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This paper is concerned with micropolar thermoelastic materials which
have a double porosity structure. The system of the equations of the assumed model
is based on the equations of motion, equilibrated stress equations of motion and heat
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1. Introduction

Porous media theories play an important role in many branches of en-
gineering including materials science, petroleum industry, chemical engineering,
biomechanics and other such fields of engineering. The development and the in-
tensive investigation of the theories of continua with microstructures arise due to
the wide use of porous materials in engineering and technology. Representation
of a fluid-saturated porous medium as a single-phase material has been virtually
abandoned. The material with the pore spaces, such as concrete, can be treated
easily because all concrete ingredients have the same motion when the concrete
body is deformed. However, this situation becomes more complicated if the pores
are filled with liquid and, in that case, the solid and liquid phases have different
motions. Due to these different motions, the different material properties and
the complicated geometry of pore structures, the mechanical behavior of a fluid-
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saturated porous thermoelastic medium becomes very difficult. Therefore, the
researchers have tried to overcome this difficulty in the past and we see many
studies of porous media in the literature. A brief historical background of these
theories is given by de Boer [1, 2].

As far as we are concerned with the studies of porous media in the mod-
ern era, Biot [3] proposed the general theory of three-dimensional deformation
of fluid-saturated porous salts. The Biot theory is based on the assumption of
compressible constituents, and till recently, some of his results have been used
as standard references and basis for subsequent analysis in acoustics, geophysics
and other such fields. Another interesting theory is given by Bowen [4], and
de Boer and Ehlers [5], in which all the constituents of a porous medium are
assumed to be incompressible. The fluid-saturated porous material is modeled as
a two-phase system consisting of an incompressible solid phase and incompress-
ible fluid phase, thus meeting the many problems in engineering practice, e.g., in
soil mechanics. One important generalization of the Biot’s theory of poroelastic-
ity that has been studied extensively started with the research by Barenblatt

et al. [6], where the double porosity model was first proposed to express the fluid
flow in hydrocarbon reservoirs and aquifers.

The double porosity model represents a new possibility for the study of im-
portant problems concerning the civil engineering. It is well known that, under
super-saturation conditions due to water of other fluid effects, the so-called neu-
tral pressures generate unbearable stress states on the solid matrix and on the
fracture faces, with severe (sometimes disastrous) instability effects like land-
slides, rock fall or soil fluidization (typical phenomenon connected with prop-
agation of seismic waves). In such a context, it seems possible, acting suitably
on the boundary pressure state, to regulate the internal pressures in order to
deactivate the noxious effects related to neutral pressures; finally, a further
but connected positive effect could be the lightening of the solid matrix/fluid
system.

Wilson and Aifantis [7] presented the theory of consolidation with double
porosity. Khaled, Beskos and Aifantis [8] employed the finite element
method to consider the numerical solutions of the differential equation of
the theory of consolidation with double porosity developed by Aifantis [7].
Wilson and Aifantis [9] discussed the propagation of acoustic waves in
a fluid-saturated porous medium. In particular, the propagation of acoustic
waves in a fluid-saturated porous medium containing a continuously distributed
system of fractures was discussed. The porous medium was assumed to consist
of two degrees of porosity and the resulting model thus yielded three types
of longitudinal waves, one associated with the elastic properties of the matrix
material and one for each of the fluids in the pore space and the fracture
space.
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Beskos and Aifantis [10] presented the theory of consolidation with double
porosity and obtained the analytical solutions to two boundary value problems.
Khalili and Valliappan [11] studied the unified theory of flow and defor-
mation in double porous media. Aifantis [12–15] introduced a multi-porous
system and studied the mechanics of diffusion in solids. Moutsopoulos et

al. [16] developed the numerical simulation of transport phenomena by using
the double porosity/diffusivity continuum model. Khalili and Selvadurai [17]
presented a fully coupled constitutive model for thermo-hydro-mechanical anal-
ysis in an elastic media with double porosity structure. Pride and Berry-

man [18] studied the linear dynamics of double-porosity dual-permeability ma-
terials. Straughan [19] studied the stability and uniqueness of double porous
elastic media.

Svanadze [20–24] investigated some problems on elastic solids, viscoelastic
solids and thermoelastic solids with double porosity. Scarpetta et al. [25, 26]
proved the uniqueness theorems in the theory of thermoelasticity for solids with
double porosity, and also obtained the fundamental solutions in the theory of
thermoelasticity for solids with double porosity.

Nunziato and Cowin [27] developed a nonlinear theory of elastic material
with voids. Later, Cowin and Nunziato [28] developed a theory of linear elas-
tic materials with voids for the mathematical study of the mechanical behavior
of porous solids. They also considered several applications of the linear theory
by investigating the response of the materials to homogeneous deformations,
pure bending of beams and small amplitudes of acoustic waves. Nunziato and
Cowin have established a theory for the behavior of porous solids, in which the
skeletal or matrix materials are elastic and the interstices are voids of mate-
rial.

