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In this paper, an elastic-plastic deformation of a centrally heated two-layered
composite cylinder with free ends subjected to uniformly distributed internal energy
generation within an inner cylinder is studied using Tresca’s yield condition and its
associated flow rule. Stress, strain and displacement distributions in the composite
cylinder made of elastic-perfectly plastic material are derived considering the influ-
ence of geometric parameters as well as material properties such as yield strength,
modulus of elasticity, Poisson’s ratio, coefficient of thermal conduction and coefficient
of thermal expansion. Yielding starts at the outer boundary or at the axis correspond-
ing to an ‘edge regime’ of Tresca’s prism in both cases. Propagations of the plastic
regions are studied due to an increase of a heat generation.
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1. Introduction

In many engineering applications, it is necessary to conduct an elastic-
plastic stress analysis. One of the reasons for this analysis is a thermal stress
generated due to heat generation in bodies such as electrical conductors and
nuclear reactors. The determination of the elastic-plastic and thermal stresses
in cylindrical or spherical bodies has been achieved in a wide range of applica-
tions [1–4]. Gulgec studied the influence of the temperature dependence of the
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yield stress on the stress distribution in a heat generating elastic-plastic cylinder
with fixed ends [5]. Different studies on the similar topic were also conducted by
various authors [6–9]. In a similar problem, Eraslan [10] subjected concentric
tubes to free and radially constrained boundaries . In his study, the heat was
assumed to be generated at a constant rate either within the inner or the outer
tube. Orcan investigated the thermal stresses for both elastic and plastic de-
formations in a heat generating elastic-plastic homogeneous cylinder with free
ends [11]. More recently, Ozturk and Gulgec studied first an onset of yield due
to material properties, and next they conducted an elastic-plastic stress analysis
of two-layered heat generating composite cylinder with fixed ends, in addition to
the effect of the material properties on the onset of yield due to thermal stresses,
respectively [12, 13].

The purpose of this paper is to obtain the complete solution and present
a parametric analysis of elastic-plastic behaviour of the composite cylinder with
free ends, which consists of two materials concentric to each other.

2. Problem statement and temperature distribution

The geometry of the considered problem consists of an infinitely long solid
cylinder of a radius “a” placed inside a tube with the inner radius “a” and the outer
radius “b” (Fig. 1). This composite system is assumed to have free ends and the
problem can be treated as a generalized plane strain problem. Since the end effects
are ignored in the present analysis, the solution will be valid for sections located
sufficiently away from the ends. It is assumed that heat is generated only within the
inner cylinder at a uniform rate and transferred outside through the surrounding
tube to an ambient kept at constant temperature. The material parameters are
supposed to be independent of the temperature, because the equations derived
in this paper are general equations that are not aimed for a specific material. It
is not possible to derive a unique correlation for all materials, related with the
dependence on the temperature. So, anyone who wants to use these equations
for a specific material can insert the correlation for temperature dependence into
the general equations and then follow the procedure given in this paper.

The involved geometric and the thermo-mechanical parameters can be listed
as follows:
a, b: inner and outer radii of the tube,
E1, E2: elasticity moduli,
α1, α2: coefficients of thermal expansion,
ν1, ν2: Poisson’s ratios,
λ1, λ2: coefficients of thermal conduction,
σI

0 , σ
II

0 : yield strength of the solid cylinder and yield strength of the tube,
respectively.
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Fig. 1. Composite cylinder geometry and plastic regions with their propagation directions
(“e” stands for elastic region, “p” for plastic region).

The temperature distributions of the inner solid cylinder and the outer tube
are denoted by T1 and T2 respectively. The reference temperature at the outer
surface is T0. The unsteady, coupled heat equation in polar coordinates, in its
general form for the solid cylinder can be written as [14]

(2.1)
1

r

∂

∂r

(

λ1r
∂T1

∂r

)

+
1

r2

∂

∂φ

(

λ1
∂T1

∂φ

)

+
∂

∂z

(

λ1
∂T1

∂z

)

+ q′′′

= ρ1Cp1
∂T1

∂t
+ (3λ1 + 2µ1)α1T1

∂D1

∂t
,

where r, φ, z are the cylindrical coordinates, t is the time, T1 is temperature
distribution, q′′′ is internal energy generation per unit volume per unit time, ρ1

is the density, Cp1 is the specific heat, λ1 and µ1 are Lame constants, and D1 is
the dilatation. If the internal energy generation is slowly increased, the governing
equation for the radial temperature distribution is reduced to:

(2.2)
1

r

∂

∂r

(

λ1r
∂T1

∂r

)

+ q′′′ = 0.

The temperature distribution for the solid (inner) cylinder becomes

(2.3) T1 = −q′′′r2

4λ1
+ A1 ln r + A2.
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At r = 0, T1 has to be finite, hence A1 = 0 and

(2.4) T1 = −q′′′r2

4λ1
+ A2.

Solving Eq. (2.2) for q′′′ = 0, since there is no heat generation in the tube (outer
hollow cylinder), we find that

(2.5) T2 = A3 ln r + A4.

Using the conditions of continuity of the temperature and heat flux at the inter-
face, the temperature is finite at r = 0 and equal to T0 at r = b. The temperature
distributions in the solid cylinder and in the tube take the following forms re-
spectively:

T1 = −q′′′

4

(

r2 − a2

λ1
+

2a2

λ2
ln

a

b

)

+ T0,(2.6)

T2 = −q′′′a2

2λ2
ln

r

b
+ T0.(2.7)

3. Elastic deformation

By means of the basic equations of linear elasticity theory, the stress and the
radial displacement distributions take the following forms [13].

