
Arch. Mech., 68, 3, pp. 181–202, Warszawa 2016

Asymptotic solutions for generalized thermoelasticity
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In this paper, a unified generalized thermoelastic solution with variable
thermal material properties is proposed in the context of different generalized
models of thermoelasticity, including thermoelasticity with one thermal relaxation
time (LS theory), thermoelasticity with two thermal relaxation times (GL theory)
and thermoelasticity without energy dissipation (GN theory). The unified form of
governing equations is presented by introducing unifier parameters. The unified for-
mulations are derived and given for isotropic homogenous materials with variable
thermal material properties. The Laplace transform techniques and the Kirchhoff’s
transformation are used to obtain general solutions for any set of boundary condi-
tions in the physical domain. Asymptotic solutions for a specific problem of an elastic
half-space with variable thermal conductivity and a specific heat, whose boundary is
subjected to a thermal shock, are derived by means of the limit theorem of Laplace
transform. In the context of these asymptotic solutions, some generalized thermoe-
lastic phenomena are observed. Especially, the jumps at the wavefronts induced by
the propagation of finite signal speed for the heat are clearly noticed. In addition, the
effect of variable characteristics of material properties on thermoelastic behaviors is
revealed by a comparison with the results obtained in the case of constant material
properties.

Key words: generalized thermoelasticity, variable material properties, asymptotic
solutions, thermal shock.

Copyright c© 2016 by IPPT PAN

1. Introduction

Prediction of thermoelastic behaviors in solids involving rapid transient heat
conduction is of considerable practical importance in engineering sciences due to
the widespread use of some new processing techniques such as pulse laser irradia-
tion and rapid solidification. Some experiments [1] have proved that a heat signal
propagates in an elastic medium with a finite speed when heat conduction takes
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place at low temperature or short time interval. This means that the conven-
tional coupled theory of thermoelasticity [2], which predicts the infinite thermal
propagation speed, cannot accurately predict these specific heat phenomena. In
order to overcome this shortcoming inherent in the conventional coupled theory
of thermoelasticity, some efforts were made from a different perspective, and
awave-type equation disclosing a finite propagation speed of the heat wave was
proposed by different researchers [3–6]. In accordance with these modified mod-
els, and the known generalized theories of thermoelasticity, the thermoelastic
behavior involving finite propagation speed of heat signal was investigated in
[7–9]. In these investigations, the “second sound” effects in solids, proposed by
Landau and Lifshitz [10], were revealed by the solutions of problems involving
short time interval, such as transient thermal shock.

Since these generalized theories are not used in the variation of material prop-
erties at the time of their establishment, most investigations have been conducted
with an assumption of constant material properties, which limits the applicabil-
ity of the results obtained from these generalized theories to certain ranges of
temperature [11]. At high temperature, material properties are no longer con-
stant but change with temperature, which has some effects on thermoelastic
behavior of materials. It is necessary to take into account the actual behaviors
of material properties. Ezzat et al. [11], Youssef [12], Aouadi [13], Othman

and Kumar [14], Allam et al. [15] and Abbas [16] considered variable material
properties and studied various thermoelastic problems in the context of different
generalized theories, respectively, where the assumption that material parame-
ters are the linear functions of the reference temperature was used to simplify
the solutions of governing equations. Xiong and Tian [17] and He et al. [18]
analyzed the thermoelastic response based on a linear function of each material
parameter with respect to real temperature, and pointed out that the effect of
variable material properties would be enhanced to a certain extent. The same lin-
ear relations between material properties and real temperature were also used by
Sherief and El-Latief [19] to solve a thermoelastic interaction in a half-space
formed from a material with variable thermal conductivity.