Iesan and Quintanilla [29] used the Nunziato–Cowin theory of materials
with voids to derive a theory of thermoelastic solids which have a double porosity
structure. This theory is not based on Darcy’s law. In contrast with the classical
theory of elastic materials with double porosity, the double porosity structure in
the case of equilibrium is influenced by the displacement field. Marin et al. [56]
presented a new model for micropolar bodies with double porosity.

The mechanical behavior of solids with voids andsolids containing microscopic
components cannot be described by means of the classical theory of elasticity.
In reality, almost all materials possess microstructure and in such materials,
microstructural motions cannot be ignored. Eringen [30] introduced the theory
of micropolar elasticity which had attracted much interest in recent years because
of its possible usefulness in investigating the deformation properties of solids for
which the classical theory is inadequate. The micropolar theory has been useful
in investigating the material consisting of bar-like molecules, which exhibit the
microrotational effects and can support body and surface couples. A micropolar
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continuum is a collection of interconnected particles in the form of small rigid
bodies undergoing both translational and rotational motions. The force at a point
of the surface element of bodies is solely characterized by stress vector and couple
stress vector at that point.

The linear theory of micropolar thermoelasticity was developed by extend-
ing the theory of micropolar continua thermal effect. The comprehensive review
of this theory was given by Eringen [31] and Nowacki [32]. Touchert et

al. [33] derived the basic equations of the linear theory of micropolar coulpled
thermoelasticity. Chandrasekharaiah [34] developed a heat flux dependent
micropolar thermoelasticity. Boschi and Iesan [35] extended a generalized the-
ory of micropolar thermoelasticity to permit for the transmission of heat as
thermal waves at finite speed.

The construction of fundamental solutions has a great importance in many
mathematical, physical and engineering problems. To investigate the bound-
ary value problems of the theory of elasticity and thermoelasticity by potential
method, it is necessary to construct a fundamental solution of systems of par-
tial differential equations and to establish their basic properties, respectively.
Hetnarski [36, 37] studied the fundamental solutions in the classical theory
of coupled thermoelasticity. The information related to fundamental solutions of
differential equations is presented in the books by Hörmander [38, 39]. Various
authors [41–54] have derived the fundamental solutions in different theories of
continuum mechanics.

In this paper, the fundamental solution of system of equations in the case of
steady vibrations in terms of elementary functions is constructed and the basic
properties of the fundamental solution are established. The aspects of the par-
ticular cases of Scarpetta et al. [25], Scarpetta [42], Ciarlette et al. [45]
and Svanadze [51] are also deduced in the present investigation.

2. Basic equations

Let x = (x1, x2, x3) be the point of the Euclidean three-dimensional space R3,

|x| = (x2
1 + x2

2 + x2
3)

1/2, Dx =

(

∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

,

and let t denote the time variable.
Following Marin et al. [56], the basic equations for isotropic, homogeneous

micropolarthermoelastic material with double porosity structure, in the absence
of body forces, body couples, extrinsic equilibrated body forces and heat sources,
are:
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(2.1)

(µ+ κ)∆ū + (λ+ µ) grad div ū

+ κ curl Φ̄ + b grad ϕ̄+ d grad ψ̄ − β grad T̄ = ρ¨̄u,

(γ∆ − 2κ)Φ̄ + (α+ β) grad div Φ̄

+ κ curl ū + c0 grad ϕ̄+ d0 grad ψ̄ = ρj
¨̄Φ,

α∆ϕ̄+ b1∆ψ̄ − b div ū − α1ϕ̄− α3ψ̄ + γ1T̄ − c0 div Φ̄ = κ1 ¨̄ϕ,

b1∆ϕ̄+ γ0∆ψ̄ − ddiv ū − α3ϕ̄− α2ψ̄ + γ2T̄ − d0 div Φ̄ = κ2
¨̄ψ,

K∗∆T̄ − βT0 div ˙̄u − γ1T0 ˙̄ϕ− γ2T0
˙̄ψ = ρC∗ ˙̄T,

where ū = (ū1, ū2, ū3) is the displacement vector; Φ̄ = (Φ̄1, Φ̄2, Φ̄3) is the micro-
rotation vector, λ and µ are the Lame’s constants, ρ is the mass density, ρj is
coefficient of inertia, β = (3λ+2µ+κ)αt, αt is the linear thermal expansion, C∗ is
the specific heat at constant strain, ūi is the displacement components, κ1 and
κ2 are coefficients of equilibrated inertia, ϕ̄ and ψ̄ are the volume fraction fields
corresponding to pores and fissures respectively, K∗ is the coefficient of thermal
conductivity and b, d, b1, γ0, γ1, γ2, c0, d0, κ are constitutive coefficients, δij is
the Kronecker’s delta, and T̄ is the temperature change measured from the ab-
solute temperature T0 (T0 6= 0); a superposed dot represents differentiation with
respect to time variable t and ∆ is the Laplacian operator.

