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This paper addresses the question of whether it is possible to design a nano-
inclusion (characterized here by the incorporation of interface effects along the ma-
terial interface) to achieve a screw dislocation-induced uniform internal strain field
when a composite is subjected to anti-plane shear deformation. We demonstrate the
existence of such an inclusion by identifying its shape via a conformal mapping with
unknown coefficients obtained through a system of nonlinear equations. Our numeri-
cal examples verify that the inclusion shape is dependent on its size and the specific
uniform internal strain field. We show also that the inclusion shape is available even
with increasing distance between the inclusion and dislocation. This latter fact leads
to the additional conclusion that non-circular nano-inclusions which achieve uniform
internal strain fields do indeed exist in a composite subjected to uniform remote
anti-plane shear loading.
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1. Introduction

Dislocation-inclusion interactions continue to receive considerable at-
tention in the literature mainly because of their role in strengthening and hard-
ening mechanisms for heterogeneous materials such as alloys and composites.
Initial researches in this area were undertaken using the simplifying assumption
that the bond between the inclusion and its surrounding matrix was ‘perfect’
(both traction and displacement are assumed to be continuous across the mate-
rial interface). For example, Dundurs and Mura [1] derived the exact elastic
field inside a circular inclusion under the influence of an edge dislocation; Stagni

and Lizzio [2] studied the interaction between an edge dislocation and elliptical
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inclusions of various aspect ratios (see also [3, 4]); while Gong and Meguid [5]
considered the effect of a screw dislocation on the elastic field around an elliptical
inclusion. In particular, the basic solution for dislocation-inclusion interactions
have found wide application in the fracture analysis of fiber-reinforced compos-
ites (see, for example, [6, 7]).

Most recently, nano-materials and nano-structures have attracted consider-
able attention in the literature mainly because of their unique mechanical and
physical properties. It is well-known that as the size of an inclusion approaches
the nanoscale, separate interfacial effects caused by the contributions of interface
energy and interface tension (usually neglected at higher order length scales) be-
come much more significant in the description of deformation of the correspond-
ing composite. As a result, the elastic fields around nano-inclusions are essentially
size-dependent [8–11]. More recently, using the Gurtin–Murdoch model [12, 13]
of interface elasticity to incorporate interface effects, the size-dependent elas-
tic fields inside circular and elliptical nano-inclusions induced by dislocations,
have been investigated by Fan and Liu [14], Luo and Xiao [15] and Shodja

et al. [16]. In addition, Wang and Schiavone [17] have proposed a series solu-
tion for the interaction problem of a screw dislocation and an arbitrarily-shaped
nano-inclusion.

The primary objective of the study of the interaction between dislocations
and inclusions is to predict the dislocation-induced interfacial elastic field in
an effort to prevent failure of the material interface which inevitably leads to
the failure of the composite structure. One possible way to reduce stress con-
centration in the interface and thus slow interfacial failure is to design special
inclusion shapes which induce uniform internal stress fields (thereby eliminating
stress peaks, known to be one of the major causes of failure) [18–22]. To the
authors’ knowledge, such investigations in the case when a dislocation is the ma-
jor contributor to deformation, remain almost absent from the literature even
in the simplest case when the inclusion-matrix interface is assumed to be per-
fectly bonded. In this paper, we address this matter and examine the existence
and construction of such special shapes of inclusion which achieve uniform in-
ternal stress in the presence of a dislocation and interface effects. Using the
Gurtin–Murdoch model [12, 13], a simple new method is developed to con-
struct a nano-inclusion (i.e. incorporating interfacial effects into the model of
deformation) which achieves a prescribed uniform internal strain field induced
by a screw dislocation within an infinite elastic solid subjected to anti-plane
shear.

A detailed problem description is given in Section 2. In Section 3, using com-
plex variable methods, we identify the desired inclusion shape using conformal
mapping techniques. Various numerical examples are given in Section 4 where
we also study the size-dependent effect of the dislocation on the shape of the
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inclusion and the convergence of the inclusion shape with decaying dislocation-
inclusion interaction. We summarize our main results in Section 5.