When taking into account the complexity of the solutions for these gener-
alized models, especially for some generalized thermoelastic problems involving
variable material properties, the method to obtain exact solutions is very impor-
tant in revealing the generalized thermoelastic behavior. The integral transform
combined with numerical inversion was mostly used in previous investigations,
in which the Laplace transform technique was first used to derive the general
solution in the physical domain; then, the corresponding numerical solutions
in the time domain were obtained by the numerical inversion [20]. Since the
truncation error and the discretization error generated from the numerical in-
version would decrease the precision of numerical solutions, the wave-like be-
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haviors of heat transfer, especially the jumps located at each wavefront could
not be revealed accurately and the “second sound” effects in solids induced by
the propagation of heat signal with a finite speed were also weakened. The
other method used to solve these generalized models is the direct solution in
the time domain by means of numerical techniques such as the finite element
method [21]. The advantage of this method is that it avoids the complicated
integral transform and inverse transform, while some specific problems with
complicated conditions can be solved. However, the shortcomings of numer-
ical techniques such as the dependence on difference schemes, the reliability
of the meshing of grids and the calculation errors would restrain the appli-
cation of these generalized theories. Recently, an asymptotic analysis method
has been introduced to solve some thermoelastic problems by means of differ-
ent generalized theories [22, 23], in which the limit theorems of Laplace trans-
form were used to simplify the general solutions in the physical domain, and
the corresponding asymptotic solutions were derived in the time domain by
the inverse Laplace transform. In the studies of thermal shock problem involv-
ing different generalized theories [22–24], it is assumed that a generalized ther-
moelastic phenomenon cannot be accurately analyzed (predicted) by using the
above-mentioned two methods. However, the explicit expressions describing the
propagation of heat signal can be obtained, which is important in showing the
effect of each characteristic factor of the generalized theories of thermoelastic
behaviors.

In this paper, the thermoelastic behaviors of an elastic medium with variable
thermal material properties are investigated in the context of different general-
ized theories of thermoelasticity. An asymptotic analysis method is introduced
to provide unified solutions for different generalized models. The propagation of
the thermal wave and thermoelastic wave induced by external thermal shock are
obtained by the solution of a specific problem of an elastic half-space formed
from an isotropic homogeneous material with the variable thermal conductivity
and specific heat, and its boundary subjected to a thermal shock. Additionally,
the distributions of the displacement, temperature and each stress component
are also illustrated. The comparison with the predictions obtained from the case
of constant material properties is conducted to evaluate the effects of variable
material properties on thermoelastic behaviors.

2. Unified formulation of generalized thermoelasticity

Due to the LS, GL and GN theories of generalized thermoelasticity [3-5],
the fundamental equations for the isotropic homogeneous material in a unified
form are presented by introducing the terms η1 and η2 as the unifier parameters.
These equations, in general form, can be expressed as
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– equation of motion:

(2.1) ρüi = ρfi + σij,j ,

– constitutive equation:

(2.2) σij = λγkkδij + 2µγij − β(θ + τ1θ̇)δij ,

– linear strain-displacement relation:

(2.3) γij =
1

2
(ui,j + uj,i),

– energy equation:

(2.4) qi,i = ρr − ρcp(θ̇ + τ2θ̈) − T0βγ̇kk + ciθ̇,i,

– heat conduction equation:

(2.5) η1qi + τ0q̇i + η2q̇i = −η1kθ,i − η2k
∗θ,i − ciθ̇.

In the above-mentioned equations, ui are the components of the displacement
vector, qi are the components of the heat flux vector, fi are the components of the
body force per unit mass, σij are the components of the stress tensor, γij are the
components of the strain tensor, θ = T − T0 is the temperature increment, T is
the absolute temperature, T0 is the reference temperature, ρ is the mass density,
k is the thermal conductivity, cp is the specific heat at constant strain, r is the
internal heat source, β = (3λ + 2µ)αT is the thermal-mechanical coefficient, αT

is the coefficient of linear thermal expansion, λ and µ are the Lame’s constants,
τ0 and τ1, τ2 are the relaxation time constant for LS and GL models, respectively,
ci are the components of new material constant proposed in GL model, and for
isotropic material ci = 0, and k∗ is the new material constant associated with
the GN model. Also, η1 and η2 are the terms introduced to consolidate all three
theories into a unified system of equations. Meanwhile, the superscript dot (·)
and the subscript comma (, ) denote the derivatives of time t and coordinates xi