3.1. Solid cylinder

σI
r = − E1α1

(1 − ν1)
θI(0, r) +

C1

2
+

C2

r2
,(3.1)

σI
θ =

E1α1

(1 − ν1)
[θI(0, r) − T1] +

C1

2
− C2

r2
,(3.2)

σI
z = − E1α1

(1 − ν1)
T1 + ν1C1 + E1εz,(3.3)

uI = −1 + ν1

E1

C2

r
+

[

α1
1 + ν1

1 − ν1
θI(0, r) +

C1

2E1
(1 + ν1)(1 − 2ν1) − ν1εz

]

r.(3.4)

3.2. Tube

σII

r = − E2α2

(1 − ν2)
θII (a, r) +

C3

2
+

C4

r2
,(3.5)

σII

θ =
E2α2

(1 − ν2)
[θII (a, r) − T2] +

C3

2
− C4

r2
,(3.6)
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σII

z = − E2α2

(1 − ν2)
T2 + ν2C3 + E2εz,(3.7)

uII = −1 + ν2

E2

C4

r
(3.8)

+

[

α2
1 + ν2

1 − ν2
θII (a, r) +

C3

2E2
(1 + ν2)(1 − 2ν2) − ν2εz

]

r.

In the above expressions,

θI(0, r) =
1

r2

r
∫

0

T1r dr and θII(a, r) =
1

r2

r
∫

a

T2r dr.

The stresses and displacement are continuous at the interface and are bounded
at the axis, the surface of the tube is free of any traction, and for an infinitely
long cylinder with free ends

a
∫

0

σI
z2πrdr +

b
∫

a

σII

z 2πr dr = 0.

When these conditions are enforced, it is found that C2 = 0 and the other
unknowns are determined as follows:

C1 = 2

[

E1α1

(1 − ν1)
θI(0, a) +

E2α2

(1 − ν2)
θII (a, b) + C4

(

1

a2
− 1

b2

)]

,(3.9)

C3 = 2

[

E2α2

(1 − ν2)
θII (a, b) − C4

b2

]

,(3.10)

C4 =
θII (a, b)D1 − θI(0, a) 2E1α1

(1−2ν2) −
E1εz(ν2−ν1)

(1+ν1)(1−2ν1)

1
a2 − 1

b2
+ E1

E2

(1+ν2)
(1+ν1)(1−2ν1)

[ (1−2ν2)
b2

+ (1+ν2)
a2

]
,(3.11)

where D1 = − E2σII

0
(1−ν2)

+ E1α2
((1+ν2)(1−2ν2)

(1+ν1)(1−2ν1)(1−ν2)) ,

(3.12) εz =

E1α1
(1−ν1)

[ q′′′

4 a2
(

− 1
2λ1

+ 2
λ2

ln a
b

)

+ 2ν1θ
I(0, a)

]

+ E2α2
(1−ν2)

D2D3D4
[

−E1 − E2

(

b2

a2 − 1
)

+ (ν1−ν2)
(1+ν1)(1−2ν1)E1D4

]
,

where

D2 =
q′′′

2

a2

λ2

[

− b2

2a2
−

(

ln
a

b
− 1

2

)]

+ 2θII (a, b)

[

ν1 + ν2

(

b2

a2
− 1

)]

,

D3 = θII (a, b)

[

− E2σ
II

0

(1−ν2)
+ E1α2

(1 + ν2)(1−2ν2)

(1+ν1)(1−2ν1)(1−ν2)

]

− 2θI(0, a)
E1α1

(1−2ν1)
,

D4 =
2
(

1
a2 − 1

b2

)

(ν1 − ν2)
{

1
a2 − 1

b2
+ E1

E2

(1+ν2)
(1+ν1)(1−2ν1)

[ (1−2ν2)
b2

+ (1+ν2)
a2

]}
.
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3.3. Dimensionless parameters

In order to generalize the obtained results, the parameters are made dimen-
sionless as follows: r = r/b – dimensionless radius, Q = a/b – geometric pa-
rameter, E = E1/E2 – ratio of Young’s moduli, ν = ν1/ν2 – ratio of Poisson’s
ratios, α = α1/α2 – ratio of thermal expansion coefficients, λ = λ1/λ2 – ra-
tio of thermal conduction coefficients, σ0 = σII

0

/

σI
0 – ratio of yield limits, and

q′′′ = (q′′′α1E1b
2)

/

(σI
0λ1) – dimensionless thermal load parameter. The stress,

displacement and plastic strain components are made dimensionless in the fol-
lowing forms:

σr =
σr

σI
0

, σθ =
σθ

σI
0

, σz =
σz

σI
0

, u =
E1u

σI
0b

,

εp
r =

E1ε
p
r

σI
0

, εp
θ =

E1ε
p
θ

σI
0

, εp
z =

E1ε
p
z

σI
0

,

and the temperature distributions in the two layers are written in dimensionless
forms as T 1 = (T1 − T0)E1α1

/

σI
0 and T 2 = (T2 − T0)E1α1

/

σI
0 (Fig. 2).

Fig. 2. Dimensionless (nondimensional) temperature distribution for Q = 0.5, q̄′′′ = 15,
λ = 0.3, λ = 1.0 and λ = 1.8.