2. Problem description

In the context of anti-plane shear deformations, we consider a nano-sized
elastic inclusion S1 whose boundary/shape is described by the curve L embedded
in an infinite elastic matrix S0. The shear modulus of the inclusion is denoted by
G1 while that of the matrix is given by G0. Henceforth, superscripts 0 and 1 are
used to identify the corresponding quantities in S0 and S1, respectively. As shown
in Fig. 1, the inclusion-matrix composite interacts with a screw dislocation with
Burgers vector bz located at the point (x10, x20). No remote loading is imposed
on the matrix. We will determine the shape of the inclusion L which ensures
a uniform internal strain field as a result of the dislocation-inclusion interaction.

Fig. 1. A nano-inclusion and a screw dislocation in an infinite matrix.

In the theory of anti-plane shear, the out-of-plane displacement w and the
anti-plane shear stresses (σ13, σ23) within the matrix and inclusion satisfy, re-
spectively,

∂2w(i)

∂x2
1

+
∂2w(i)

∂x2
2

= 0, i = 0, 1;(2.1)

σ
(i)
13 = Gi

∂w(i)

∂x1
, σ

(i)
23 = Gi

∂w(i)

∂x2
, i = 0, 1.(2.2)

Across the inclusion-matrix interface L, using the Gurtin–Murdoch model of
interface elasticity [12, 13], the displacement w and the anti-plane shear traction
σn3 satisfy

w(1) − w(0) = 0, on L,(2.3)

σ
(1)
n3 − σ

(0)
n3 = Gs

d2w(1)

ds2
, on L.(2.4)
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Here, ds denotes the arc length of an infinitesimal element of the curve L
along its tangent, while Gs describes the separate shear modulus describing the
interfacial elasticity.

To the authors’ knowledge, the problem of the identification of the inclusion
shape L which guarantees a uniform internal strain field, induced solely by the
presence of a dislocation, remains almost absent from the literature even in the
idealized case when interfacial (nano) effects are absent (perfect interface model).
In what follows, we introduce a new method to address this deficiency and con-
sider the general case in which interfacial elasticity is included in the model
of the inclusion-matrix interface. Our method proceeds by first prescribing the
uniform internal strain field within a certain admissible range and subsequently
identifying the shape L with the desired property.

3. Solution procedure

3.1. Complex variable methods

The general solutions of Eqs. (2.1) and (2.2) can be represented in the
form [19]

w(i) = Im[fi(z)], i = 0, 1,(3.1)

σ
(i)
23 + Iσ

(i)
13 = GiF

′
i (z), i = 0, 1,(3.2)

where fi(z) (z = x1 + Ix2, i = 0, 1) denote complex potentials in the matrix and
inclusion defined in the regions Si (i = 0, 1), respectively. The letter I is used
here to denote the imaginary unit to avoid confusion with the use of the symbol
i as a subscript or superscript. Based on the problem description from Section 2,
the two complex potentials f0(z) and f1(z) take the form of

f0(z) =
bz

2π
ln(z − z0) + g0(z), z0 = x10 + Ix20,(3.3)

f1(z) = Γ1z + c1,(3.4)

where the prescribed uniform internal strain field, given here by Γ1/2, can be
restricted within a certain admissible range to ensure the existence of solution
for the present problem, c1 is an unknown complex constant to be determined
while g0(z) is holomorphic in the infinite region S0. Without loss of generality
we stipulate that lim|z|→+∞ g0(z) = 0.

Note that the shear tractions σ
(i)
n3 (i = 0, 1) on the interface L can be written

in terms of fi(z) (i = 0, 1) as [23]

(3.5) σ
(i)
n3 = −Gi Re

[

f ′
i(t)

dt

ds

]

, t ∈ L, i = 0, 1,
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where dt is an infinitesimal element of the curve L along its tangent and ds is the
arc length of dt. By using (3.1) and (3.5), the interface condition (2.3) becomes

(3.6) Im[f0(t)] = Im[f1(t)], t ∈ L,

while the integral of the interface condition (2.4) is simplified as

(3.7) Re[f0(t)] =
G1

G0
Re[f1(t)] +

Gs

G0
Im

[

f ′
1(t)

dt

ds

]

, t ∈ L.