If the displacement vector ū , microrotation vector Φ̄, volume fractions fields
ϕ̄, ψ̄ and temperature distribution T̄ have a harmonic time variation as

(2.2) {ū, Φ̄, ϕ̄, ψ̄, T̄}(x, t) = Re[{u,Φ, ϕ, ψ, T}(x)e−iωt],

using (2.2) in (2.1) yields the system of steady vibrations as

(2.3)

[(µ+ κ)∆ + ρω2]u + (λ+ µ) grad div u

+κ curlΦ + b gradϕ+ d gradψ − β gradT = 0,

(γ∆ + µ1)Φ + (α+ β) grad div Φ + κ curlu + c0 gradϕ+ d0 gradψ = 0,

(α∆ + µ2)ϕ+ (b1∆ − α3)ψ − b div u + γ1T − c0 div Φ = 0,

(b1∆ − α3)ϕ+ (γ0∆ + µ3)ψ − ddiv u + γ2T − d0 div Φ = 0,

(k3∆ − ρC∗)T − βT0 div u − γ1T0ϕ− γ2T0ψ = 0,

where ω is the oscillation frequency (ω > 0), and

µ1 = ρjω
2 − 2κ, µ2 = κ1ω

2 − α1, µ3 = κ2ω
2 − α2, k3 = −K

∗

iω
.

Introducing the matrix differential operator

E(Dx) = ‖Egh(Dx)‖9×9,
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where

E(Dx) = [(µ+ k)∆ + ρω2]δmn + (λ+ µ)
∂2

∂xm∂xn
,

Em,n+3(Dx) = Em+3,n(Dx) = κ

3
∑

r=1

εmrn
∂

∂xr
,

Em7(Dx) = −E7m(Dx) = b
∂

∂xm
,

Em8(Dx) = −E8m(Dx) = d
∂

∂xm
,

Em9(Dx) = −β ∂

∂xm
,

Em+3,n+3(Dx) = (γ∆ + µ1)δmn + (α+ β)
∂2

∂xm∂xn
,

Em+3,7(Dx) = −E7,n+3(Dx) = c0
∂

∂xm
,

Em+3,8(Dx) = −E8,n+3(Dx) = d0
∂

∂xm
,

E77(Dx) = α∆ + µ2, E78(Dx) = E87(Dx) = b1∆ − α3,

E79(Dx) = γ1, E89(Dx) = γ2, E97(Dx) = −γ1T0,

E98(Dx) = −γ2T0, E88(Dx) = γ0∆ + µ3,

E9m(Dx) = −βT0
∂

∂xm
, Em+3,9(Dx) = 0 = E9,n+3(Dx),

E99(Dx) = k3∆ − ρC∗, m, n = 1, 2, 3,

δmn is the Kronecker’s delta and εmrn is the alternating symbol.
The system (2.3) can be written as

E(Dx)U(x) = 0,

where U = (u,Φ, ϕ, ψ, T ) is a nine-component vector function on R3.
We assume that

(2.4) α4α5α6k3γ(µ+ κ) 6= 0,

where α4 = λ+ 2µ+ κ, α5 = α+ β + γ, α6 = αγ0 − b21. Evidently, if conditions
in (2.4) are satisfied, then E is the elliptic differential operator [38].

Definition. The fundamental solution of the system (2.3) (the fundamental
matrix of operator E) is the matrix Λ(x) = ‖Λgh(x)‖9×9 satisfying condition
[38]

(2.5) E(Dx)Λ(x) = δ(x)I(x),

where δ is the Dirac delta, I = ‖δgh‖9×9 is the unit matrix, and x ∈ R3.
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Now, we construct the matrix Λ(x) in terms of elementary functions and we
also establish some basic properties.

3. Fundamental solution of the system of equations
of steady vibrations

We consider the system of equations

(3.1)

[(µ+ κ)∆ + ρω2]u + (λ+ µ) grad divu

+ κ curlΦ − b gradϕ− d gradψ − βT0 gradT = F′,

(γ∆ + µ1)Φ + (α+ β) grad div Φ + κ curlu

− c0 gradϕ− d0 gradψ = F′′,

(α∆ + µ2)ϕ+ (b1∆ − α3)ψ + b div u− γ1T0T + c0 divΦ = f ′,

(b1∆ − α3)ϕ+ (γ0∆ + µ3)ψ + ddivu − γ2T0T + d0 divΦ = f ′′,

(k3∆ − ρC∗)T − β divu + γ1ϕ+ γ2ψ = f ′′′,

where F′ and F′′ are three-component vector functions on R3; f ′, f ′′ and f ′′′ are
scalar functions on R3.

The system (3.1) may be written in the form

(3.2) Etr(Dx)U(x) = Q(x),

where Etr is the transpose of matrix E, Q = (F′,F′′, f ′, f ′′, f ′′′) is the nine-
component vector function on R3, and x ∈ R3 .

Applying the operator div to first and second equation of system (3.1), we
obtain

(3.3)

[α4∆ + ρω2] div u− b∆ϕ− d∆ψ − βT0∆T = divF′,

(α5∆ + µ1) div Φ− c0∆ϕ− d0∆ψ = divF′′,

(α∆ + µ2)ϕ+ (b1∆ − α3)ψ + b divu − γ1T0T + c0 divΦ = f ′,

(b1∆ − α3)ϕ+ (γ0∆ + µ3)ψ + ddivu − γ2T0T + d0 divΦ = f ′′,

(k3∆ − ρC∗)T − β div u + γ1ϕ+ γ2ψ = f ′′′.