3.4. Elastic limit analysis

The elastic-plastic constitutive equations for the generalized plane strain
problem in cylindrical coordinates are given by [15]:
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εr =
1

E
[σr − ν(σθ + σz)] + α T + εp

r ,(3.13)

εθ =
1

E
[σθ − ν(σr + σz)] + α T + εp

θ,(3.14)

εz =
1

E
[σz − ν(σr + σθ)] + α T − (εp

r + εp
θ),(3.15)

where εz = constant for generalized plane strain. Assuming that the two layers
forming the composite tube have the same thermo-mechanical properties E = 1,
α = 1, λ = 1, ν = 1, σ0 = 1, the dependence of onset of yield at the axis and at
the surface on the geometric parameter Q = a/b is investigated. Yielding starts
both at the surface and at the axis of the composite cylinder for Q ≥ 0.4199
(Fig. 3). It is noted that the thermal load required for the onset of yield increases
exponentially as the geometric parameter Q decreases.

Fig. 3. Dependence of onset of yield on the geometric parameter Q for Ē = 1, ᾱ = 1, λ̄ = 1,
ν̄ = 1 and σ̄0 = 1.

4. Onset of yield at the surface of the composite cylinder

Yielding starts at the surface of the composite cylinder in which the stress
state corresponds to an edge regime of Tresca’s yield surface with the principal
stresses σθ = σz > σr. Two plastic regions develop simultaneously and expand
inwards through the tube, while the solid cylinder stays purely elastic (Fig. 1).
In this section, the general equations for determining the plastic stress-strain
relations for Tresca’s yield criterion are derived based on a unified approach by
Drucker [15].
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4.1. Plastic region 1 (r4 < r < b)

In this edge regime, Tresca’s yield functions

f1 = (σθ)
II

1 − (σr)
II

1 − σII

0 ,(4.1)

f2 = (σz)
II

1 − (σr)
II

1 − σII

0(4.2)

and the associated flow rule [16]

(4.3) dεp
ij =

∑

k

∂fk

∂σij
dλk

lead to

(4.4) dεp
ij =

2
∑

k=1

∂fk

∂σij
dλk =

∂f1

∂σij
dλ1 +

∂f2

∂σij
dλ2

which, when substituting non-zero stress components, results in

dεp
θ =

2
∑

k=1

∂fk

∂σθ
dλk =

∂f1

∂σθ
dλ1 +

∂f2

∂σθ
dλ2 = dλ1,(4.5)

dεp
z =

2
∑

k=1

∂fk

∂σz
dλk =

∂f1

∂σz
dλ1 +

∂f2

∂σz
dλ2 = dλ2,(4.6)

dεp
r =

2
∑

k=1

∂fk

∂σr
dλk =

∂f1

∂σr
dλ1 +

∂f2

∂σr
dλ2 = −(dλ1 + dλ2).(4.7)

Applying these relations to the plastic region 1, we obtain: d(εp
θ)

II

1 = dλ1,
d(εp

z)II1 = dλ2 and d(εp
r)II1 = −(dλ1 + dλ2), where the subscripts 1 and 2 of

dλ are only index numbers, irrelevant to the plastic region numbers. Hence,

(4.8) d(εp
r)

II

1 = −[d(εp
θ)

II

1 + d(εp
z)

II

1 ],

where the superscript II denotes the tube, and the subscript 1 the plastic region 1.
According to Eqs. (4.1) and (4.2), the equation of equilibrium leads to

(σr)
II

1 = σII

0 ln r + C5,(4.9)

(σz)
II

1 = (σθ)
II

1 = σII

0 (1 + ln r) + C5.(4.10)

Using plastic incompressibility, the elastic formula for dilatation leads to a dif-
ferential equation for the radial displacement with the general solution

(4.11) uII

1 =
1−2ν2

E2

r

2

[

σII

0

(

1

2
+ 3 ln r

)

+ 3C5

]

+ 3α2rθ
II (r4, r) −

1

2
εzr +

C6

r
,
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where

θII (r4, r) =
1

r2

r
∫

r4

T2(r)rdr.

The plastic strains are then obtained as

(εp
r)

II

1 =
1 − 2ν2

E2

1

2
[σII

0 ln r + C5] +
7 − 6ν2

4E2
σII

0(4.12)

− α2[3θ
II (r4, r) − 2T2(r)] −

1

2
εz −

C6

r2
,

(εp
z)

II

1 = εz −
1

E2
[(1 − ν2)σ

II

0 + (1 − 2ν2)(σ
II

0 ln r + C5)] − α2T2(r).(4.13)

4.2. Plastic region 2 (r3 < r < r4)

In this plastic region, due to the inequality (σθ)
II

2 > (σz)
II

2 > (σr)
II

2 , we
obtain

(4.14) f = (σθ)
II

2 − (σr)
II

2 − σII

0 ,

and thus the following can be written: d(εp
r)II2 = −(dεp

θ)
II

2 , d(εp
z)II2 = 0. The

stresses, displacement and plastic strains are derived as

(σr)
II

2 = σII

0 ln r + C7,(4.15)

(σθ)
II

2 = σII

0 (1 + ln r) + C7,(4.16)

uII

2 =
(1 + ν2)(1 − 2ν2)

E2
r[σII

0 ln r + C7](4.17)

+ 2(1 + ν2)α2rθ
II (r3, r) − ν2εzr +

C8

r
,

(εp
θ)

II

2 = −(1 − ν2
2)

σII

0

E2
+ (1 + ν2)α2[2θ

II (r3, r) − T2(r)] +
C8

r2
,(4.18)

(εp
r)

II

2 = −(εp
θ)

II

2 ,(4.19)

where

θII (r3, r) =
1

r2

r
∫

r3

T2(r)rdr.