(i = 1, 2, 3), respectively.
Equations (2.1)–(2.5) can be reduced to the governing equations of LS, GL

and GN theories by different values of unifier parameters and the corresponding
material constants:

1) LS model: η1 = 1, η2 = 0, ci = 0, τ1 = τ2 = 0.
2) GL model: η1 = 1, η2 = 0, τ0 = 0.
3) GN model: η1 = 0, η2 = 1, ci = 0, τ0 = τ1 = τ2 = 0.
Also, if η1 = 1, η2 = 0, ci = 0 and τ0 = τ1 = τ2 = 0, Eqs. (2.1)–(2.5)

can be reduced to the governing equations of the classical coupled theory of
thermoelasticity [2].
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3. Governing equations with variable thermal material properties

We consider a half-space (x ≥ 0) formed from an isotropic homogeneous ma-
terial with variable thermal conductivity and variable specific heat. The bound-
ary plane of the half-space is assumed to be traction free and is subjected to
a sudden temperature rise. We assume that there is no body force or internal
heat source affecting the half-space.

Due to the physics of this problem, it is clear that all the considered functions
will depend on t and x only. Thus, the components of the displacement vector
have the following forms:

(3.1) ux = u(x, t), uy = uz = 0.

Substituting Eq. (3.1) into the linear strain-displacement relations (2.3), we
obtain

(3.2) γxx = u,x, γyy = γzz = γxy = γxz = γyz = 0.

Due to the constitutive equation (2.2), the non-zero stress components can
be expressed as

σxx = (λ + 2µ)u,x − β(θ + τ1θ̇),(3.3)

σyy = σzz = λu,x − β(θ + τ1θ̇).(3.4)

The equation of motion without a body force can be rewritten as

(3.5) ρü = (λ + 2µ)u,xx − β(θ,x + τ1θ̇,x).

Combining the energy equation (2.4) with heat conduction equation (2.5),
and considering the variable characteristics of thermal conductivity k, k∗ and
specific heat cp, the temperature equation without an internal heat source can
be written as

(3.6) (η1k + η2k
∗)θ,xx + (η1k,x + η2k

∗
,x)θ,x

= ρcp[η1(θ̇ + τ2θ̈) + τ0θ̈ + η2θ̈] + T0β(γ̇xx + τ0γ̈xx + η2γ̈xx) + ρċp(τ0θ̇ + η2θ̇).

For most materials, the thermal material properties change with the tem-
perature increment θ and these temperature increment-dependent relations are
linear in some range of the temperature T [18, 19]. Thus, the following linear rela-
tions of the thermal material parameters k, k∗ and cp dependent on temperature
increment θ are used:

k = k(θ) = k0(1 + χ1θ),(3.7)

cp =
k

ρκ
= cp0(1 + χ1θ),(3.8)

k∗ = k∗(θ) = k∗
0(1 + χ2θ),(3.9)
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where k0, cp0 and k∗
0 are the corresponding thermal conductivity and specific

heat at reference temperature T0, and they are constant, κ is the thermal dif-
fusivity at reference temperature T0 and it is also constant, and χ1 and χ2

are the small quantities which indicate the influence of the temperature devia-
tion.

Substituting the linear relations (3.7)–(3.9) into Eq. (3.6) results in

(3.10) (η1k + η2k
∗)θ,xx + (η1χ1k0 + η2χ2k

∗
0)θ,xθ,x

= ρcp[η1(θ̇ + τ2θ̈) + τ0θ̈ + η2θ̈]+T0β(γ̇xx + τ0γ̈xx + η2γ̈xx)+χ1ρcp0 θ̇(τ0θ̇ + η2θ̇).

For convenience, the Kirchhoff’s transformation is introduced as follows:

(3.11) φ =
1

k0

θ
∫

0

k(θ1) dθ1.