The system (3.3) can be written as

(3.4) H(∆)S = Q̃,

where

S = (divu,div Φ, ϕ, ψ, T ),

Q̃ = (divF′,div F′′, f ′, f ′′, f ′′′) = (f1, f2, f3, f4, f5)
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and

(3.5) H(∆) = ‖Hmn(∆)‖5×5

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

α4∆ + ρω2 0 −b∆ −d∆ −βT0∆
0 α5∆ + µ1 −c0∆ −d0∆ 0
b c0 α∆ + µ2 b1∆ − α3 −γ1T0

d d0 b1∆ − α3 γ0∆ + µ3 −γ2T0

−β 0 γ1 γ2 k3∆ − ρC∗

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

5×5

.

The system (3.3) may be written as

(3.6) Γ1(∆)S = Ψ,

where

(3.7)
Ψ = (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5), Ψn = g1

5
∑

m=1

H∗
mnfm,

Γ1(∆) = g1 detH(∆), g1 =
1

α4α5α6k3
, n = 1, 2, 3, 4, 5,

where H∗
mn is the cofactor of the element Hmn of the matrix H.

From (3.5) and (3.6), we see that

Γ1(∆) =
5

∏

m=1

(∆ + ξ2m),

where ξ2m, m = 1, 2, 3, 4, 5 are the roots of the equation Γ1(−χ) = 0 (with respect
to χ).

Applying the operator (γ∆ + µ1) and κ curl to Eqs. (3.1)1 and (3.1)2, respec-
tively, we obtain

(γ∆ + µ1)[(µ+ κ)∆u + (λ+ µ) grad div u + ρω2u] + κ(γ∆ + µ1) curlΦ(3.8)

= (γ∆ + µ1)[F
′ + b gradϕ+ d gradψ + βT0 gradT ],

κ(γ∆ + µ1) curlΦ = −κ2 curl curlu + κ curlF′′.(3.9)

When using (3.9) and equality

(3.10) curl curlu = grad div u − ∆u

in Eq. (3.8), we obtain

(3.11) [{(γ∆ + µ1)(µ+ κ) + κ2}∆ + ρω2(γ∆ + µ1)]u

+ [(λ+ µ)(γ∆ + µ1) − κ2] grad div u

= (γ∆ + µ1)[F
′ + b gradϕ+ d gradψ + βT0 gradT ] − κ curlF′′.
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Applying the operator Γ1(∆) to Eq. (3.11) and after using Eq. (3.6), we obtain

(3.12) Γ1(∆)Γ2(∆)u = Ψ′,

where

Γ2(∆) = g2[γ(µ+ κ)∆2 + (µµ1 + µ1κ+ κ2 + ρω2γ)∆ + ρω2µ1],

g2 =
1

γ(µ+ κ)

and

(3.13) Ψ′ = g2[(γ∆ + µ1)(Λ1F
′ + b grad Ψ3 + d grad Ψ4 + βT0 grad Ψ5)

− κΛ1 curlF′′ − {(λ+ µ)(γ∆ + µ1) − κ2)}κ grad Ψ1].

We see that

(3.14) Γ2(∆) = (∆ + ξ26) (∆ + ξ27),

where ξ26 and ξ27 are the roots of the equation (with respect to χ).

γ(µ+ κ)χ2 + (µµ1 + µ1κ+ κ2 + ρω2γ)χ+ ρω2µ1 = 0.

Similarly, from Eqs. (3.1)1,(3.1)2 and (3.6) we obtain

(3.15) Γ1(∆)Γ2(∆)Φ = Ψ′′,

where

Ψ′′ = g2Λ1(∆)[−κ curlF′ + {(µ+ κ)∆ + ρω2}F′′(3.16)

− g2[(α+ β){(µ+ κ)∆ + ρω2} − κ2] gradΦ2

+ c0g2[(µ+ κ)∆ + ρω2] gradΦ3 + d0g2[(µ+ κ)∆ + ρω2] gradΦ4.

From Eqs. (3.12), (3.15) and (3.6), we obtain

(3.17) Γ(∆)U(x) = Ψ̃(x),

where Ψ = (Ψ′,Ψ′′,Ψ3,Ψ4,Ψ5) and

Γ(∆) = ‖Γij(∆)‖9×9,

Γpp(∆) = Γ1(∆)Γ2(∆) =

7
∏

m=1

(∆ + ξ2m),

Γnn(∆) = Γ1(∆), Γij(∆) = 0,

p = 1, . . . , 6, n = 7, 8, 9, i, j = 1, . . . , 9, i 6= j.
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In what follows we have

(3.18)

rl1(∆) = g1g2[(γ∆ + µ1)(bH
∗
l3 + dH∗

l4 + βT0H
∗
l5)

− {(λ+ µ)(γ∆ + µ1) − κ2}H∗
l1],

rl2(∆) = c0g1g2[(µ+ κ)∆ + ρω2]H∗
l3 + d0g1g2[(µ+ κ)∆ + ρω2]H∗

l4

− g1g2[(α+ β){(µ+ κ)∆ + ρω2} − κ2]H∗
l2,

rlj(∆) = g1H
∗
lj, l = 1, 2, 3, 4, 5, j = 3, 4, 5.