4.3. Conditions and determination of the unknowns

Two elastic regions surrounded by two plastic regions contain 11 unknowns:
C1, C2, C3, C4, C5, C6, C7, C8, the axial strain εz, and the border radii r3 and r4.



212 F. Yalcin, A. Ozturk, M. Gulgec

For the determination of these unknowns, the following boundary and continuity
conditions are enforced:

at r = 0 uI
e is finite,(4.20)

at r = a (σr)
II

e = (σr)
I
e,(4.21)

at r = a (u)IIe = (u)I
e,(4.22)

at r = r3 (σr)
II

e = (σr)
II

2 ,(4.23)

at r = r3 (εp
θ)

II

2 = 0,(4.24)

at r = r3 (σθ)
II

e − (σr)
II

e = σII

0 ,(4.25)

at r = r4 (σr)
II

1 = (σr)
II

2 ,(4.26)

at r = r4 (σθ)
II

2 = (σz)
II

2 ,(4.27)

at r = r4 (εp
θ)

II

2 = (εp
θ)

I
2,(4.28)

at r = b (σr)
II

1 = 0,(4.29)

(4.30)

a
∫

0

(σz)
I
er dr +

r3
∫

a

(σz)
II

e r dr +

r4
∫

r3

(σz)
II

2 r dr +

b
∫

r4

(σz)
II

1 r dr = 0,

where the last one is the free end condition. They result in C2 = 0 and

C1 = 2

[

E1α1

(1 − ν1)
θI(0, a) +

C3

2
+

C4

a2

]

,(4.31)

C3 = 2

[

E2α2

(1 − ν2)
θII (a, r3) + σII

0 ln
r3

b
− C4

r2
3

]

,(4.32)

C4 =
r2
3

2

[

E2α2

(1 − ν2)
[2θII (a, r3) − T2(r3)] − σII

0

]

,(4.33)

C5 = −σII

0 ln b,(4.34)

C7 = C5,(4.35)

E2εz = σII

0

[

1 − ν2 + (1 − 2ν2) ln
r4

b

]

+ E2α2T2(r4),(4.36)

C6 = C8 −
σII

0

2E2
r2
4

[

1 + 2ν2 − 4ν2
2

2
+ (1 − 2ν2) ln

r4

b

]

(4.37)

− α2r
2
4[ν2T2(r4) − 2(1 + ν2)θ

II (r3, r4)] +
1

2
εzr

2
4,

C8 = r2
3

[

(1 − ν2
2)

σII

0

E2
+ (1 + ν2)α2T2(r3)

]

,(4.38)
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(1 + ν1)(1 − 2ν1)
C1

2E1
− (ν1 − ν2)εz = (1 + ν2)(1 − 2ν2)

C3

2E2
(4.39)

− α1
1 + ν1

1 − ν1
θI(0, a) − 1 + ν2

E2

C4

a2
.

The integrals in Eq. (4.30) are evaluated as
a

∫

0

(σz)
I
er dr =

E1α1

16(1−ν1)

[

a4+2a4

(

−1+2
λ1

λ2
ln

a

b

)]

(4.40)

+
1

2
(ν1C1+εzE1)a

2,

r3
∫

a

(σz)
II

e r dr =
E2α2

λ2

q′′′

4(1−ν2)
a2

[

r2
3

(

ln
r3

b
−1

2

)

−a2

(

ln
a

b
−1

2

)]

(4.41)

+
1

2
(ν2C3+E2εz)(r

2
3−a2),

r4
∫

r3

(σz)
II

2 r dr =

[

E2α2

λ2

q′′′

4
a2+ν2σ

II

0

][

r2
4

(

ln
r4

b
−1

2

)

−r2
3

(

ln
r3

b
−1

2

)]

(4.42)

+
r2
4−r2

3

2
(ν2σ

II

0 +E2εz),

b
∫

r4

(σz)
II

1 r dr =

[

b2

4
− r2

4

2

(

ln
r4

b
+

1

2

)]

.(4.43)

The border radii r3 and r4 are evaluated from the simultaneous solutions of the
free surface condition and Eq. (4.30).

5. Onset of yield at the axis of the solid cylinder

For smaller values of the geometric parameter Q = a/b yielding starts first at
the center of the composite cylinder and the two plastic regions, plastic regions 3
and 4 expand outward simultaneously with different rates of propagation (Fig. 1).
Stress states in the principal stress space corresponds to σθ = σr > σz and
σθ > σr > σz respectively.

5.1. Plastic region 3 (0 < r < r1)

In this edge regime, the two yield functions

f1 = (σθ)
I
3 − (σz)

I
3 − σI

0 ,(5.1)

f2 = (σr)
I
3 − (σz)

I
3 − σI

0(5.2)
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lead to

(σr)
I
3 = (σθ)

I
3 = C9,(5.3)

(σz)
I
3 = C9 − σI

0 .(5.4)

Using plastic incompressibility, we obtain the differential equation

(5.5)
duI

3

dr
+

uI
3

r
=

(1 − 2ν1)

E1
[(σr)

I
3 + (σθ)

I
3 + (σz)

I
3] + 3α1T1(r) − εz

with the general solution

(5.6) uI
3 =

1 − 2ν1

E1

r

2
[3C9 − σI

0 ] + 3α1rθ
I(0, r) − 1

2
εzr +

C10

r
.

