =





Tx̂x̂ Tx̂ŷ 0

Tx̂ŷ Tŷŷ 0

0 0 0



 ,

where Tx̂x̂, Tx̂ŷ and Tŷŷ are functions of y and x only. If the stress field is given
by (2.1), then the standard equilibrium equations in the absence of body forces,
divT = 0, yield the following two nontrivial equations for the stress field,

∂Tx̂x̂

∂x
+

∂Tx̂ŷ

∂y
= 0,(2.2a)

∂Tx̂ŷ

∂x
+

∂Tŷŷ

∂y
= 0.(2.2b)

Integrating the last equation with respect to y and z variables yields the rela-
tion between the averaged shear stress V (shearing force), V =def

∫ h
y=−hTx̂ŷ dy,

and the load q,

(2.3)
dV

dx
− q = 0.

Indeed,

0 =

b
∫

z=−b

h
∫

y=−h

∂Tx̂ŷ

∂x
dy dz +

b
∫

z=−b

h
∫

y=−h

∂Tŷŷ

∂y
dy dz(2.4)

= 2b
d

dx

h
∫

y=−h

Tx̂ŷ dy + 2b
(

Tŷŷ|y=h − Tŷŷ|y=−h

)

= 2b
d

dx
V − 2bq,

where we have used the boundary condition on the top and the bottom surface.
Further, multiplication of (2.2a) by y and subsequent integration with respect

to y and z variables yields
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0 =

b
∫

z=−b

h
∫

y=−h

y
∂Tx̂x̂

∂x
dydz +

b
∫

z=−b

h
∫

y=−h

y
∂Tx̂ŷ

∂y
dydz(2.5)

= 2b
d

dx

h
∫

y=−h

yTx̂x̂ dy + 2b

h
∫

y=−h

∂

∂y

(

yTx̂ŷ

)

dy − 2b

h
∫

y=−h

Tx̂ŷ dy

= 2b
dM

dx
+ 2bh

(

Tx̂ŷ|y=h +Tx̂ŷ|y=−h

)

− 2bV = 2b

(

dM

dx
− V

)

,

where we have used the fact that the shear stress vanishes on the top and bottom
surface, and where we have introduced the averaged z component of the bending
moment M , M =def

∫ h
y=−h yTx̂x̂ dy.

We can therefore conclude that the following well known set of equations, see
for example Timoshenko and Gere [11],

dV

dx
− q = 0,(2.6a)

dM

dx
− V = 0,(2.6b)

follows exclusively from the assumption on the form of the stress field, see (2.1),
and the imposed boundary conditions. Differentiating (2.6b) with respect to x
and using (2.6a) one finally arrives at a single equation

(2.7)
d2M

dx2
= q.

Note that the equations can be also derived by appealing to the balance of
forces for an infinitesimal volume of the material, see for example Timoshenko

and Gere [11]. The expression for the relation between the bending moment and
curvature must be however rederived for the nonlinear models. See for example
Srinivasa [12] for a discussion of the bending moment-curvature relations for
incompressible solids that exhibit nonlinear response in the small strain range.

2.2. Strain field

The deformation of the beam is assumed to have the standard special form,
see for example Timoshenko and Gere [10]. The plane sections perpendicu-
lar to the midplane are assumed to remain plane sections perpendicular to the
deformed midplane, see Fig. 2. Further, it is assumed that the position of the
midplane is given by the function w. In such a case the point [X,Y ] in the refer-
ence configuration is moved to point [x, y] in the current configuration, and the
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reference configuration

current configuration

w(X)

[X, Y ]

[x, y] ϕ

x

y

Fig. 2. Deflection of the beam.

formula for the deformation χ reads

(2.8) x = χ(X) =

[

X − Y sinϕ
w(X) + Y cosϕ

]

,

where ϕ is the angle between the tangent to the deformed midplane and the
horizontal axis. Consequently, the the displacement u(X) =def χ(X) − X is
given by

(2.9) u(X) =

[

−Y sinϕ
w(X) + Y (cosϕ− 1)

]

,

and thus is the linearized strain tensor ε =def
1
2(∇u + (∇u)⊤), is given by the

formula

(2.10) ε =





−Y cosϕ dϕ
dX

1
2

(

dw
dX − sinϕ− Y sinϕ dϕ

dX

)

1
2

(

dw
dX − sinϕ− Y sinϕ dϕ

dX

)

cosϕ− 1



 .