It is evident that r12(∆) = r21(∆). From Eqs. (3.13) and (3.15) ,by virtue of
Eqs.(3.7) and (3.18), we have

(3.19)

Ψ′ = [g2(γ∆ + µ1)Γ1I + r11 grad div]F′ + [−κg2Γ1 curl+r21 grad div]F′′

+ r31 grad f ′ + r41 grad f ′′ + r51 grad f ′′′,

Ψ′′ = [−κb2Γ1 curl +r12 grad div]F′

+ [g2{(µ+ κ)∆ + ρω2}Γ1I + r22 grad div]F′′

+ r32 grad f ′ + r42 grad f ′′ + r52 grad f ′′′,

Ψj = r1j div F′ + r2j divF′′ + r3jf
′ + r4jf

′′ + r5jf
′′, j = 3, 4, 5,

where I = ‖δej‖3×3 is the unit matrix.
Therefore, from Eq. (3.18), we have

(3.20) Ψ̃(x) = Ntr(Dx)Q(x),

where

(3.21)

N(Dx) = ‖Ngh(Dx)‖9×9,

Nmn(Dx) = g2(γ∆ + µ1)Γ1(∆)δmn + r11(∆)
∂2

∂xm∂xn
,

Nm,n+3(Dx) = Nm+3,n(Dx)

= −κg2Γ1(∆)
3

∑

r=1

εmrn
∂

∂xr
+ r12(∆)

∂2

∂xm∂xn
,

Nmp(Dx) = r1,p−4(∆)
∂

∂xm
,

Nm+3,n+3(Dx) = g2{(µ+ κ)∆ + ρω2}Γ1(∆)δmn + r22(∆)
∂2

∂xm∂xn
,

Nm+3,p(Dx) = r2,p−4(∆)
∂

∂xm
, Npm(Dx) = rp−4,1

∂

∂xm
,

Np,m+3(Dx) = rp−4,2(∆)
∂

∂xm
,

Npq(Dx) = rp−4,q−4(∆), m, n = 1, 2, 3, p, q = 7, 8, 9.
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In view of Eqs. (3.2) and (3.20), from Eq. (3.17) it is found that ΓU = NtrEtrU.
It is evident that NtrEtr = Γ, and hence

(3.22) E(Dx)N(Dx) = Γ(∆).

We assume that

ξ2m 6= ξ2n 6= 0, m, n = 1, 2, . . . , 7 and m 6= n.

Let

Z(x) = ‖Zej(Dx)‖9×9, Zmm(x) =
6

∑

n=1

s1nςn(x),

Zm+3,m+3(x) =

7
∑

n=5

s2nςn(x),

Z77(x) = Z88(x) = Z99(x) =

4
∑

n=1

s3nςn(x),

Zej(x) = 0, m = 1, 2, 3, e, j = 1, 2, . . . , 9, e 6= j,

where

(3.23)

ςn(x) = − 1

4π|x|e
iξn|x|,

s1l =
6

∏

m=1
m6=l

(ξ2m − ξ2l )−1, l = 1, 2, 3, 4, 5, 6,

s2e =

7
∏

m=5
m6=e

(ξ2m − ξ2e )−1, e = 5, 6, 7,

s3j =

4
∏

m=1
m6=j

(ξ2m − ξ2j )−1, j = 1, 2, 3, 4.

Therefore, the matrix Z is the fundamental matrix of operator Γ(∆), that is,

(3.24) Γ(∆)Z(x) = δ(x)I(x).

Introducing the matrix

(3.25) Λ(x) = N(Dx)Z(x)
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and using (3.24), in Eqs. (3.22) and (3.25), we obtain

(3.26) E(Dx)Λ(x) = E(Dx)N(Dx)Z(x) = Γ(∆)Z(x) = δ(x)I(x).

Hence, Λ(x) is the solution of Eq. (2.5).
Now, we will prove the following theorem.

Theorem 1. The matrix Λ(x) defined by Eq. (3.26) is the fundamental so-

lution of system (2.3).

Remark. The fundamental solution Λ(x) of system (2.3) is constructed for
ξm 6= ξn 6= 0 (m,n = 1, 2, . . . , 7 and m 6= n). Evidently, using the above method,
it is possible to construct the fundamental solution of system (2.3) for the cases
where ξm = 0 and ξm = ξn.

4. Basic properties of the matrix Λ(x)

Corollary 1. Each column of the matrix Λ(x) is the solution of the system

(2.3) at every point x ∈ R3 except the origin.