Applying the above transformation to Eq. (3.10), we obtain

(3.12) (η1k0 + η2χ
∗
2k

∗
0)φ,xx

= ρcp0 [η1(φ̇ + τ2φ̈) + τ0φ̈ + η2φ̈] + T0β(γ̇xx + τ0γ̈xx + η2γ̈xx),

where χ∗
2 = χ2/χ1.

Similarly, applying transformation (3.11) to Eqs. (3.7)–(3.9) and neglecting
some small quantities generated by introducing φ to replace θ, the equation of
motion and the non-zero stress components can be approximately expressed as

ρü = (λ + 2µ)u,xx − β(φ,x + τ1φ̇,x),(3.13)

σxx = (λ + 2µ)u,x − β(φ + τ1φ̇),(3.14)

σyy = σzz = λu,x − β(φ + τ1φ̇).(3.15)

4. Asymptotic solutions of the problems

4.1. General solutions in the transform domain

For simplicity, the following non-dimensional variables are introduced:

x∗ = avex, t∗ = av2
et, τ∗

i = av2
eτi (i = 0, 1, 2),

u∗ = ave
λ + 2µ

βT0
u, φ∗ =

φ

T0
, θ∗ =

θ

T0
, σ∗

ii =
1

βT0
σii.

Substituting these non-dimensional variables into equations (3.12)–(3.15) and
dropping, for convenience, the asterisks, we obtain
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(η1 + η2χ
∗
2v

2
t )

∂2φ

∂x2
=

[

η1
∂φ

∂t
+ (τ0 + τ2 + η2)

∂2φ

∂t2

]

(4.1)

+ ϑ

[

η1
∂2u

∂x∂t
+ (τ0 + η2)

∂3u

∂x∂t2

]

,

∂2u

∂t2
=

∂2u

∂x2
−

(

∂φ

∂x
+ τ1

∂2φ

∂x∂t

)

,(4.2)

σxx =
∂u

∂x
−

(

φ + τ1
∂φ

∂x

)

,(4.3)

σyy = σzz = kv
∂u

∂x
−

(

φ + τ1
∂φ

∂x

)

,(4.4)

where a = ρcp0/k0 is the thermal viscosity constant at reference temperature,
ve =

√

(λ + 2µ)/ρ is the speed of thermal elastic wave, vt =
√

k∗
0/(ρcp0v

2
e) is the

non-dimensional speed of thermal wave, ϑ = T0β
2/(ρcp0(λ + 2µ)) is the thermal

coupling constant, and kv = λ/(λ + 2µ) is the non-dimensional constant.
Applying to both sides of Eqs. (4.1)–(4.4), the Laplace transform defined as

L{t} = f̄(s) =

∞
∫

0

e−stf(t) dt,

we obtain

(η1 + η2χ
∗
2v

2
t )

d2φ̄

dx2
= [η1sφ̄ + (τ0 + τ2 + η2)s

2φ̄](4.5)

+ ϑ

[

η1s
dū

dx
+ (τ0 + η2)s

2 dū

dx

]

,

s2ū =
d2ū

dx2
−

(

dφ̄

dx
+ τ1s

dφ̄

dx

)

,(4.6)

σ̄xx =
dū

dx
− (φ̄ + τ1sφ̄),(4.7)

σ̄yy = σ̄zz = kv
dū

dx
− (φ̄ + τ1sφ̄).(4.8)

Eliminating terms ū and φ̄ separately by combining Eq. (4.5) with Eq. (4.6)
results in

(4.9)
d4ϕ̄i

dx4
− (s2 + ω1 + ω2)

d2ϕ̄i

dx2
+ ω1s

2ϕ̄i = 0,

where ϕ̄i (i = 1, 2) indicate term ū or φ̄, respectively, and

ω1 =
[η1 + (τ0 + τ2 + η2)s]s

η1 + η2χ∗
2v

2
t

, ω2 =
ϑ[η1 + (τ0 + η2)s](1 + τ1s)s

η1 + η2χ∗
2v

2
t

.
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The general solution of Eq. (4.9) can be expressed as

ϕ̄i = A1i(s) exp(−R1x) + B1i(s) exp(−R2x)(4.10)

+ C1i(s) exp(R1x) + D1i(s) exp(R2x),

where R2
1,2 are the roots of the following characteristic equation:

R4
− [s2 + ω1 + ω2]R

2 + ω1s
2 = 0,

A1i(s), B1i(s), C1i(s) and D1i(s) are coefficients depending on parametersand
are determined by the given boundary conditions.