The derivative of the function w determines the angle ϕ between the tangent
to the deformed midplane and the horizontal axis, tanϕ = dw

dX (see Fig. 2). If we
take into account the fact that the spatial variation of the deflection is assumed
to be small, then we can write ϕ ≈ sinϕ, tanϕ ≈ ϕ and cosϕ ≈ 1. Using these
formulae the displacement u can be approximated as

(2.11) u(X) =

[

−Y dw
dX

w(X)

]

.
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Further, the approximation of the small strain tensor ε reads

(2.12) ε =







−Y d2w
dX2 0 0

0 0 0

0 0 0






.

Since we are dealing with small strain theory, we can ignore the difference be-
tween the reference and current configuration, abuse the notation and write

(2.13) ε =







−y d2w
dx2 0 0

0 0 0

0 0 0






.

The assumptions concerning the kinematics are independent of the form of
the constitutive relation for the material under consideration.

2.3. Constitutive relations

2.3.1. Classical linearized elastic solid. In the standard setting the material of
the beam is assumed to be a linear, homogeneous and isotropic material, hence
the relation between the Cauchy stress tensor T and linearized strain tensor ε

reads

(2.14) T = λ(Tr ε)I + 2µε,

where the constants λ and µ are the Lamé parameters. Standard manipulation
allows one to invert the constitutive relation (2.14) to arrive at

ε =
1

2µ

(

T −
λ

3λ+ 2µ
(TrT)I

)

,

and get the following formulae for the strain components in the case of plane
stress (2.1),

εx̂x̂ =
λ+ µ

µ(3λ+ 2µ)

(

Tx̂x̂ −
λ

2(λ+ µ)
Tŷŷ

)

,(2.15a)

εŷŷ =
λ+ µ

µ(3λ+ 2µ)

(

Tŷŷ −
λ

2(λ+ µ)
Tx̂x̂

)

,(2.15b)

εx̂ŷ =
1

2µ
Tx̂ŷ,(2.15c)

while the other strain components vanish. Consequently, the ansatz for the strain
field, which among others requires εŷŷ = 0, is not consistent with the conse-
quences for the strain from the ansatz for the stress field. However, this incon-
sistency in the classical approach is interpreted as negligible, and stress–strain
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relation (2.15) is usually simplified to2

(2.16) εx̂x̂ =
1

E
Tx̂x̂,

and εŷŷ = 0, εx̂ŷ = 0, where we have further neglected Tŷŷ component of the
stress in (2.15a).

The reduction of a three-dimensional constitutive relation to a single relation
between Tx̂x̂ and εx̂x̂ that has been outlined above for a linearized material can
also be applied in the case of more complex (nonlinear) constitutive relations.

2.3.2. Elastic solids with nonlinear constitutive relation in the small strain range.

Concerning materials with nonlinear response in the linearized strain range Ra-

jagopal [5] has considered constitutive relations

ε = λ1(TrT)I + 2λ2e
ηTrT

T,(2.17a)

ε = λ1(TrT)I + λ2(1 + α |T|2)nT,(2.17b)

where λ1 is a negative constant, λ2, η and α are positive constants, n is a
constant and parameters λ1, λ2 must satisfy inequality 3λ1 + 2λ2 > 0. The
model introduced by Grasley et al. [6] reads

(2.17c) ε = γ1(TrT)I + sinh[(TrT)γ2/γ3]I + γ4T,

where γi are positive constants. Applying the approach discussed above, we see
that the one-dimensional counterparts of three dimensional constitutive rela-
tions (2.17a)–(2.17c) are relations

εx̂x̂ = (λ1 + 2λ2e
ηT

x̂x̂)Tx̂x̂,(2.18a)

εx̂x̂ = (λ1 + λ2(1 + αTx̂x̂
2)n)Tx̂x̂,(2.18b)

εx̂x̂ = λ1Tx̂x̂ + sinh(Tλ2
x̂x̂/λ3).(2.18c)

(For the sake of consistency of the notation, we have relabeled the constants
in (2.17c) as λ1 =def γ1 + γ4, λ2 =def γ2 and λ3 =def γ3.)