Here, we ignore the constant of integration so that the arbitrary real part of the
complex constant c1 introduced in Eq. (3.4) is now defined uniquely. Substituting
Eqs. (3.3) and (3.4) into the conditions (3.6) and (3.7) leads to

(3.8) g0(t) = At + Bt +
Gs

G0
Im

[

Γ1
dt

ds

]

− bz

2π
ln(t − z0) + C, t ∈ L,

with

(3.9)

A = 0.5(1 + G1/G0)Γ1,

B = 0.5(G1/G0 − 1)Γ 1,

C = 0.5(G1/G0 − 1)c1 + 0.5(1 + G1/G0)c1,

where A and B are known constants determined by the given shear moduli of
the inclusion and matrix and the prescribed uniform internal strain field, while
C is an unknown complex constant to be determined in the solution process.

In what follows, we will determine the unknown shape L of the inclusion
based on the condition for the existence of such a holomorphic function g0(z) in
the infinite region S0 which satisfies the boundary condition (3.8) with (3.9).

3.2. Existence of the complex potential g0(z)

The simply-connected region S1 of the inclusion can be defined by the follow-
ing conformal mapping which maps the exterior of the boundary L (or equiv-
alently the infinite region S0) in the z-plane to the exterior of the unit circle
(denoted by σ = eIθ) in the ξ-plane [24],

(3.10) z = ω(ξ) = R

(

ξ +

+∞
∑

j=1

ajξ
−j

)

, |ξ| ≥ 1,

where the (known) real constant R characterizes the size of the inclusion and
the unknown complex coefficients aj (j = 1 · · ·+∞) determine the actual shape
of the inclusion. In particular, it follows from the definition of the conformal
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mapping (3.10) that the derivative of ω(ξ) is required to have no zeros outside
the unit circle in the ξ-plane [24].

By using mapping (3.10), the derivative dt/ds along the boundary L in Eq.
(3.8) can be expressed in terms of ω(σ) on the unit circle (σ = eIθ) in the ξ-plane
as [23]

(3.11)
dt

ds
=

Iσω′(σ)

|ω′(σ)| ,

so that the boundary value g0(t) (see Eq. (3.8)) of the function g0(z) on the
boundary L in the z-plane can be rewritten on the unit circle in the ξ-plane as

g0(ω(σ)) = Aω(σ) + Bω(σ) +
Gs

G0
Re

[

Γ1
σω′(σ)

|ω′(σ)|

]

(3.12)

− bz

2π
ln[ω(σ) − z0] + C.

In order to ensure the existence of the function g0(z) holomorphic in the infinite
region S0 (which is equivalent to ensuring the existence of the function g0(ω(ξ))
holomorphic outside the unit circle in the ξ-plane), the boundary value g0(ω(σ))
(see (3.12)) of the function g0(ω(ξ)) on the unit circle in the ξ-plane should
satisfy the following necessary and sufficient condition [24],

(3.13)
1

2π

2π
∫

0

g0(ω(σ))σ−idθ = 0, σ = eIθ, i = 0, 1, 2, . . . .

Using Eq. (3.10) and introducing

bi =
1

2π

2π
∫

0

Re

[

Γ1
σω′(σ)

|ω′(σ)|

]

σ−idθ, σ = eIθ, i = 0, 1, 2, . . . ,(3.14)

di =
1

4π2

∫ 2π

0
ln[ω(σ) − z0]σ

−idθ, σ = eIθ, i = 0, 1, 2, . . . ,(3.15)

the condition (3.13) results in

γRb0 − bzd0 + C = 0,(3.16)

A + Ba1 + γb1 −
bz

R
d1 = 0, Bai + γbi −

bz

R
di = 0,(3.17)

(

γ =
Gs

G0R
, i = 2, 3, . . .