Corollary 2. If conditions in (2.4) are satisfied, then the fundamental so-

lution of the system

(4.1)

(µ+ κ)∆u + (λ+ µ) grad div u = 0,

γ∆Φ + (α+ β) grad div Φ = 0,

α∆ϕ+ b1∆ψ = 0,

b1∆ϕ+ γ0∆ψ = 0,

k3∆T = 0

is the matrix

Ω(x) = ‖Ωmn(x)‖9×9,

where

Ωlj(x) =

(

1

α4
grad div− 1

µ+ κ
curl curl

)

λ1(x),

Ωlm(x) = Ωml(x) = Ωl,m+3(x) = Ωm+3,l(x) = 0,

Ω77(x) =
α

α6
λ2(x), Ω78(x) = Ω87(x) =

−b1
α6

λ2(x),

Ω88(x) =
γ0

α6
λ2(x), Ω99(x) =

1

k3
λ2(x),

Ωl+3,j+3(x) =

(

1

α5
grad div−1

γ
curl curl

)

λ1(x),
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Ω79(x) = Ω97(x) = 0, Ω98(x) = Ω89(x) = 0,

λ1(x) = −|x|
8π
, λ2(x) = − 1

4π|x| , l, j = 1, 2, 3, m = 4, 5, 6.

Lemma 1. If conditions (2.4) are satisfied, then

(4.2)
∆rl1(∆) = g1Γ2(∆)H∗

l1(∆)−g2(γ∆+µ1)Γ1(∆)δl1,

∆rl2(∆) = g1Γ2(∆)H∗
l2(∆)−g2[(µ+κ)∆+ρω2]Γ1(∆)δl2, l = 1, 2, 3, 4, 5.

Proof. Using the equality

(α4∆ + ρω2)H∗
l1 − ∆(bH∗

l3 + dH∗
l4 + βT0H

∗
l5) =

1

g1
δl1Γ1(∆), l = 1, 2, 3, 4, 5,

Eq. (3.18)1 implies that

∆rl1(∆) = g1g2[(γ∆ + µ1){(α4∆ + ρω2)H∗
l1 −

1

g1
δl1Γ1(∆)}

− {(λ+ µ)(γ∆ + µ1) − κ2}∆H∗
l1]

= g1g2[(γ∆ + µ1){(µ+ κ)∆ + ρω2} + κ2∆]H∗
l1

− g2(γ∆ + µ1)Γ1(∆)δl1

= g1Γ2(∆)H∗
l1(∆) − g2(γ∆ + µ1)Γ1(∆)δl1.

Similarly, from Eqs. (3.18)2 and

(α5∆ + µ1)H
∗
l2 − c0∆H

∗
l3 − d0∆H

∗
l4 =

1

g1
δl2Γ1(∆), l = 1, 2, 3, 4, 5

we obtain

∆rl2(∆) = g1g2[{(µ+κ)∆+ρω2)}{c0∆H∗
l3+d0∆H

∗
l4 + (α5 − γ)∆H∗

l2}+κ2∆H∗
l2]

= g1g2

[{

(γ∆ + µ1)H
∗
l2 −

1

g1
δl2Γ1(∆)

}

{(µ+ κ)∆ + ρω2} + κ2∆H∗
l2

]

= g1Γ2(∆)H∗
l2(∆) − g2[(µ+ κ)∆ + ρω2)]Γ1(∆)δl2.

Lemma 2. If conditions (2.4) are satisfied and x ∈ R3 \ {0}, then

(4.3)

[

rl1(−ξ2m) − g2
ξ2m

(−γξ2m + µ1)Γ1(−ξ2m)δl1

]

ζj(x)

= − g1
ξ2m

Γ2(−ξ2m)H∗
l1(−ξ2m)ζj(x),

[

rl2(−ξ2m) − g2
ξ2m

{−(µ+ κ)ξ2m + ρω2}Γ1(−ξ2m)δl2

]

ζj(x)

= − g1
ξ2m

Γ2(−ξ2m)H∗
l2(−ξ2m)ζj(x), l = 1, 2, 3, 4, 5.
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Proof. We obtain Eqs. (4.3) when we use the following equality

∆ζj(x) = −ξ2mζj(x)

in the system of Eqs. (4.1).

Theorem 2. If conditions (2.4) are satisfied and x ∈ R3 \ {0}, then

Θ(1)(x) = grad div

5
∑

m=1

v1mζm(x) − curl curl

7
∑

e=6

v1eζe(x),

Θ(2)(x) = Θ(3)(x) = v20 curl[ζ6(x) − ζ7(x)] + grad div
5

∑

m=1

v2mζm(x),

Θ(4)(x) = grad div

5
∑

m=1

v1mζm(x) − curl curl

7
∑

e=6

v4eζm(x),

Θ(n)
er (x) =

∂

∂xe

5
∑

m=1

vnrjζm(x),

Θ(n+2)
re (x) =

∂

∂xe

5
∑

m=1

vn+2,rjζm(x),

Θ(9)
re (x) =

5
∑

m=1

v9qrjζm(x), e = 1, 2, 3, r, q = 1, 2, n = 5, 6,

where

Θ = ‖Θej‖8×8 =

∥

∥

∥

∥

∥

∥

Θ(1) Θ(2) Θ(5)

Θ(3) Θ(4) Θ(6)

Θ(7) Θ(8) Θ(9)

