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1. Introduction

IN THE CLASSICAL THEORY OF THERMOELASTICITY, Fourier’s heat conduction
theory assumes that the thermal disturbances propagate at infinite speed which
is unrealistic from the physical point of view. Two different generalizations of the
classical theory of thermoelasticity have been developed which predict only finite
velocity of propagation for heat and displacement fields. The first one is given by
LORD and SHULMAN [1] which incorporates a flux rate term into the Fourier law
of heat conduction and formulates a generalized theory admitting finite speed
for thermal signals. The second is given by GREEN and LINDSAY [2| which de-
velops a temperature-rate-dependent thermoelasticity by including temperature
rate among the constitutive variables, which does not violate the classical Fourier
law of heat conduction. LORD and SHULMAN [1] theory of generalized thermoe-
lasticity have been further extended to homogeneous anisotropic heat conducting
materials recommended by DHALIWAL and SHERIEF [3|. All these theories pre-
dict a finite speed of heat propagation. CHANDRASEKHARIAH [4] refers to this
wave-like thermal disturbance as second sound. A survey article of various repre-
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sentative theories in the range of generalized thermoelasticity have been brought
out by HETNARSKI and IGNACZAK [5].

The interaction of elastic, thermal and diffusion of charge carrier’s fields in
semiconductors has been investigated after formulating the problem mathemat-
ically by MARUSZEWSKI [6]-[10] and MANY et al. [11]. The theory developed
in these researches is phenomenological by its nature and its application led
to phonons of mixed nature, which cannot be considered of a pure transver-
sal, longitudinal or interface character. This provides a description of optical
phonons in semiconductors of different kinds, achieving a relatively good co-
incidence with both experimental data and calculation based on microscopic
(atomistic) approaches. In case of semiconductors, the presence of coupled oscil-
lations together with uncoupled one of pure mechanical nature was also found. It
is also mentioned that in the uncoupled cases, the velocities for thermal fields are
observed at very low temperatures; then, for diffusion, the velocities are observed
in semiconductors at room temperatures dealing with charge carriers. In order to
explore the simultaneous interactions of elastic, thermal and diffusion of charge
carrier’s fields, MARUSZEWSKI [10] studied the propagation of thermodiffusive
surface waves in semiconductor materials based on the phenomenological model
developed by him that includes relaxation times of heat and charge carriers in
addition to life times of the carriers. He also presented numerical solutions of
his model under these specific situations. But his investigations were limited to
some special and particular situations and remained departed from the general
solution of the said model thereby ignoring the presence of some of the inter-
acting fields included in the basic governing equations at a time. SHARMA and
THAKUR [12]| simplified the MARUSZEWSKI [10] model of governing equations
by introducing non-dimensional quantities and studied the propagation of plane
harmonic elasto-thermodiffusive (ETNP) waves in semiconductor materials.

To investigate the boundary value problems of the theory of elasticity and
thermoelasticity by potential method, it is necessary to construct a fundamental
solution of systems of partial differential equations and to establish their basic
properties respectively. HETNARSKI [13, 14| was the first to study the funda-
mental solutions in the classical theory of coupled thermoelasticity. IESAN [15]
presented the fundamental solution in the theory of thermoelasticity without
energy dissipation. The fundamental solutions in the microcontinuum fields the-
ories have been constructed by SVANADZE [16]-[19]. The information related
to fundamental solutions of differential equations is contained in the books of
HORMANDER |20, 21].

In this article, the fundamental solutions of system of equations in case of
steady oscillations in the theory of elasto-thermodiffusive (ETNP) semiconductor
material are constructed by means of elementary functions and basic properties
are established.
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2. Basic equations

Let & = (21, z2, 23) be the point of the Euclidean three-dimensional space E3,

le| = (22 + 2% + x%)%, D, = (3%1, 8%2, 8%3) and let ¢ denote the time variable.

Following MARUSZEWSKI [10], the basic equations for homogeneous isotropic
thermoelastic semiconductor material in the absence of body forces and heat
sources are:

(2.1) pAw + (A + p) grad div @ — N\ grad N — NP grad P — AT grad T = pu,
(29)  KAT +m™AN + mPAP