)

,
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in which the parameters A, B, γ, R and bz are all known while the unknown
coefficients aj (j = 1 · · · + ∞) introduced from the mapping (3.10) will deter-
mine the actual shape of the inclusion. In particular, Eq. (3.17) shows that the
unknown inclusion shape is determined not only by the elastic constants of the
bulk and the interface, the dislocation and the prescribed uniform internal strain
field but also the size of the inclusion. In what follows, the infinite series from the
mapping (3.10) of the region S1 will be truncated to an N th-order polynomial in
N unknown coefficients aj (j = 1 . . . N), to be obtained from the corresponding
N nonlinear equations (3.17). Numerical methods will be employed to obtain
these N coefficients by solving the N equations (3.17) following which the un-
known constant C can be determined from Eq. (3.16). The complex constant c1

introduced in Eq. (3.4) is then obtained uniquely from the relation (3.9) relating
c1 to C.

3.3. Newton–Raphson iteration

By defining two vectors α and F (α) from the real and imaginary parts of
the truncated coefficients aj (j = 1, . . . , N),

(3.18)

α =















Re(a1)
Im(a1)

...
Re(aN )
Im(aN )















,

F (α) =























Re(A + Ba1)
Im(A + Ba1)

Re(Ba2)
Im(Ba2)

...
Re(BaN )
Im(BaN )























+ γ















Re(b1)
Im(b1)

...
Re(bN )
Im(bN )















− bz

R















Re(d1)
Im(d1)

...
Re(dN )
Im(dN )















,

the truncated real form of Eq. (3.17) can be rewritten as

(3.19) F (α) = 0,

and the related Jacobian matrix [∂F (α)/∂α] can be obtained from the expres-
sions (3.14) and (3.15). The iterative process is then given by

(3.20) α
(p+1) = α

(p) −
[

∂F (α)

∂α

∣

∣

∣

∣

α=α
(p)

]−1

F (α(p)), p = 0, 1, . . . ,
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where the superscript “−1” indicates the inverse of the Jacobian matrix and α
(p)

represents the value of the vector α after the p-th iteration.
To guarantee convergence of the iterative process (3.20), the initial value

α
(0) will be given here by, say, that corresponding to a circle of radius R in

the z-plane. If the iterative process (3.20) does not converge for any reasonable
initial values α

(0), it most likely indicates that the prescribed uniform inter-
nal strain field cannot be achieved with the assumed set of elastic constants
(bulk and interface), size of the inclusion and location of the dislocation. In
addition, even a convergent solution can be considered inadmissible if either
the corresponding curve L is self-intersecting in the z-plane or the derivative
of the corresponding mapping (3.10) has zeros outside the unit circle in the
ξ-plane.

It should be emphasized that although we have not derived a simple neces-
sary and sufficient condition in terms of the prescribed parameters of the prob-
lem elastic constants of the bulk and interface, size of the inclusion, dislocation,
and prescribed uniform internal strain field) which guarantees the existence of
the required inclusion shape, our numerical results indicate the uniqueness of
our solution in that the iterative process consistently converges to the identical
inclusion shape for reasonable distinct sets of initial values.

4. Numerical examples

Previous studies have shown that the interfacial shear modulus Gs is of the
order of 1 N/m [25, 26] and may take positive or negative values depending
on the crystallographic orientation [27, 28], while the shear modulus G0 of the
matrix is of the order of 10 GPa. Consequently, the parameter Gs/G0 is of
the order of 10−10 m and we can see from the parameter γ in Eq. (3.17) that
incorporation of the interface effect will impact the shape of the inclusion con-
taining a uniform internal strain field only when the inclusion size R decreases
toward the nanoscale. In the examples which follow, we adopt the dimension-
less parameters γ and z0/R (see (3.17)) to describe the size-dependent inter-
face effect and the relative location of the dislocation. The convergence of the
iterative process (3.20) for a given N is demonstrated by the fact that the rel-
ative error between the vectors α of the shape coefficients aj (j = 1, . . . , N)
corresponding to two adjacent iterations is less than 10−8, while the final con-
vergence of the inclusion shape is demonstrated by the fact that the relative
error between the mapping (3.10) corresponding to two adjacent values of N
is less than 0.01%. Our extensive numerical examples (including all examples
described below) confirm that a moderately large number N (20 ≤ N ≤ 30) is
sufficient to achieve reasonably accurate shape convergence with relative error
less than 0.01%.
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4.1. The prescribed uniform internal strain field