The plastic strains are then as follows:

(εp
θ)

I
3 =

1

2E1
[(1 − 2ν1)C9 − σI

0 ] + α1[3θ
I(0, r) − T1(r)] −

1

2
εz +

C10

r2
,(5.7)

(εp
r)

I
3 =

1

2E1
[(1 − 2ν1)C9 − σI

0 ] − α1[3θ
I(0, r) − 2T1(r)] −

1

2
εz −

C10

r2
,(5.8)

(εp
z)

I
3 = εz −

1

E1
[(1 − 2ν1)C9 − σI

0 ] − α1T1(r).(5.9)

5.2. Plastic region 4 (r1 < r < r2)

By using the yield function

(5.10) f = (σθ)
I
4 − (σz)

I
4 − σI

0 ,

the plastic strain increments d(εp
z)I

4 = −d(εp
θ)

I
4, d(εp

r)I
4 = 0, the equilibrium and

the compatibility equations, we derive the following differential equation for the
tangential stress:

(5.11) r2 d2(σθ)
I
4

dr2
+ 3r

d(σθ)
I
4

dr
+

(1 − 2ν1)

2(1 − ν1)
(σθ)

I
4

=
1

2(1 − ν1)

[

σI
0 − E1α1

(

T1 + 5r
dT1

dr
+ 2r2 d2T

dr2

)

+ E1εz

]

,

with the general solution

(σθ)
I
4 = C11r

−(1−M) + C12r
−(1+M) +

(σI
0 + E1εz)

1 − 2v1
(5.12)

+
E1α1

4(1 − v1)
[(1 + 2M)θ1 + (1 + 2M)θ2 − 4T1],
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(σr)
I
4 =

1

M

{

C11r
−(1−M) − C12r

−(1+M)(5.13)

+
E1α1

4(1 − v1)
[(1 − 2M)θ1 − (1 + 2M)θ2]

}

+
1

(1 − 2v1)
(σI

0 + E1εz),

where

θ1 = r−(1−M)

r
∫

r1

T1 r−M dr,

θ2 = r−(1+M)

r
∫

r1

T1 rMdr,

M =

√

1

2(1 − ν1)
.

Therefrom, the radial displacement and the plastic strain components are defined
as

E1u
I
4 = 2

{(

1 − v1 −
v1

M

)[

C11r
M +

1 − 2M

4(1 − v1)
E1α1θ1r

]

(5.14)

+

(

1 − v1 +
v1

M

)[

C12r
−M +

1 + 2M

4(1 − v1)
E1α1θ2r

]}

+ (1 + v1)σ
I
0r + E1εzr,

E1(ε
p
θ)

I
4 =

(

1 − v1 −
v1

M

)[

C11r
−(1−M) +

(1 − 2M)

4(1 − v1)
E1α1θ1

]

(5.15)

+

(

1 − v1 +
v1

M

)[

C12r
−(1+M) +

1 + 2M

4(1 − v1)
E1α1θ2

]

.

5.3. Conditions and determination of the unknowns

For the determination of the 11 unknowns: C1, C2, C3, C4, C9, C10, C11, C12

the axial strain εz, and the border radii r1 and r2, the following boundary and
continuity conditions are used:

at r = 0 uI
3 is finite,(5.16)

at r = r1 (σr)
I
3 = (σr)

I
4,(5.17)

at r = r1 (σθ)
I
3 = (σθ)

I
4,(5.18)

at r = r1 (εp
r)I

3 = 0,(5.19)
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at r = r2 (εp
θ)

I
4 = 0,(5.20)

at r = r2 (σr)
I
4 = (σr)

I
e,(5.21)

at r = r2 (σθ)
I
e = (σθ)

I
4,(5.22)

at r = a (σr)
II
e = (σr)

I
e,(5.23)

at r = a (u)IIe = (u)I
e,(5.24)

at r = b (σr)
II
e = 0,(5.25)

r1
∫

0

(σz)
I
3 r dr +

r2
∫

r1

(σz)
I
4 r dr +

a
∫

r2

(σz)
I
e r dr +

b
∫

a

(σz)
II

e r dr = 0.(5.26)

The above conditions lead to C10 = 0 and

C1 =

(

1+
1

M

)

C11r
−(1−M)
2 +

(

1− 1

M

)

C12r
−(1+M)
2 +

E1α1

4(1−ν1)
(5.27)

×
[(

1+
1

M

)

(1−2M)θ1(r1, r2)+

(

1− 1

M

)

(1+2M)θ2(r1, r2)

]

+
2

(1−2ν1)
(σI

0+E1εz),

C2 = −1

2

[(

1− 1

M

)

C11r
1+M
2 +

(

1+
1

M

)

C12r
1−M
2

]

− E1α1

8(1−ν1)
(5.28)

[(

1− 1

M

)

(1−2M)θ1(r1, r2)+

(

1+
1

M

)

(1+2M)θ2(r1, r2)

]

r2
2,

C3 = 2

[

E2α2

(1−ν2)
θII (a, b)−C4

b2

]

,(5.29)

C4 =
a2b2

(b2−a2)

[

− E1α1

(1−ν1)
θI(r2, a)− E2α2

(1−ν2)
θII (a, b)+

C1

2
+

C2

a2

]

,(5.30)

C9 =
1

(1−2ν1)
[2E1α1[3θ

I(0, r1)−2T1(r1)]+E1εz+σI
0 ],(5.31)

C11 =
1

2
E1α1r

(1−M)
1

{

6(1+M)

(1−2ν1)
θI(0, r1)(5.32)