Considering the bounded solutions with large x for the elastic half-space
problem, the positive exponential part of expression (4.10) should be omitted,
then we get

ū = A11(s) exp(−R1x) + B11(s) exp(−R2x),(4.11)

φ̄ = A12(s) exp(−R1x) + B12(s) exp(−R2x),(4.12)

Substituting these general solutions (4.11) and (4.12) into Eqs. (4.5) or (4.6)
results in

(4.13) A12(s) = −

R2
1 − s2

(1 + τ1s)R1
A11(s), B12(s) = −

R2
2 − s2

(1 + τ1s)R2
B11(s).

For the above relation, Eq. (4.12) can be rewritten as

(4.14) φ̄ = −

R2
1 − s2

(1 + τ1s)R1
A11(s) exp(−R1x) −

R2
2 − s2

(1 + τ1s)R2
B11(s) exp(−R2x).

Here, the following non-dimensional boundary conditions on the boundary
plane x = 0 are introduced:

(4.15) θ(0, t) = θ0H(t), σxx(0, t) = 0,

where H(t) is the Heaviside unit function and θ0 is a non-dimensional constant.
Applying the Laplace transform to the above boundary condition (4.15) and

considering Eq. (3.11), we get

(4.16) φ̄(0, s) =
φ0

s
, σ̄xx(0, s) = 0,

where φ0 = (1 + χ1θ0)θ0/2.
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Substituting these boundary conditions into general solutions (4.11) and
(4.14) and non-zero components of stress (4.7) and (4.8), the general solutions
for u, φ and σii (i = 1, 2, 3) in the transform domain can be derived as

ū = −(1 + τ1s)φ0

(R2
1 − R2

2)s
[R1 exp(−R1x) − R2 exp(−R2x)],(4.17)

φ̄ =
φ0

(R2
1 − R2

2)s
[(R2

1 − s2) exp(−R1x) − (R2
2 − s2) exp(−R2x)],(4.18)

σ̄xx =
(1 + τ1s)sφ0

R2
1 − R2

2

[exp(−R1x) − exp(−R2x)],(4.19)

σ̄yy = σ̄zz(4.20)

=
(1 + τ1s)φ0

(R2
1 − R2

2)s
[(kwR2

1 + s2) exp(−R1x) − (kwR2
2 + s2) exp(−R2x)],

where kw = kv − 1.

4.2. Asymptotic solutions in the time domain

Solutions of u, φ and σii (i = 1, 2, 3) in the time domain can also be obtained
from the above transform solutions by means of inverse Laplace transform. Since
the complicated expressions of roots Ri (i = 1, 2) are contained in these trans-
form solutions, it is practically impossible to construct the exact solutions in a
closed form in the time domain by inverse Laplace transform. Hence, the nu-
merical inverse method was used to give some numerical predictions in previous
investigations [11–19]. Unfortunately, the truncation error and the discretization
error generated in the numerical inversion would lead to a poor prediction and
the ‘second sound’ effect induced by the propagation of heat signal with a finite
speed could not be described accurately [25]. In order to overcome this short-
coming inherent in numerical inversion, an asymptotic analysis method [22, 23]
is introduced to solve this problem.

Due to the characteristics equation, the roots Ri (i = 1, 2) can be expressed
as

(4.21) R1,2 =

√

(

s2 + ω1 + ω2 ±
√

(s2 + ω1 + ω2)2 − 4ω1s2

2

)

.