For the present problem of dislocation-inclusion interaction, since it is well-
known that no standard inclusion shapes are able to achieve uniform internal
strain fields, we can simply prescribe the uniform internal strain field inside the
unknown inclusion based on the average internal strain field induced by a disloca-
tion inside, for example, a circular inclusion. To this end, for a circular inclusion
(of radius R incorporating interface effects) interacting with a dislocation at z0,
the complex potential f1(z) of the inclusion is given by [14]

(4.1) f1(z) =
+∞
∑

i=1

miz
i + c1, z ∈ S1,

with

(4.2)

mi =
−bz

iπzi
0(1 + G1/G0 + iγ)

, i = 1, 2, . . . ,

c1 =
bz

2π
[G0 ln |z0|/G1 + I Arg(−z0)],

where the parameter γ is defined as in Eq. (3.17) and the average strain field
inside the circular inclusion can be calculated as

Γ average
1 =

∫∫

S1
f ′
1(z)dx1dx2

πR2
= m1(4.3)

=
−bz

πz0(1 + G1/G0 + γ)
.

Using Eq. (4.3), the prescribed uniform internal strain field inside our un-
known inclusion is defined by introducing a perturbation as follows:

(4.4) Γ1 =
−bz(1 + η)

πz0(1 + G1/G0 + γ)
,

where η is a complex parameter. In particular, for given shear moduli of the
inclusion and matrix, it follows from Eq. (3.17) that the actual shape (ignoring
the orientation) of the inclusion that achieves a prescribed uniform internal strain
field given by Eq. (4.4) is determined by only the parameter γ corresponding
to the size-dependent interface effect, the perturbation parameter η and the
relative distance |z0|/R between the dislocation and the inclusion. This result
is also verified by our numerical analysis. Consequently, for convenience, in the
following numerical examples the dislocation will always occupy a position on
the positive x-axis.
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4.2. Size-dependent shape of an inclusion with interface effect that achieves

uniform internal strain field induced by a dislocation

The size-dependent phenomenon of the elastic field around an inclusion with
interface effect is well-known in the literature. Here, our numerical results will
show that the shape of an inclusion with interface effect which achieves a uniform
internal strain field under the influence of a dislocation is also size-dependent.
Figures 2 and 3 illustrate this size-dependence when the inclusion increases in
size from the nano-scale to the macro-scale.

Note that the inclusion shapes shown in Figs. 2 and 3 for different inclusion
sizes are normalized by their respective inclusion size to facilitate comparisons.

Fig. 2. Effect of dislocation on the shape of an inclusion with interface effect that achieves
a uniform internal strain field for real η with increasing size of the inclusion.

Fig. 3. Effect of dislocation on the shape of an inclusion with interface effect that achieves
a uniform internal strain field for complex η with increasing size of the inclusion.
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In Figs. 2 and 3 all of the inclusions of different size are able to achieve the same
uniform internal strain field under the same relative distance between inclusion
and dislocation. It follows that the clear size-dependence of the inclusion shape
is caused mainly by the size-dependent interface effect determined by γ. It is
interesting to note from Figs. 2 and 3 that soft and hard inclusions seem to
be repelled and attracted, respectively, by the dislocation to achieve a uniform
internal strain field.

4.3. Convergent effect of dislocation on the inclusion shape that achieves uniform

internal strain field with increasing distance between the inclusion and dislo-

cation

It is clear that the distance between the inclusion and the dislocation has
a significant impact on the shape of inclusion able to sustain a uniform internal
strain field. It is of particular interest, therefore, to examine the effect of the
dislocation on the inclusion shape in terms of convergence of the related pro-
cesses with increasing distance between the inclusion and the dislocation. Shown
in Figs. 4 and 5 is the convergence of the nano-inclusion shape with interface
effect that achieves a uniform internal strain field when the distance between the
inclusion and dislocation increases.