8 = =
<1 + tQ@ )(pC’ T + pToa" N + pTpaP P+ TyA" div @) — p(a? N + alP)

p —
= (a} N P
<a1<tn) +a1(tp) )
(2.3)  pD™AN + mI"AT — p[l —abyTpa" +t" gt] N

— al(pC.T + pTyaP P + ToA” div @

o

— aB(pC.T + pTha N + TyAT div @) = <1 rad > (ﬁ) P,
P

_ _ o1 -
(2.4)  pDPAP 4+ mPPAT — p|:1 — agToap + tp§:| P

where

a®p

a@n a@p a@n
ap —
) 2 —

p_
an 1_aQ7 am aP
P=p—py, N=n-ny, T=T-Tp, A\ =(B\+2u)or

al = ay =

Y

Here u = (u1,u9,us3) is the displacement vector, p, C. are, respectively, the
density of the semiconductor and specific heat, A, u are Lame’s constants, Tj is
the reference temperature assumed to be such that {T / To| < 1, T is the tem-
perature change, K is the thermal conductivity, ar is the coefficient of linear
thermal expansion of the material, A™, AP are the elastodiffusive constants of
electrons and holes, ", o are thermodiffusive constants of holes and electrons,
a®" a®, a"™, aP are the flux-like constants, D™, DP are the diffusion coefficients of
electrons and holes, m™, m", mP? m9 are the Peltier—Seeback—Dufour—Soret-
like constants, t<, ", tP are the relaxation times of heat, electron and hole fields,
t,ty denote the life times of carriers fields, n,p are the non-equilibrium and
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ng, po equilibrium values of electrons and holes concentrations, respectively, A is
the Laplacian operator. The comma notation is used for spatial derivatives and
a superposed dot represents differentiation with respect to time. In addition, the
field variables are also assumed here to satisfy all restrictions as described by
MARUSZEWSKI [10].

We define the dimensionless quantities:

.’I,'/ _ w*e ﬂ,/ _ pw*cl'l_lz F_ 2 N/ _ E Pl _ E
cr MNTy Ty’ no’ po’
9 =w i, " =wtr, t =wtt, t=w't, 7 =wtP,
/ A2p pCec? 7
I Ty anlia e
AT, K - My < Npg
(2.5) T7pCht2p) X7 pCo TN, TP AT
ma™Ty mIPTy aY KTy abC.Tye
e = ) e? = o €n = 2 no = 2*6 pl’
pD"ng pDPpq pnoD w*poD
o m"ng mPin o aing o — azlypg
KTy’ KT, ° CT, ° C.TIy
ang aPpg
oy = , ab= ,
0T ¢, 0T ¢,

where ep is the thermoelastic coupling parameter and x is the thermal diffusivity.
Upon introducing the quantities (2.5) into the basic equations (2.1)—(2.4),
after suppressing the primes, we obtain

(2.6) 6*Aw+ (1 —6?) grad div @ — A, grad N — \, grad P — grad T = i,

|5

(2.7)  —ep(diva+t9 div @) + £"YAN — <(ag +al )N + 98N + j N>

S+

. . p _ _ kX 3
+PAP — ((af + af)P + 12l P + j—ﬂp) + AT — (T +197) = 0,
P

) - 1 _ agD™ " - =
(2.8) —erey divﬂ—i—AN—l—%[jN—<1_%__+>N—WN}
n X n

- enagP — enf + AT =0,

. - = = 1 — € Oépr tp KR =
(2.9) —ere, div u—epagN—l—AP—i—%[t—jLP— <1_%_t_+>p_tpp]
P P

— epf + AT = 0.
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3. Steady oscillations

Now, we consider the case of steady oscillations. We assume the functions of
the displacement vector, temperature change and electrons and holes concentra-
tion change as
(3.1) (w(zx,t), N(x,t), P(x,t), T(x,t)) = Re[(u, N, P,T)e .

Using equation (3.1) in equations (2.6)-(2.9), we obtain the system of equations
of steady oscillations as
(3.2)  6*Au+(1—-6%) graddivu—\, grad N — X, grad P—grad T +w?u = 0,

(3.3)  Wlert@ div u+[eMA+W TN + [5qu+w27;,]P+ [A4w 9T =0,

(3.4) weperA div u+ WA+ AN +wepah P+ [ A+ we, ] T = 0,
(3.5) weperA div u+wepag N + [w2T;—|—A]P—|— [P A+ 1we,|T =0,
where
) =t9a0 + w ol +al) — alw 2/t 79 =19 4w
* X n —1 EnOZELDn tn 1
= 2 |t A _—
e (20 ) s g