2.4. Governing equations

2.4.1. Classical linearized elastic solid. In the case of the classical linearized elastic
solid model (2.16), the generic equation (2.7) reduces in virtue of (2.13) to

(2.19)
d2

dx2

(

−

h
∫

y=−h

y2E
d2w

dx2
dy

)

= q

2Recall that Young modulus and Poisson ratio are given by the formulae E =def
µ(3λ+2µ)

λ+µ

and ν =def
λ

2(λ+µ)
.
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which upon integration yields the classical fourth order linear ordinary differen-
tial equation

(2.20)
d2

dx2

(

−EI
d2w

dx2

)

= q,

where I denotes the second moment of the cross-section of the beam, I =def
∫ h
y=−h y

2 dy = 2h3

3 .

2.4.2. Elastic solids with nonlinear constitutive relation in the small strain range

For a material with nonlinear response in the small strain range the generic
equations (2.6) reduce to

(2.21)
d2M

dx2
= q.

Unlike in the classical case, the bending moment

M =

h
∫

y=−h

yTx̂x̂ dy

is not an explicit function of the deflection w of the beam. This is a consequence
of the fact that the stress Tx̂x̂ that needs to be substituted into the formula
for the bending moment is not given as an explicit function of the strain or the
second derivative of the deflection d2w

dx2 and y as in the classical case. Depending
on the parameter values in (2.18), it could even happen that the constitutive
relation of the type (2.18) is not invertible at all, meaning that it can not be
rewritten in the form Tx̂x̂ = h(εx̂x̂).

In the parameter range that is studied below, we deal with the constitutive
relations of the form εx̂x̂ = g(Tx̂x̂) that are formally invertible, but it is incon-
venient or impractical to invert the constitutive relation in order to get Tx̂x̂ as a
function of d2w

dx2 and y. The reason is that the inverse relation can not be, except
of some special cases3, easily expressed by a simple analytical formula. Conse-
quently, the counterpart of the classical equation (2.20) for model (2.18a) is the

3For example, setting λ1 = 0 in the constitutive relation (2.18a), one can find an explicit

relation for Tx̂x̂ as a function of εx̂x̂ = −y d2w

dx2 . Indeed, using the Lambert W function one

can write Tx̂x̂(x, y) =
1
η
W

(

− η

2λ2

d2w

dx2 y
)

, and substitute this formula into the equation for the

bending moment d2

dx2

(

∫ h

y=−h
yTx̂x̂ dy

)

= q. In such a case the final governing equation reads

(2.22)
d2

dx2

(

1

η

h
∫

y=−h

yW

(

−
η

2λ2

d2w

dx2
y

)

dy

)

= q,

which is clearly a counterpart of the classical equation (2.19).
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following system of equations for the deflection w(x) and the stress field Tx̂x̂(x, y)

d2

dx2

(

h
∫

y=−h

yTx̂x̂ dy

)

= q,(2.23a)

y
d2w

dx2
= −(λ1 + 2λ2e

ηT
x̂x̂)Tx̂x̂,(2.23b)

and similarly for other models of type (2.18).
The governing equations for the materials with nonlinear response in the

small strain range are therefore integro–differential equations which need to be
solved simultaneously. Also note that (2.23) is a system of lower order equations
rather than the fourth order equation (2.20) which might also have implications
for the boundary conditions as it is not necessary to prescribe the boundary
conditions purely for the deflection w anymore.

2.5. Boundary conditions

Besides the governing equations, it is necessary to specify the boundary con-
ditions. The specification of the boundary conditions is straightforward if we
consider fixed ends. This boundary condition is a kinematical one, and does not
depend on a particular constitutive relation for the material of the beam. The
boundary conditions for the fixed ends of the beam of length 2L (see Fig. 1),
read

w|x=±L = 0,(2.24a)

dw

dx

∣

∣

∣

∣

x=±L

= 0.(2.24b)

Concerning the other possible boundary conditions that involve shearing force
V and/or bending moment M , the specification of the boundary conditions is
more complicated. It is clear that if one wants to rewrite boundary conditions
that contain V or M in terms of deflection w, then the boundary conditions will
be model dependent. (The relation between the stress and w depends on the
constitutive relation.) In particular, we must take this observation into account
when we try to exploit the symmetry of the problem using the slider (roller)
boundary condition.