Fig. 4. Convergence of the shape of a nano-inclusion which achieves a uniform internal
strain field for η = 0 with increasing distance between the dislocation and inclusion.

In Fig. 4, we can see that the shape of nano-inclusion which achieves a uni-
form internal strain field for η = 0 converges to a circle with increasing distance
between the inclusion and dislocation. This is actually not surprising given that
the expression (4.1) with (4.2) indicates that the internal strain field inside a cir-
cular nano-inclusion induced by a dislocation tends toward a uniform field (given
by the average internal strain field (4.3)) with increasing distance between the
inclusion and dislocation. The reason why the inclusion shape achieving a uni-
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Fig. 5. Convergence of the shape of a nano-inclusion that achieves a uniform internal strain
field for complex η with increasing distance between the inclusion and dislocation.

form internal strain field converges when the distance between the inclusion and
dislocation increases can perhaps be explained as follows. For a sufficiently large
distance between the inclusion and dislocation, the logarithmic term related
to the dislocation in the boundary condition (3.8) has the following first-order
asymptotic form

(4.5) ln(t − z0) = ln(−z0) −
+∞
∑

j=1

tj

jzj
0

≈ ln(−z0) −
t

z0
, |z0| ≫ |t|.

From Eq. (4.5), we see that, with increasing distance between the inclusion and
dislocation, the effect of the dislocation on the inclusion shape approximates the
equivalent scenario of a uniform remote loading on the inclusion shape. Con-
sequently we can see in Fig. 5 that the shape of a nano-inclusion with uni-
form internal strain field induced by a screw dislocation is indeed consistent

Fig. 6. Convergence of the shape of an inclusion without interface effect which achieves
a uniform internal strain field with increasing distance between the dislocation and inclusion.
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with that of a nano-inclusion with the same uniform internal strain field un-
der uniform remote anti-plane shear loadings (see [23]) when the distance be-
tween the inclusion and dislocation is enough large. Here, an additional example
(in which the interface effect is ignored – see Fig. 6) is given to verify this
reasoning.

It is seen quite clearly that when the distance between the inclusion and
dislocation increases, the non-elliptical inclusion that achieves a uniform internal
strain field under the influence of a dislocation, in the absence of any interface
effect does indeed converge to the corresponding case of an equivalent elliptical
inclusion subjected to the corresponding uniform remote strain field −bz/(2πz0).
Moreover, by comparing Fig. 5 with Fig. 6, it is found that for a given relative
error, the presence of interfacial effects will accelerate the convergence of the
inclusion shape.

5. Conclusions

A new method is developed to examine the existence and construction of
a single inclusion incorporating interfacial elasticity (interface effect) which
achieves a uniform internal strain field under the influence of a screw dislocation
within an elastic solid subjected to anti-plane shear deformations. The unknown
shape of the inclusion is defined by a conformal mapping whose unknown coef-
ficients are determined by a system of nonlinear equations. Numerical examples
are given to investigate size-dependency and the convergence of the method to-
wards the desired inclusion shape. In particular, we draw the following important
conclusions:

(1) Whether or not interface effects are included in the model of deformation,
we have demonstrated the existence of a single inclusion which achieves
a uniform internal strain field induced by a screw dislocation in an infinite
elastic solid subjected to anti-plane shear. In particular, the shape of such
an inclusion is dependent on the inclusion size (in the case of an inclusion
with interface effect) and the specific uniform internal strain field.

(2) When the distance between the inclusion and dislocation increases, our
method continues to converge to the shape of an inclusion (with or with-
out interface effect) which achieves uniform internal strain field. In the case
of such an inclusion shape in the absence of interface effects we obtain clear
converge to the corresponding elliptical inclusion.

(3) A consequence of the above conclusion ((2)) is that there do indeed exist non-
circular nano-inclusions (with interface effect) that achieve uniform internal
strain fields in an elastic solid subjected to uniform remote anti-plane shear.
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We conclude by noting that the analogous investigations in plane elasticity
present formidable challenges and will form the basis of a subsequent paper.
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