7 =1%f + w ' (af) + af) — afw /L),
P Dp P
* X —1 GpOZOD t 1
= |t 1-——— — .
Tp Dp [ + w ( X t; + thI',"
We introduce the matrix differential operator
F(Dg) = |[Finn(Daz)ll6x6

where
82
Frn(Da) = [°8 400 + (1= 6%) 5o
_ 0 - 0
Fm4(Dm) - _/\n%a Fm5(Dm) - _/\p%a
F, (D)———a Fi(Dg) = w?e 29
mb6 x) — axma in x T al'n’
Fyy(Dg) = ™A + w27_7/“ Fy5(Dg) = A + sz;,
0
Fy6(Dg) = A+ w?79, F5(Dg) = weners—,
Tn
F54(Dw) = w27';: + A, F55(Dw) = Lwenag,
0
F56(Dw) =ec"A + wep, FGn(Da:) = LwepeTa—,
Tn
Fga(Dg) = wepag, Fe5(Dyg) = Wty + A,
Fes(Dg) = e A 4+ wep, m,n=1,2,3
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The system of equations (3.2)-(3.5) can be written as

where U = (u, N, P,T) is a six-component vector function for E3.
We assume that

(3.6) 1— Mg — Pl £0, 0 #0.

If the condition (3.6) is satisfied, then F' is an elliptic differential operator [20].

DEFINITION. The fundamental solution of the system of equations (3.2)-
(3.5) (the fundamental matrix of operator F') is the matrix G(z)=||Gpn()|l6x6
satisfying condition [20]

(3.7) F(D)G(2) = 5(a)I (),

where §(x) is the Dirac delta, I = ||6,un|l6x6 is the unit matrix and = € E3.

Now, we construct G(z) in terms of elementary functions.

4. Fundamental solution of a system of equations of steady oscillations

Following MARUSZEWSKI [10], we consider the system of equations

(4.1) 82 Au + (1 —62%) grad div u + w?epr? grad N
+weper grad P+ weper grad T+ w’u=H,

(4.2) X div u + [EMA + W TN 4 (w4 AP 4 wepal T = L,
= div u + [eP1A + w27';]N + wenay P + [w27'; + A]T = M,
(4.4) —div u + [A + WTQN + [7A + we, | P + [ePA + we,|T = D,

where H is three-component vector function on E?; L, M and D are scalar
functions on E3.
The system of equations (4.1)—(4.4) may be written in the form

(4.5) F"(Dg)U(z) = Q(x),

where F' is the transpose of matrix F , Q = (H,L, M, D) and x € E3.
Applying the operator div to equation (4.1), we obtain

(4.6) (A 4 w?) div u 4 W2epT? AN + wener AP + we,ep AT = div H.
The equations (4.2)—(4.4) and (4.6) may be written in the form

(4.7) N(A)S =Q,
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where § = (divu, N, P,T), Q = (dy,ds,ds,ds) = (div H, L, M, D) and
(4.8)  N(A) = [[Npn(A)llaxa

A+ w? Wepr@A wepeT A\ wweper A
I N Wil WA+ A wepay
-\, ePIA+ wQTI’, Lwen ol wQT; +A
-1 A+ w?rQ A 4 e, A+ Wep |45y

Equations (4.2)-(4.4) and (4.6) may be also written as

(4.9) I(A)S =W,
where
1 4
‘I’ (Lp17gp27!p37£p4 = 75 Z
(4.10) My =

r(A) = MildetN(A), n=1234

and N, is the cofactor of the elements NV, of the matrix IN.
From Egs. (4.7) and (4.9), we see that

rQ) = ﬁ (A+A%),
m=1
where
O
N2+ A3+ A2) + 202+ A2) + A2 = MJ\Z4,
A2(AZAZ + A3AT + A2A2) 4+ A2N2ND = —Mﬁfﬁ,
AZAZAZAZ = MJ\Z‘;’S.
Here,

]\4’1 =1 gnngn _ qugqp7
My = fi+ (1 +er)fo+ f3+ fa,
M3z = f5 + fo + fr + fs + fo + fio + f11,
My = fia + fi3 + fia + f15 + fie,
Ms = fi7 + fig + fi9,
fl= 1 — g _ pagap.

fo =79 — 1w (e + €M),
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f3= (10— (7, + weperdp) — (7 + /_\PTQET
—w e g™ (o + Nper)),
f5 =M [—T1,e" — wlen —w e (1 + ep)(ahe, + wry)l,
fr=eP[-1)(1+73) + w ™ ener (1), Ap — ) An)
n LM*IEnO/g(Tr/L 4+ e eTTQS\ ) — ;\peTTQ 1,
fo=1r+ 1+ er)m9r — w len, (1 + €r) + w 2enerAn(afe, + wry),
fi1 =72+ w P + eapabag,
fiz = —e"w™?
f1a = —LwenTn + 7

fie=[1+ TQ(I + GT)](T;T; + wfzenepagdo’),

en(epoz0 + wty) + €1 (1w L/ L0l — Ty Ty,

Qrr — (1 + ep)w 2rhen(epal + W, ),
fir = —w_26n7'7'l(6pag + LWT;),
fio = 9w 2enepanal + ToTpls
and fi, fe, fs, fi0, f13, f15, f1s can be obtained from f3, f5, f7, fo, f12, f14, fi17,
respectively.