The beam is assumed to be homogeneous, isotropic and of constant cross-
section, hence it is symmetric with respect to the origin of the chosen coordinate
system. Moreover, the considered loads (uniform load, concentrated load at ori-
gin) are also symmetric. The symmetry of the problem can be exploited in the
numerical solution. The computational domain can be effectively restricted to
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[0, L] provided that we supply the governing equations with artificial boundary
conditions enforcing the symmetry of the solution at x = 0.

The symmetry of the solution can be enforced by the sliding (roller) boundary
condition at the axis of symmetry x = 0, see Han et al. [13]. This condition allows
the center of the beam to move freely in the vertical direction, and it prevents
the cross-section from rotating. In mathematical terms, the conditions for the
artificial sliding end read

dw

dx

∣

∣

∣

∣

x=0

= 0,(2.25a)

V (0) =
dM

dx

∣

∣

∣

∣

x=0

= 0,(2.25b)

where we have used relation (2.6b).
For the classical linearized elastic solid the boundary condition (2.25b) re-

duces – in virtue of the constitutive relation (2.16) and strain-deflection rela-
tion (2.13) – to

V (0) =
dM

dx

∣

∣

∣

∣

x=0

=

[

d

dx

(

h
∫

y=−h

yTx̂x̂ dy

)]
∣

∣

∣

∣

x=0

(2.26)

= −EI
d3w

dx3

∣

∣

∣

∣

x=0

= 0.

Since EI is a constant, the last equation reduces to d3w
dx3 |x=0 = 0, which is the

classical form of the sliding boundary condition.
If we consider materials with nonlinear response of type (2.18) where the

stress is not necessarily given as an explicit function of the strain, then it is im-
practical or impossible to substitute for Tx̂x̂ in (2.25b), and reduce the boundary
condition to a single condition for the derivatives of w as in the classical setting.
Therefore, boundary condition (2.25b) is left in the form

(2.27)
[

d

dx

(

h
∫

y=−h

yTx̂x̂ dy

)]
∣

∣

∣

∣

x=0

= 0.

2.6. Load

We shall consider two kinds of lateral loads acting on the beam, namely
a uniform load and a concentrated load. In case of the uniform load (see Fig. 3a),
we have
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L L

y

x

h

h

1
2n

−q∗eŷ

L L

1
2n

1
2n

y

x

h

h

−q̃neŷ

(a) Uniform load. (b) Sequence q̃δn(x) approximating the con-
centrated load q̃δ(x).

Fig. 3. Lateral loads acting on the beam.

(2.28) q(x) = q∗,

where q∗ is a positive constant. Concerning the concentrated load, we assume
a pointwise load q̃ at the origin, that is

(2.29) q(x) = q̃δ(x),

where δ(·) is the Dirac distribution and q̃ is, once again, some positive constant.
Since we want to exploit the symmetry of the problem and solve the gov-

erning equations in [0, L], we must be careful in handling the problem with the
concentrated load at x = 0. If the load is concentrated at x = 0, we have to adjust
the artificial sliding end boundary condition (2.25b) in an appropriate way.

The specification of the boundary condition for the concentrated load is based
on the following calculation. First, the concentrated load can be interpreted as
a limit of a sequence of spatially distributed loads

(2.30) q̃δn(x) =















0 x < − 1
2n ,

q̃n − 1
2n ≤ x ≤ 1

2n ,

0, 1
2n < x,

see Fig. 3b. The governing equations for the spatially distributed load are (2.23),
and the artificial sliding end boundary condition is (2.27). Integrating (2.23) from
x = 0 to x = 1

2n yields

(2.31)

1/(2n)
∫

x=0

(

d2

dx2

(

h
∫

y=−h

yTx̂x̂(x, y) dy

))

dx =

1/(2n)
∫

x=0

q̃δn(x) dx.
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Using the boundary condition (2.27) then leads to

(2.32)
[

d

dx

(

h
∫

y=−h

yTx̂x̂(x, y) dy

)]
∣

∣

∣

∣

x= 1
2n

−

[

d

dx

(

h
∫

y=−h

yTx̂x̂(x, y) dy

)]
∣

∣

∣

∣

x=0

=

[

d

dx

(

h
∫

y=−h

yTx̂x̂(x, y) dy

)]
∣

∣

∣

∣

x= 1
2n

,

hence (2.31) reduces to

(2.33)
[

d

dx

(

h
∫

y=−h

yTx̂x̂(x, y) dy

)]∣

∣

∣

∣

x=1/(2n)

=
q̃

2
.