∥

∥

∥

∥

∥

∥

9×9

, Θ(n) = ‖Θ(n)
ej ‖3×3,

Θ(q) = ‖Θ(q)
ej ‖3×2, Θ(r) = ‖Θ(r)

ej ‖2×3, Θ(9) = ‖Θ(9)
ej ‖2×2,

n = 1, 2, 3, 4, q = 5, 6, r = 7, 8 and

(4.4)

v1m = − g1
ξ2m
s2jH

∗
l1(−ξ2m), v1e =

(−1)eg2
ξ2e (ξ26 − ξ27)

(ζξ2e − µ1),

v2m = c0g1(−bk3ξ
2
m + bα3 + dα4 − βα5), v20 =

κg2
ξ26 − ξ27

,

v4m = − g1
ξ2m
s2mH

∗
22(−ξ2m), v4e =

(−1)eg2
k2

e(k
2
6 − k2

7)
[(µ+ κ)ξ2m + ρω2],

verm = g1s2mH
∗
e−4,r+2(−ξ2m),

ve+2,rm = g1s2mH
∗
r+2,e−4(−ξ2m),

v9qrm = g1s2mH
∗
q+2,r+2(−ξ2m), q, r = 1, 2, m = 1, 2, 3, 4, 5, e = 6, 7.
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Proof. When using

Iζm(x) = − 1

ξ2m
(grad div− curl]curl)ζm(x), x 6= 0

and Eqs. (3.10), (3.21), (3.23), and (3.25), we obtain

(4.5)

Θ(1)(x) = [g2(γ∆ + µ1)Γ1(∆)I + r11(∆) grad div]
7

∑

m=1

s1mζm(x)

=

7
∑

m=1

s1m[{rl1(−ξ2m) − g2
ξ2m

(−γξ2m + µ1)Γ1(−ξ2m)} grad div

+
g2
ξ2m

(−γξ2m + µ1)Γ1(−ξ2m) curl curl]ζm(x).

Using (4.3)1 in (4.5), we obtain

Θ(1)(x) =
7

∑

m=1

s1m

[{

− g1
ξ2m

Γ2(−ξ2m)H∗
l1(−ξ2m)

}

grad div

+
g2
ξ2m

(−γξ2m + µ1)Γ1(−ξ2m) curl curl

]

ζm(x).

By virtue of Eq. (4.4) and the equalities

(4.6)

Γ1(−ξ2m)s1m =

{

0 m = 1, 2, 3, 4, 5,
(−1)m(ξ26 − ξ27)

−1 m = 6, 7,

Γ2(−ξ2m)s1m =

{

s2m m = 1, 2, 3, 4, 5,
0 m = 6, 7.

From Eq. (4.5), we obtain

Θ(1)(x) = grad div

5
∑

m=1

[

− g1
ξ2m
s2mH

∗
l1(−ξ2m)

]

ζm(x)

− g2
ξ2m

curl curl
7

∑

e=6

(−1)eg2(γξ
2
e − µ1)

ξ2m(ξ26 − ξ27)
ζe(x)

= grad div

5
∑

m=1

v1mζm(x) − curl curl

7
∑

e=6

v1eζe(x).

Other formulae of Theorem 2 can be proved in the similar manner.
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Theorem 3. The relationships

(4.7)

Λgh(x) − Ωgh(x) = const +O(|x|),
∂p

∂xp1
1 ∂x

p2
2 ∂x

p3
3

[Λgh(x) − Ωgh(x)] = O(|x|1−p),

and

(4.8) |Λej(x)|<const|x|−1, |Λe+3,j+3(x)|<const|x|−1, |Λnn(x)|<const|x|−1

hold in the neighborhood of the origin, where p = p1 + p2 + p3, p ≥ 1, pj ≥ 0,
e, j = 1, 2, 3, g, h = 1, 2, . . . , 9, n = 7, 8, 9.

Proof. It is evident from Theorem 2 and Corollary 2 that

(4.9) Λ(1)(x) −Ω(1)(x) = G(x),

where

(4.10)

G(x) = ‖Gem(x)‖3×3 = grad div ζ(1)(x) − curl curl ζ(2)(x),

ζ(1)(x) =

5
∑

m=1

v1mζm(x) − 1

α4
λ1(x),

ζ(2)(x) =
7

∑

e=6

v1eζe(x) − 1

µ+ κ
λ1(x).

From Eq. (4.10), in the neighborhood of the origin, we have

(4.11)

ζ(1)(x) = − 1

8π

[

2

5
∑

m=1

v1m

∞
∑

n=0

inξn
m

n!
|x|n−1 − 1

α4
|x|

]

= − 1

8π

[

2

|x|

5
∑

m=1

v1m−|x|
( 5

∑

m=1

v1mξ
2
m +

1

α4

)]

− i

4π

5
∑

m=1

v1mξm + ζ(3)(x),

ζ(2)(x) = − 1

8π

[

2

|x|

7
∑

e=6

v1e−|x|
( 7

∑

e=6

v1eξ
2
e +

1

µ+ κ

)]

− i

4π

7
∑

e=6

v1eξe + ζ(4)(x),
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where

(4.12)

ζ(3)(x) = − 1

4π

5
∑

m=1

v1m

∞
∑

n=3

inξn
m

n!
|x|n−1,

ζ(4)(x) = − 1

4π

7
∑

e=6

v1e

∞
∑

n=3

inξn
e

n!
|x|n−1.