+

[

1

(1−ν1)
− 4(1+M)

(1−2ν1)

]

T1(r1)

}

,

C12 =
1

2
E1α1r

(1+M)
1

{

−6(1−M)

(1−2ν1)
θI(0, r1)(5.33)

+

[

1

(1−ν1)
− 4(1−M)

(1−2ν1)

]

T1(r1)

}

,
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(5.34)

εz =





























C2
a2

{

− (1+ν1)
E1

− b2

(b2−a2)

[

− (1+ν2)
E2

− (1+ν2)(1−2ν2)
E2b2

a2
]}

+θI(r2, a)
{

α1

(

1+ν1
1−ν1

)

+ a2b2

(b2−a2)
E1α1

(1−ν1)

[

− (1+ν2)
E2a2 − (1+ν2)(1−2ν2)

E2b2

]}

{(

1+ 1
M

)

C11r
−(1−M)
2 +

(

1− 1
M

)

C12r
−(1+M)
2 + 2

(1−2ν1)
σI

0

+ E1α1
4(1−ν1)

[(

1+ 1
M

)

θ1(r1, r2)(1−2M)+
(

1− 1
M

)

(1+2M)θ2(r1, r2)
]}

{

1
2E1

(1+ν1)(1−2ν1)− a2b2

(b2−a2)
1
2

[

− (1+ν2)
E2a2 − (1+ν2)(1−2ν2)

E2b2

]}

+(ν2ν1)εz

+ E2α2
(1−ν2)θ

II (a, b)
{

a2b2

(b2a2)

[

− (1+ν2)
E2a2 − (1+ν2)(1−2ν2)

E2b2

]

− (1+ν2)(1−2ν2)
E2

}





























−(1+ν1)+
1

(1+Q2)
1

(1−2ν1)
{−E(1+ν2)[1+Q2(1−2ν2)]}+(ν1−ν2)

.

From Eq. (5.20) we have the following relationship:

(5.35)

(

1 − ν1 −
ν1

M

)[

C11r
−(1−M)
2 +

(1 − 2M)

4(1 − ν1)
E1α1θ1(r1, r2)

]

+

(

1 − ν1 +
ν1

M

)[

C12r
−(1+M)
2 +

(1 + 2M)

4(1 − ν1)
E1α1θ2(r1, r2)

]

= 0,

and the integrals in the free end condition take the following forms:

r1
∫

0

(σz)
I
3r dr = (C9 − σI

0)
r2
1

2
,(5.36)

r2
∫

r1

(σz)
I
4r dr =

C11(r
1+M
2 − r1+M

1 )

1 + M
(5.37)

+
C12(r

1−M
2 − r1−M

1 )

1 − M
+

E1εz + 2ν1σ
I
0

(1 − 2V1)

(r2
2 − r2

1)

2

+
E1

4(1 − V1)

[

(1 − 2M)

r2
∫

r1

θ1(r1, r)r dr

+ (1 + 2M)

r2
∫

r1

θ2(r1, r)r dr − 4

r2
∫

r1

T1(r)r dr

]

,

r2
∫

r1

θ1(r1, r)r dr(5.38)

= −q′′′

4

[

r4
2 − r4

1

4λ1(3 − M)
+

a2

1 − M

(

− 1

λ1
+

2

λ2
ln

a

b

)
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×
{

r2
2 − r2

1

2
− 1

1 + M

[

r2
2

(

r1

r2

)(1−M)

− r2
1

]}

− 1

(1 + M)

[

r2
2

(

r1

r2

)(1−M)

− r2
1

]

r2
1

λ1(3 − M)

]

,

r2
∫

r1

θ2(r1, r)r dr = −q′′′

4

[

r4
2 − r4

1

4λ1(3 + M)
+

a2

1 + M

(

− 1

λ1
+

2

λ2
ln

a

b

)

(5.39)

{

r2
2 − r2

1

2
− 1

1 − M

[

r2
2

(

r1

r2

)(1+M)

− r2
1

]}

− 1

(1 − M)

[

r2
2

(

r1

r2

)(1+M)

− r2
1

]

r2
1

λ1(3 − M)

]

,

r2
∫

r1

T1(r)r dr = −q′′′

4

[

r4
2 − r4

1

4λ1
+

(r2
2 − r2

1)

2
a2

{

− 1

λ1
+

2

λ2
ln

a

b

}]

,(5.40)

a
∫

r2

(σz)
I
e1r dr(5.41)

=
E1α1

(1 − ν1)

q′′′

4

[

a4 − r4
2

4λ1
+

(a2 − r2
2)

2
a2

(

− 1

λ1
+

2

λ2
ln

a

b

)]

+
(ν1C1 + E1εz)

2
(a2 − r2

2),

b
∫

a

(σz)
II

e1r dr =
1

2
(ν2C3 + E2εz)(b

2 − a2)(5.42)

+
E2α2

(1 − ν2)

q′′′

2

a2

λ2

[

b2

2

(

ln
b

b
− 1

2

)

− a2

2

(

ln
a

b
− 1

2

)]

.

In the first stage of elastic-plastic deformation, the border radii r1 and r2 are
evaluated as a function of the thermal load from the simultaneous solution of
Eqs. (5.26) and (5.35).