Taking the limit n → +∞ in (2.33) yields the effective boundary condition for
the concentrated load,

(2.34)
[

d

dx

(

h
∫

y=−h

yTx̂x̂(x, y) dy

)]
∣

∣

∣

∣

x=0

=
q̃

2
.

The governing equation for the concentrated load then reads simply

(2.35)
d2

dx2

(

h
∫

y=−h

yTx̂x̂(x, y) dy

)

= 0.

(Clearly, the concentrated load is not located in the interval (0, L). This can be
again seen by interpreting the concentrated load as a limit of spatially distributed
loads.)

3. Numerical solution

3.1. System of governing equations

The final system of governing equations and boundary conditions for the
deflection w(x), w : [0, L] 7→ R and the stress field Tx̂x̂(x, y), Tx̂x̂ : [0, L] ×
[−h, h] 7→ R of a beam made of material (2.18a) under the uniform load reads

d2

dx2

(

h
∫

y=−h

yTx̂x̂ dy

)

= q∗,(3.1a)

y
d2w

dx2
= −(λ1 + 2λ2e

ηT
x̂x̂)Tx̂x̂,(3.1b)
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w|x=L = 0,(3.1c)

dw

dx

∣

∣

∣

∣

x=L

= 0,(3.1d)

dw

dx

∣

∣

∣

∣

x=0

= 0,(3.1e)

d

dx

(

h
∫

y=−h

yTx̂x̂ dy

)∣

∣

∣

∣

x=0

= 0.(3.1f)

(Recall that the deflection of the whole beam [−L,L] is obtained by symmetry.)
If the beam is subject to the concentrated load at x = 0, then the right hand
side of (3.1a) is equal to zero, and the boundary condition (3.1f) is replaced
by (2.34). The equations for material with constitutive relation (2.18b), (2.18c)
and (2.16) respectively differ only in the right hand side of (3.1b).

In the case of the uniform load and the classical linearized elastic solid with
constitutive relation (2.16) the corresponding variant of system (3.1) can be
solved analytically. The solution reads

(3.2) w(x) = −
q∗(L2 − x2)2

16h3E
,

and the corresponding stress distribution can be computed using the equation
Tx̂x̂(x, y) = −Ey d2w

dx2 .
The analytical solution for the classical linearized solid in the case of the

concentrated load is

(3.3) w(x) = −
q̃

16h3E
((L− 2x)(L+ x)2 + 4x3H(x)),

where H(·) denotes the Heaviside function. These analytical solutions can be
used for testing the numerical scheme and for comparison between the behaviour
of the material with the classical linearized constitutive relation and its nonlinear
counterparts.

3.2. Spectral collocation method

Concerning nonlinear materials, we solve the problem numerically using
a variant of the spectral collocation method, see for example Trefethen [14].
The physical domain [x, y] ∈ [0, L] × [−h, h] is first transformed to the compu-
tational domain [x̃, ỹ] ∈ [−1, 1] × [−1, 1] which is then discretised using a grid
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based on Gauss–Lobatto–Chebyshev points

x̃i = cos

(

(i− 1)π

N − 1

)

, i = 1, . . . , N,(3.4a)

ỹj = cos

(

(j − 1)π

M − 1

)

, j = 1, . . . ,M,(3.4b)

where N and M denote the number of collocation points in each direction.
For differentiation, we use spectral differentiation matrices in the form given
by Wideman and Reddy [15], and for numerical evaluation of the integrals
in (3.1a) and (3.1f), we use the Clenshaw–Curtis quadrature, see for example
Gentleman [16, 17], von Winckel [18] and Waldvogel [19].

The full nonlinear system (3.1) is solved by the Newton–Raphson method
with the Jacobian matrix being computed analytically. Equation (3.1a) is en-
forced in N − 4 collocation points (ommiting two points at each boundary) and
Eq. (3.1b) is enforced in all NM collocation points. Together with the boundary
conditions, this results in a system of N −1+NM equations for N −1 unknown
values of the deflection4 w(x) at the collocation points and NM unknown values
of the stress Tx̂x̂ at the collocation points.

In all the numerical simulations reported below, we have used a grid of size
N = M = 32.