In accordance with the limit theorem of the Laplace transform, the transform
parameter s would be a high value when the thermal duration is very short (t
is a low value). Then, some approximations for the roots Ri (i = 1, 2) can be
derived as [22–24]

(4.22) R1,2 ≈ k1,2s + m1,2,
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where

k1,2 =

[

1 + τ0 + τ2 + η2

/

(χ∗
2v

2
t ) + ϑ(τ0 + τ1 + η2

/

(χ∗
2v

2
t )) ±

√
a1

2

]1/2

,

m1,2 = η1
1 + ϑ ± b1/

√
a1

4k1,2
,

a1 = [1 + τ0 + τ2 + η2/(χ
∗
2v

2
t ) + ϑ(τ0 + τ1 + η2/(χ

∗
2v

2
t ))]

2

− 4(τ0 + τ2 + η2/(χ
∗
2v

2
t )),

b1 = η1[(1 + ϑ)(τ0 + τ2 + ϑ(τ0 + τ1)) + ϑ − 1].

Substituting Eq. (4.22) into the general solutions (4.17)-(4.20) derived in the
transform domain, the forms convenient to inverse the Laplace transform can
be obtained. By using the standard results of the Laplace transform theory, the
asymptotic solutions of u, φ and σii (i = 1, 2, 3) in time domain can be derived
as

(4.23) u = − φ0√
a1

exp(−m1x)

[

k1τ1+

(

k1+m1τ1−
b1

a1
k1τ1

)

(t−k1x)

]

H(t−k1x)

+
φ0√
a1

exp(−m2x)

[

k2τ1+

(

k2+m2τ1−
b1

a1
k2τ1

)

(t−k2x)

]

H(t−k2x),

(4.24) φ =
φ0√
a1

exp(−m1x)

[

k3+

(

m3−
b1

a1
k3

)

(t−k1x)

]

H(t−k1x)

− φ0√
a1

exp(−m2x)

[

k4+

(

m4−
b1

a1
k4

)

(t−k2x)

]

H(t−k2x),

(4.25) σxx =
φ0√
a1

exp(−m1x)

×
{(

1− b1

a1
τ1

)[

1− b1

a1
(t−k1x)

]

H(t−k1x)+τ1δ(t−k1x)

}

− φ0√
a1

exp(−m2x)

{(

1− b1

a1
τ1

)[

1− b1

a1
(t−k2x)

]

H(t−k2x)+τ1δ(t−k2x)

}

,

(4.26) σyy = σzz

=
φ0√
a1

exp(−m1x)







(1+kwk5+τ1kwm3)

[

1− b1

a1
(t−k1x)

]

H(t−k1x)

+kwm3(t−k1x)H(t−k1x)+(1+kwk5)τ1δ(t−k1x)







− φ0√
a1

exp(−m2x)







(1+kwk6+τ1kwm4)

[

1− b1

a1
(t−k2x)

]

H(t−k2x)

+kwm4(t−k2x)H(t−k2x)+(1+kwk6)τ1δ(t−k2x)







,
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where

k3,4 =
−1 + τ0 + τ2 + η2/(χ

∗
2v

2
t ) + ϑ(τ0 + τ1 + η2/(χ

∗
2v

2
t )) ±

√
a1

2
,

m3,4 = η1
1 + ϑ ± b1/

√
a1

2
,

k5,6 =
1 + τ0 + τ2 + η2/(χ

∗
2v

2
t ) + ϑ(τ0 + τ1 + η2/(χ

∗
2v

2
t )) ±

√
a1

2
,

δ(x) is the Dirac delta function.
For the expression of φ, the temperature increment θ can be obtained by

solving Eq. (3.11) to give

(4.27) θ =
−1 +

√
1 + 2χ1φ

χ1
.

5. Numerical results and discussions

5.1. Wave propagation analysis

The Heaviside unit function in the above asymptotic solutions (4.23)–(4.26)
predicts the occurrence of waves. It is obvious that each of u, φ and σii (i = 1, 2, 3)
is made of two parts and each part corresponds to a wave propagation with
a finite speed, one is the thermal wave (T-wave), and the other is the thermal
elastic wave (E-wave). Due to the property of the Heaviside unit function, the
non-dimensional wave propagation velocities and positions of each wavefront can
be obtained as

(5.1) v1,2 = 1/k1,2, ξ1,2 = t/k1,2.