6. Onset of yield at the interface of the composite cylinder

Depending on the choice of the material parameters, beyond a certain critical
load parameter, another plastic region, plastic region 5 can be generated at the
outer surface of solid cylinder (the interface of the composite cylinder). This
region propagates inwards as plastic regions 3 and 4 expand outwards until they
meet when the elastic region vanishes and the solid cylinder reaches the fully
plastic state (Fig. 1).
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6.1. Plastic region 5 (r5 < r < a)

In this region,(σθ)
I
5 > (σz)

I
5 > (σr)

I
5 and the yield function

(6.1) f = (σθ)
I
5 − (σr)

I
5 − σI

0

requires that d(εp
r)I

5 = −(dεp
θ)

I
5 and d(εp

z)I
5 = 0. Hence,

(σr)
I
5 = σI

0 ln r + C13,(6.2)

(σθ)
I
5 = σI

0(1 + ln r) + C13,(6.3)

(σz)
I
5 = ν1[σ

I
0(2 ln r + 1) + 2C13] + E1εz − E1α1T1(r),(6.4)

uI
5 =

(1 + ν1)(1 − 2ν1)

E1
r(σI

0 ln r + C13)(6.5)

+ 2(1 + ν1)α1rθ
I(r5, r) − ν1εzr +

C14

r
,

(εp
θ)

I
5 = −(1 − ν2

1)
σI

0

E1
+ (1 + ν1)α1[2θ

II (r5, r) − T1(r)] +
C14

r2
,(6.6)

where

θI(r5, r) =
1

r2

r
∫

r5

T1(r)r dr.

6.2. Conditions and results

For this stage of plastic deformation, the total number of unknowns is 17 and
they are C1, C2, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, εz, r1, r2, r4 and r5.
In Section 5.3, the unknowns C1, C2, C9, C10, C11, C12 were determined, and
in Section 4.3, the unknowns C5, C6, C7, εz were defined. Using the conditions:
(εp

θ)
I
5 = 0 at r = r5, (σr)

II

2 = (σr)
I
5 and (u)II2 = (u)I

5 at r = a = r3, it follows
that

C8 = a2

{

σII

0 ln
a

b

[

(1 + ν1)(1 − 2ν1)

E1
− (1 + ν2)(1 − 2ν2)

E2

]

(6.7)

+ 2(1 + ν1)α1θ
I(r5, a) + (ν2 − ν1)εZ +

C14

a2

}

,

C13 = σII

0 ln
a

b
− σI

0 ln a,(6.8)

C14 = r2
5

{

(1 − ν2
1)

σI
0

E1
+ (1 + ν1)α1T

I(r5)

}

.(6.9)

The unknown border radii will be determined from the simultaneous solution of
the following nonlinear equations:
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(

1 − ν1 −
ν1

M

)[

C11r
−(1−M)
2 +

(1 − 2M)

4(1 − ν1)
E1α1θ1(r1, r2)

]

(6.10)

+

(

1 − ν1 +
ν1

M

)[

C12r
−(1+M)
2 +

(1 + 2M)

4(1 − ν1)
E1α1θ2(r1, r2)

]

= 0,

σI
0 ln r5 + C13 +

E1α1

(1 − ν1)
θI(r2, r5) −

C1

2
− C2

r2
5

= 0,(6.11)

2

(1 − ν1)
E1α1θ

I(r2, r5) −
E1α1

(1 − ν1)
T1(r5) − 2

C2

r2
5

− σII

0 = 0,(6.12)

and the free end condition is

(6.13)

r1
∫

0

(σz)
I
3r dr +

r2
∫

r1

(σz)
I
4r dr +

r5
∫

r2

(σz)
I
er dr

+

a
∫

r5

(σz)
I
5r dr +

r4
∫

a

(σz)
II

2 r dr +

b
∫

r4

(σz)
II

1 r dr = 0,

where

(6.14)

a
∫

r5

(σz)
I
5r dr = ν1σ

I
0

[

(a2 − r2
5)

σII

0

σI
0

ln
a

b
− r2

5 ln
r5

a

]

+ E1α1
q′′′

4

{

a4 − r4
5

4λ1
+

a2 − r2
5

2

[

a2

(

− 1

λ1
+

2

λ2
ln

a

b

)]}

+ E1εz
a2 − r2

5

2
.

7. Numerical results

In this section, the conditions for the onset of yield and the effects of all the
parameter ratios on the distribution of stresses and plastic strains in different
stages of elastic-plastic deformations are investigated. In the presentation of the
numerical results, the ratios of the material parameters are taken as 1.0 unless
they are specified differently.

7.1. Effect of the parameter Q

First, the case in which all the dimensionless parameters are taken as 1.0 is
considered. Yielding starts simultaneously both at the axis and at the surface of
the composite cylinder for the dimensionless load parameter q′′′ =17.541 and for
the geometric parameter Q=0.4199. For the values less than the critical value
of 0.4199, yielding starts at the axis and for the values greater than the critical
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value of 0.4199 yielding starts at the outer surface. For Q=0.4 < 0.4199 as shown
in Fig. 4, yielding starts first at the axis at q′′′ =18.431 for σ0= 1, and plastic
regions 3 and 4 expand outward with increasing thermal loads. At q′′′ =19.156
the elastic-plastic behavior of the composite cylinder enters the second stage
in which plastic flow starts at the outer surface, and plastic regions 1 and 2
propagate inward. The plastic-elastic border r2 reaches the interface at r=a and
q′′′ =23.591, while the inner portion of the outer cylinder is still elastic. The
stresses and deformations corresponding to q′′′ =20.944 are plotted in Fig. 5.
The composite cylinder reaches the fully plastic state with r2 = a = r3 at
q′′′ = 26.052.