4. Results

4.1. Parameter values

To determine the parameter values of the model (2.18a), we have fitted the
data by Saito et al. [7] (see Fig. 4). The corresponding parameter values are

(4.1)

λ1 = −2.22 × 10−8 MPa−1,

λ2 = 7.01 × 10−6 MPa−1,

η = 4.44 × 10−4 MPa−1.

Further, let us assume that the same data set is fitted using the classical
linearized stress–strain relation (2.16). Taking the derivative of equation (2.18a)
at Tx̂x̂ = 0 yields

(4.2)
∂εx̂x̂
∂Tx̂x̂

∣

∣

∣

∣

T
x̂x̂

=0

= λ1 + 2λ2.

4Recall that w(L) is known. It is specified by the boundary condition.



18 A. Janečka, V. Průša, K. R. Rajagopal

0 200 400 600 800 1000 1200 1400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Tensile stress [MPa]

S
tr

ai
n

 

 
Experimental data
ǫ = (−2.22 × 10−8 + 1.4 × 10−5 exp(4.44 × 10−4

σ))σ
Tangent at zero stress

Elastic limit

Fig. 4. Constitutive relation for a gum metal alloy. Experimental data taken
from Saito et al. [7].

Consequently, the Young modulus in (2.16) is related to the coefficients λ1 and
λ2 in (2.18a) via the equality

(4.3) E =
1

λ1 + 2λ2
,

and for the values listed in (4.1) we get

(4.4) E = 7.1× 104 MPa.

Considering the model (2.18c), values of the phenomenological coefficients λi

have been determined as the arithmetic mean of the corresponding coefficients
for the axial strain response from Table 2 in Grasley et al. [6]. For simplicity, we
assume λ2 ≡ 1. (The actual value of the mean obtained from data by Grasley

et al. [6] is 0.9.) The mean values of the remaining coefficients are

(4.5) λ1 = 23.1 × 10−6 MPa−1, λ3 = 8.6 MPa.

If the same data set is fitted using the standard linearized relation (2.16),
then the value of the Young modulus is

(4.6) E =
1

λ1
= 43.3 GPa.
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4.2. Comparison of the models.

Having the experimental data, one could opt for using a nonlinear stress–
strain relation or the standard linearized stress–strain relation as a model for
the material behaviour. Clearly, the standard linearized stress–strain relation
provides a good approximation of the actual behaviour of the material only for
extremely small strains (see for example Fig. 4). The question is whether using
the classical linearized model instead of the actual nonlinear behaviour of the
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(a) Deflection wLIN predicted by the linear
stress–strain relation (2.16).

(b) Stress field TLIN
x̂x̂ predicted by the linear

stress–strain relation (2.16).
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relation (2.16), and the stress field Tx̂x̂ pre-
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tion (2.18a).

Fig. 5. Gum metal alloy. Comparison of the deflection and the stress field predicted by the
linear model (2.16) and the nonlinear model (2.18a) under a concentrated load at x = 0.

Parameter values are L = 6 m, h = 0.1 m, λ1 = −2.22× 10−8 MPa−1,
λ2 = 7.01× 10−6 MPa−1, η = 4.44× 10−4 MPa−1, q̃ = 2.4 MPa.
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material has a significant quantitative impact on the predicted deflection and the
stress distribution. In what follows, we investigate the deflection and the stress

distribution in a beam with fixed ends, and we compare the results based on the

standard linearized stress–strain relation and on a nonlinear stress–strain relation.
The results for the gum metal alloy are shown in Fig. 5 and 6. Here the non-

linear model used is the model (2.18a) with parameters given in (4.1). Figure 5
shows the deflection and the stress distribution in the beam under a concen-
trated load. The difference between the deflection predicted using the linearized
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(c) Difference wLIN−w between the deflection
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Fig. 6. Gum metal alloy. Comparison of the deflection and the stress field predicted by the
linear model (2.16) and the nonlinear model (2.18a) under a uniform load. Parameter values

are L = 6 m, h = 0.1 m, λ1 = −2.22× 10−8 MPa−1, λ2 = 7.01× 10−6 MPa−1,
η = 4.44 × 10−4 MPa−1, q∗ = 0.2 MPa.