Therefore, from Eq. (4.12), in the neighborhood of the origin, we obtain

(4.13)

ζ(p)(x) = O(|x|2), ∂

∂xe
ζ(p)(x) = O(|x|),

∂2

∂xe∂xm
ζ(p)(x) = const +O(|x|), e,m = 1, 2, 3, p = 3, 4.

By virtue of Eq. (4.11) and the inequalities

(4.14)

5
∑

m=1

v1m =
7

∑

e=6

v1e = − 1

ρω2
,

5
∑

m=1

v1mξ
2
m +

1

α4
= 0,

7
∑

e=6

v1eξ
2
e +

1

µ+ κ
= 0,

(grad div− curl curl)
1

|x| = ∆
1

|x| = 0, x 6= 0.

From Eq. (4.10), we obtain

(4.15) G(x) = grad div ζ(1)(x) − curl curl ζ(2)(x).

When using Eqs. (4.13) and (4.14) in Eq. (4.9), we obtain the relationship (4.7)1
for g, h = 1, 2, 3. Similarly, other formulae of Eq. (4.7) can be proved.

We can obtain inequalities (4.8) from Eqs. (4.7) as

|Ωmn(x)| < const|x|−1, |Ωm+3,n+3(x)| < const|x|−1,

|Ωhh(x)| < const|x|−1, m, n = 1, 2, 3, h = 7, 8, 9.

Hence, the matrix Ω(x) is the singular part of the fundamental matrix Λ(x) in
the neighborhood of the origin.
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5. Special cases

(i) Neglecting the thermal and micropolarity effect in system of equations
(2.3) yields the system of steady vibrations for homogeneous isotropic elastic
material with double porosity as follows:

(5.1)

[µ∆ + ρω2]u + (λ+ µ) grad divu + b gradϕ+ d gradψ = 0,

(α∆ + µ2)ϕ+ (b1∆ − α3)ψ − b divu = 0,

(b1∆ − α3)ϕ+ (γ0∆ + µ3)ψ − ddiv u = 0.

The derived fundamental solution for the system of equations (5.1) is similar to
the solution obtained by Svanadze [51].

(ii) In the absence of single porosity parameter in the system of equations
(2.3), we obtain the system of steady vibrations for homogeneous isotropic mi-
cropolar thermoelastic material with voids as follows:

(5.2)

[(µ+ κ)∆ + ρω2]u + (λ+ µ) grad divu

+κ curlΦ + b gradϕ− β gradT = 0,

(γ∆ + µ1)Φ + (α+ β) grad divΦ + κ curlu + c0 gradϕ = 0,

(α∆ + µ2)ϕ− b divu + γ1T − c0 divΦ = 0,

(k3∆ − ρC∗)T − βT0 divu − γ1T0ϕ = 0.

Obtaining the fundamental solution of the system of equations (5.2) is the same
as the one given by Ciarlette et al. [45].

(iii) In the absence of single porosity parameter and thermal effect in the sys-
tem of equations (2.3), the system of steady vibrations for homogeneous isotropic
micropolar elastic material with voids is

(5.3)

[(µ+ κ)∆ + ρω2]u + (λ+ µ) grad divu + κ curlΦ + b gradϕ = 0,

(γ∆ + µ1)Φ + (α+ β) grad divΦ + κ curlu + c0 gradϕ = 0,

(α∆ + µ2)ϕ− b div u− c0 divΦ = 0.

The resulting fundamental solution obtained from the system of equations (5.3)
is in agreement with those obtained by Scarpetta [42].

(iv) In the absence of micropolarity effect, we obtain the system of steady vi-
brations for homogeneous isotropic thermoelastic material with double porosity
as

(5.4)

(µ∆ + ρω2)u + (λ+ µ) grad divu + b gradϕ+ d gradψ − β gradT = 0,

(α∆ + µ2)ϕ+ (b1∆ − α3)ψ − b divu + γ1T = 0,

(b1∆ − α3)ϕ+ (γ0∆ + µ3)ψ − ddiv u + γ2T = 0,

(k3∆ − ρC∗)T − βT0 div u − γ1T0ϕ− γ2T0ψ = 0.
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The derived fundamental solution from the system of equations (5.4) is similar
to the solution obtained by Scarpetta et al. [25], with some modification.

6. Concluding remarks

1. The constructed fundamental solution Λ(x) of the system (2.3) can be
used

(i) To solve the boundary value problems by using boundary element method.
(ii) For constructing the surface and volume potentials and establishing their

basic properties [40].
(iii) For investigating three-dimensional boundary value problems in microp-

olar thermoelastic materials with double porosity by potential method [40].
2. It is possible to represent the fundamental solutions of the systems of

equations in different theories of continuum mechanics by using the method
applied in this paper.
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