Fig. 4. Expansion of plastic regions as a function of the load parameter for Q = 0.4,
σ̄0 = 1.0 and σ̄0 = 0.6.

7.2. Effect of the parameter σ0

It was shown in Fig. 4 that for σ0 = 1 yielding starts at the axis when
Q = 0.4. On the other hand, for small values of the yield limit ratios yielding
starts first at the outer surface of the tube. For σ0 = 0.6, the corresponding
load parameter of the onset of yield at the surface of the tube is q′′′ = 11.5. In
Fig. 5, the stresses and the deformations are compared for the chosen yield limit
ratios. If the yield limit ratio is decreased further, yielding starts again at the
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Fig. 5. a) Stresses and displacement, b) plastic strains for Q = 0.4, q̄′′′ = 20.944, σ̄0 = 1.0
and σ̄0 = 0.6.

outer surface, but this time at smaller load parameters. When Q = 0.8 for both
σ0 = 1.0 and σ0 = 1.4 yielding starts at the surface for the load parameters of
q′′′ = 6.4798 and q′′′ = 9.0720 respectively, while the tube has a relatively higher
resistance to yielding.
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Fig. 6. a) Stresses and displacement; b) plastic strains for Q = 0.6, q̄′′′ = 15, E = 1.0 and
E = 1.5.
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7.3. Effect of the parameter E

The effect of the parameter E on the stress and deformation distribution in
the second stage of elastic-plastic behavior is shown in Fig. 6. For Q = 0.6 and
q′′′ = 15 for E = 1, the border radii are evaluated as r1 = 0.12546, r2 = 0.32300,
r3 = 0.61268, r4 = 0.80856; whereas for E = 1.5 the border radii are evaluated
as r1 = 0.09410, r2 = 0.24226, r3 = 0.84334 and r4 = 0.90494. It is shown that,
as the Young modulus of the inner component becomes greater, i.e., for E > 1,
the inner and outer plastic regions stay in a narrow range. However, the inner
and outer plastic regions propagate faster for E < 1. For the same geometric pa-
rameters Q = 0.5, q′′′ = 15 and E = 0.5, the border radii become r1 = 0.04401,
r2 = 0.11331, r3 = 0.51084 and r4 = 0.76464, which justifies the case presented
above.

7.4. Effect of the parameter ν

For Q = 0.6, q′′′ = 15 and ν = 1, the radii were given in the previous section.
For ν = 0.7, we have r1 = 0.06529, r2 = 0.17805, r3 = 0.67017 and r4 = 0.82228.
This shows that as ν gets smaller all of the plastic regions cannot expand at the
same rate. For Q = 0.5, q′′′ = 15 and ν = 1, the border radii are r1 = 0.02298,
r2 = 0.07679, r3 = 0.70994, r4 = 0.91793, whereas for ν = 1.38, the border radii
become r1 = 0.81678, r2 = 0.32794, r3 = 0.51285, r4 = 0.89412. Compared with
ν = 1, it is found that when ν > 1 the plastic regions expand at a faster rate.
In Fig. 7, it can be also noted that the plastic strains for ν > 1 are considerably
greater than those for ν = 1 at the same load parameter.

7.5. Effect of the parameter λ

The effect of the parameter λ on the temperature distribution was shown in
Fig. 2. As λ increases the temperature distribution inside the composite cylinder
increases. The effect of λ on elastic-plastic stress distribution is evident from its
contribution on the temperature distribution. For Q = 0.6, q′′′ = 15 and λ = 0.6
the border radii are r1 = 0.03211, r2 = 0.08267, r3 = 0.68031 and r4 = 0.95227;
whereas for λ = 1 they become r1 = 0.12546, r2 = 0.32300, r3 = 0.61268 and
r4 = 0.80856.

7.6. Effect of the parameter α

The effect of the coefficient of thermal expansion ratio α is shown in Fig. 8.
For Q = 0.5 and q′′′ = 15 when α = 1.2, the border radii easily propagate
(except for the outermost plastic region) and become r1 = 0.08353, r2 = 0.21505,
r3 = 0.55869 and r4 = 0.95456. On the other hand, for α = 0.8 the border radii
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Fig. 7. a) Stresses and displacement, b) plastic strains for Q = 0.5, q̄
′′′

= 15, ν̄ = 1.0 and
ν̄ = 1.38.
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Fig. 8. a) Stresses and displacement, b) plastic strains for Q = 0.5, q̄′′′ = 15, ᾱ = 1.0 and
ᾱ = 1.2.
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are r1 = 0.06455, r2 = 0.16618, r3 = 0.70517 and r4 = 0.81678, which shows
that the expansion of plastic regions is retarded for α < 1.

8. Conclusions

The advantage of using a two-layered composite cylinder, due to its higher
thermal load carrying capacity, becomes apparent when the results presented
in this study are compared to those given by ORCAN for a homogeneous solid
cylinder in [11]. As the thickness of the tubular shell is increased, onset of yield at
the outer surface and its propagation become more difficult, and for sufficiently
small values of the geometric parameter Q, yielding occurs at the axis if higher
thermal load is supplied. The choice of the greater Young modulus for the solid
cylinder, i.e., as E increases, causes the propagation of plastic regions to become
more difficult, leading to wider elastic regions. On the other hand, choosing
smaller values for each of the parameters ν, α and λ results in a retardation of
the expansion of plastic regions. It is concluded that thermally induced elastic-
plastic deformations of the composite cylinder can be decreased significantly by
a proper selection of the ratios of thermo-mechanical properties.
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