In combination with the expressions of parameters k1,2, we can observe that
the velocities and positions of wavefronts are dependent on relaxation time con-
stants τ0, τ1, τ2 and thermal coupling constant ϑ for the LS and GL mod-
els, respectively. Furthermore, when the relaxation time constants are τ0 → 0
and τ2 → 0, which corresponds to the Fourier heat conduction, we have v1 →
{1, 1/

√
1 + ϑτ1} and v2 → ∞. This means that the velocity with subscript 1

is the propagation velocity of E-wave, and the velocity with subscript 2 is the
propagation velocity of T-wave. For GN model, the velocities and positions of
wavefronts only depend on the thermal coupling constants ϑ, and for ϑ → 0, we
have v1 → 1 and v2 → vt. Considering the non-dimensional velocity vt indicates
the thermal propagation velocity without the coupling effect, we have the same
conclusion in the LS and GL models for the meaning of velocity subscripts 1
and 2.
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Meanwhile, we also observe that k1 is a monotonously increasing function
of thermal coupling constant ϑ, while k2 is a monotonously decreasing function
of ϑ for the LS, GL and GN models, which means that the coupling effect
has different impact on the propagation of T-wave and E-wave. The velocity of
T-wave is increasing with an increase of the value of ϑ, and the corresponding
position of wavefront is closer to the thermal boundary. For E-wave, it is the
opposite with an increase of the value of ϑ.

5.2. Thermoelastic response analysis

Now for the illustration of thermoelastic response involving variable thermal
material properties in the context of different generalized theories, the follow-
ing non-dimensional constants are introduced to numerical calculations, as in
[21, 23]:

τ0 = 0.5, τ1 = 0.5, τ2 = 0.25, ϑ = 0.02, χ1 = χ2 = −0.25, v2
t = 4, θ0 = 1.

Figures 1–4 show the distributions of displacement u, temperature θ and
each component of stress σii for different generalized theories of thermoelasticity
(LS, GL and GN models) at a wide range of x (0 ≤ x ≤ 2) and at different
time. As for these distributions, a phenomenon important for generalized ther-
moelastic problem, in which all of u, θ and σii vanish identically at all points
beyond the faster wavefront, is observed. The displacement is continuous at all
the positions including the locations of the wavefronts for LS and GN model,
but it is discontinuous at both the wavefronts for GL model, which means that
one portion of matter penetrates into another, and this phenomenon violates
the continuum hypothesis. These results can also be obtained by substituting
the wavefronts t = k1x and t = k2x into Eq. (4.23), then the discontinuities for
the displacement are as follows:

[u]k1,2x = 0 (LS and GN models),

[u]k1,2x = ∓ φ0√
a1

exp(−m1,2x)k1,2τ1 (GL model).

The temperature is discontinuous at both the wavefronts for LS, GL and GN
models, and these discontinuities are also obtained by substituting the wavefronts
t = k1x and t = k2x into Eqs. (4.24) and (4.27), which can be expressed as

[θ]k1,2x =
1

χ1

(

−1 +

√

1 ± 2χ1φ0√
a1

k3,4 exp(−m1,2x)

)

(LS, GL and GN models).

It is notable that the effect of the magnitude of jump at the first wavefront
on temperature is very small, which leads to the fact that the first discontinuity
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(a) LS model

(b) GL model

(c) GN model

Fig. 1. Distribution of the displacement u with x at different time t and χ1 = χ2 = −0.25
for three generalized models (LS, GN and GS).
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(a) LS model

(b) GL model

(c) GN model

Fig. 2. Distribution of the temperature θ with x at different time t and χ1 = χ2 = −0.25 for
three generalized models (LS, GL and GN).
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(a) LS model

(b) GN model

Fig. 3. Distribution of the stress component σxx with x at different time t and
χ1 = χ2 = −0.25 for generalized models (LS and GN).

cannot be clearly shown in Fig. 2. This means that E-wave has only a small
effect on temperature. Furthermore, LS and GL models give similar predictions
for temperature distribution, whose magnitudes of jumps exponentially decrease
with the propagation of E-wave and T-wave, while for GN model, the magnitudes
of jumps remain unchanged at all the positions, which is consistent with the
assumption that there is no dissipation of thermal energy in GN theory.