Euler–Bernoulli type beam theory for elastic bodies. . . 21

model and the nonlinear model is in the considered case of order 10−3 m which
makes the difference negligible relative to the magnitude of the deflection that is
of order 10−1 m (see Fig. 5a and 5c). On the other hand, the difference between
the predicted stress field values Tx̂x̂ can be as high as 50 MPa, while the maxi-
mal magnitude of the stress field is around 500 MPa (see Fig. 5b and 5d). The
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Fig. 7. Portland-cement concrete. Comparison of the deflection and the stress field predicted
by the linear model (2.16) and the nonlinear model (2.18c) under a concentrated load at

x = 0. Parameter values are L = 4 m, h = 0.1 m, λ1 = 23.1× 10−6 MPa−1, λ2 = 1,
λ3 = 8.6 MPa, q̃ = 0.8 MPa.
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difference between the predicted stress fields is therefore of the order of tenths of
percents which is a large difference. Since failure is usually based on the values

of stress, the difference in the maximum value of the stresses in the two cases

can assume significance.
The results for the uniform load are qualitatively the same as for the concen-

trated load (see Fig. 6). We can therefore conclude that in the studied settings
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Fig. 8. Portland-cement concrete. Comparison of the deflection and the stress field pre-
dicted by the linear model (2.16) and the nonlinear model (2.18c) under a uniform load.

Parameter values are L = 4 m, h = 0.1 m, λ1 = 23.1× 10−6 MPa−1, λ2 = 1, λ3 = 8.6 MPa,
q∗ = 0.1 MPa.
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Fig. 9. Gum metal alloy. Stress field predicted by the nonlinear model (2.18a) under
a concentrated load at x = 0 in the deformed domain. Parameter values are L = 6 m,

h = 0.1 m, λ1 = −2.22× 10−8 MPa−1, λ2 = 7.01 × 10−6 MPa−1, η = 4.44 × 10−4 MPa−1,
q̃ = 0.6 MPa.

the chosen loading leads for the linearized and the nonlinear model to almost
identical deflections, while the predicted stress fields are considerably different.
This finding qualitatively corresponds to the results expected from the inspec-
tion of Fig. 4 that shows the results based on the one-dimensional nonlinear
constitutive relation. Here we see that the identical strains generate different
stresses depending on the choice of the model.

The overall view of the stress field in the deformed configuration is shown in
Fig. 9.

The results for concrete are shown in Fig. 7 and 8. Here the nonlinear model
is the model (2.18c) with parameters given in (4.5). In this case the nonlin-
earity of the material and the chosen load lead to a large discrepancy even for
the deflection predicted on the basis of the linearized and the nonlinear model.
Under concentrated load conditions, the maximal deflection predicted by the
linear model is nearly half the deflection predicted by the nonlinear model (see
Fig. 7a). Similar observations are valid also for the stress (see Fig. 7b and 7d).
One should also notice that the spatial distribution of the difference between
the stress field predicted by the linearized model and the nonlinear model is
rather complex. Note that the difference between the predicted stress fields is
not, unlike in the previous case (see Fig. 5d), concentrated in the corners (see
Fig. 7d).

5. Conclusion

We have studied the deformation of beams made of materials with nonlinear
constitutive relations in the small strain range. The deflection of the beams has
been studied within the Euler–Bernoulli type setting that in the small strain
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range provide a reasonable balance between the complexity of the mathemat-
ical description and the usability of the obtained results. We have formulated
the problem of the deflection of the beams as a system of nonlinear integro-
differential equations, and we have solved the system numerically using a variant
of the spectral collocation method. The numerical results obtained for two partic-
ular nonlinear models that fit experimental data for gum metal and concrete have
been compared to the results obtained by the corresponding linearized models.

The nonlinear models are the models that are more physically realistic in the
sense that they provide a better fit of the experimental data. Consequently, the
deflection and the stress field predicted in using the nonlinear models should be
closer to the real physical situation than the deflection and the stress field pre-
dicted by the models obtained by blind linearization of the nonlinear consitutive
relations.

The question we have asked has been whether the quantitative difference
between the predictions based on the linearized and nonlinear models could be
of importance in practice. We have found that the predictions based on the lin-
earized model can be indeed considerably different from the “correct” predictions
based on nonlinear models. This shows that the small strain elasticity is not nec-
essarily tantamout to classical linearized elasticity. The nonlinearity is, contrary
to conventional wisdom, of importance even in the small strain range, and plays
a significant role not only in the study of new materials such as metallic alloys,
but also in the study of ordinary materials such as concrete.
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