In accordance with Eqs. (4.25) and (4.26), the expression of each stress com-
ponent exhibits the Dirac delta function for GL model, which means the magni-
tudes of the stress components are finite at both the wavefronts. Therefore, the
stress distributions for LS and GN models are only illustrated in Figs. 3 and 4.
The values of stress still are constant in each of the intervals for GN model,
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(a) LS model

(b) GN model

Fig. 4. Distribution of the stress component σyy(σzz) with x at different time t and
χ1 = χ2 = −0.25 for generalized models (LS and GN).

but the stress increases at first and then decreases steadily in the first interval
(0 ≤ x < t/k1), and then increases quickly again in the second interval (t/k1 <
x < t/k2), and finally vanishes in the last interval (t/k2 < x < ∞) for LS model.

For Eqs. (3.7)–(3.9), if the parameters χ1 and χ2 are taken to be zero, the
thermal material parameters k, cp and k∗ are constants, which corresponds to
the case of constant material properties. Figures 5–7 display the distributions
of displacement u, temperature θ and stress component σxx for different gen-
eralized theories at the given time and different values of parameters χ1 and
χ2. Some differences can be observed in the comparisons between the cases of
variable and constant thermal material properties. First, both peak values of the
displacement, temperature and stress are decreased for three models when the
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(a) LS model

(b) GL model

(c) GN model

Fig. 5. Effects of parameters χ1 and χ2 on the distribution of displacement u at t = 0.5 for
three models (LS, GL and GN).
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(a) LS model

(b) GL model

(c) GN model

Fig. 6. Effects of parameters χ1 and χ2 on the distribution of temperature θ at t = 0.5 for
three models (LS, GL and GN).
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(a) LS model

(b) GN model

Fig. 7. Effects of parameters χ1 and χ2 on the distribution of stress component σxx at
t = 0.5 for LS and GN models.

variable characteristics of thermal material properties are considered, but it can
be noticed that the first peak value for temperature shows only a small change
compared with the other change. Second, the locations of jumps for temperature
and stress remain unchanged for two cases, which means that the effects of vari-
able thermal material properties on thermoelastic behaviors are only reflected in
the distributions of each field.

6. Conclusions

The methods, presented in the above described generalized theories, were
used to effectively solve the governing equations. These methods are very impor-
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tant in the studies of thermoelastic behavior involving finite propagation speed of
heat signal and lacking necessary experiments. In this paper, the asymptotic ap-
proach, based on the Laplace transform and the Kirchhoff’s transformation, was
proposed to solve these complicated governing equations with variable material
properties. The analytical solutions of each physical field as well as the explicit
expressions of two waves’ velocities and their wavefronts were obtained by this
asymptotic approach, which clearly showed the thermoelastic behavior involving
finite propagation speed of heat signal and variable material properties. Using
the asymptotic solutions in an elastic half-space problem with the boundary
subjected to a thermal shock, we obtained some conclusions as follows:

1) All the distributions of the displacement u, temperature θ and each stress
component σii (i = 1, 2, 3) are staged by the influence of the propagation of heat
signal with a finite speed, which vanish identically at all points beyond the faster
wavefront. The regions of each distribution are enlarging with propagation of E-
wave and T-wave. The peak values of temperature and each stress component are
decreasing for LS and GL models, while, for GN model, they remain unchanged
assuming that there is no thermal energy dissipation.

2) The variable thermal material properties have a significant effect on ther-
moelastic behaviors and these effects mainly focus on the change of the magni-
tudes of thermoelastic response. Although different predictions for the distribu-
tions of each field are obtained by different generalized theories, for the effect of
variable thermal material properties on thermoelastic behaviors, these general-
ized theories give the same predictions, except for the numerical differences in
solutions,
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