Applying the operator I'(A) to the Eq. (4.1), we get
(4.11) T(A)A+\)u =T,

where A2 = w?/§? and

(4.12) @' = 5—12{F(A)H —grad[(1—02)¥; +w?epT@Ws + 1we, erW3 + wweper Pyl }.
From Egs. (4.9) and (4.11), we obtain
(4.13) O(AU(x) = ¥(x),
where W = (9', Wy, U3, ¥,) and
O(A) = [[@gn(A)ll6x6,
@mm(A) = F(A)(A + )‘g)v @qn(A) =0, Ou4 = Os5 = O = F(A)a
withm=1,2,3, g n=1,...,6, ¢ #n.
Equations (4.10) and (4.12) can be rewritten in the form

1
P = 52 I'(A)JT + qi1(A) graddiv| H

+q21(A) grad L + g31(A) grad M + q41(A) grad D,
Uy = q12(A) div H + q22(A)L 4 q32(A)M + qu2(A)D,
U3 = q13(A) div H + q23(A)L + q33(A) M + qa3(A) D,
¥y = q14(A) div H + go4(A) L + g34(A)M + qaa(A) D,

where J = ||0n|l3x3 is the unit matrix.

(4.14)
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In Eq. (4.14), we have used the following notations:
1
gm1(A) = Ve (1= 02Ny 4 WPerTON o 4 wener Nis 4 weper Ny,
N* N* N*
ma(A) = —m2 m3(A) = =m3 ma(A) = =4 =1,2,3,4.
qQ() M17 q3() M17 Q4() M17 m 7737
Now, from Eq. (4.14), we have
(4.15) U(z) = R"(D,)Q(x),
where
RM R
R = HvaHﬁXG = ‘ R(3) R(4) ’
6x6
HR axs, RO = |[R{Msxs,
2
(4.16) (1) D T(A)S A 9
le( ) 52 ( )lm+Q11( )8331893,71’
(2) 9 (3) 9
ROMDy) = qromii(A)—,  RYD,) = gmer1(A)—,
i (Dx) = q1m+1( )8xl i (Dx) = Gma1,1( )3561
RY(Dx) = qr1mi(d),  r=1,2,3.

From Eqs (4.5), (4.13) and (4.15), we obtain

OU = R"F"U.

It implies that

(4.17)

We assume that

Let

R"F"™ = @, F(Dg)R(Dy) =
AN A0, Ibm=1,...,5,
Y (x) = [[YVes(X)lloxs,  Yul(x Z T1mSm (X
Yia(x) = Ys5(x) = Yoe(x Z T2mSm (X
Youw(x) =0, 1=1,2,3, v,w:l,...,ﬁ,
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where
1
Sm(x) = "I exp(tAm[x|),
5
rim= ] \=X)""  m=1,...5
I=1,l#m
4
Toy = H (A2 = 2\H~L v=1,...,4.
I=1,1#v

We will prove the following lemma:

LEMMA. The matrix Y defined above is the fundamental matrix of operator
O(A), that is,

(4.18) O(A)Y (x) = d(x)I(x).
Proof. To prove the lemma, it is sufficient to prove that
(4.19) DAY A+ XY (x) =6(x),  T(A)Yu(x) = 6(x).

Consider
21— 22+ 23— 24+ 25
1+ T2+ 3+ rie +ris = s )
6

where

5/

AD(A3 AB)(A5 = AD (NS
AD(A AD)(AF = AD (N
23 = A3 A5 (A3 = AD(A3
A3 (M A5)(A3 = A9 (A3
A3 (AT A3 = A9 (A3
A3 (AT AT = A (A3

>/ >/ >/ >/ >/ >/
D Ko G G G G
N AN SN NG NG
~—~ ~ o~ —~ ~
> > > > >
O N QN KN KN RN

A3
A
DO
A3 (%
A3 (%
A3

AAA/\/-\/-\

<)‘2 = A5 (A5 = MDA - A (AT - A2).
Upon simplifying the right-hand side of the above relation, we obtain
(4.20) r11 + 712 + 113+ r1ig + 715 = 0.
Similarly, we find that

(4.21) oA = A2 4 r13( A2 = A2) +r1a(AF = 2D +r15( N2 = N2) = 0,
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(4.22)  T13(A2 =23 (N3 =AD)+ra(AF =2 (A3 = AD) +rs(AN =25 (A3 —A3) =0,
(4.23) raAF = AD N AD N2 AD) +ris(AT =2 (A=A (M- )2D) =o.
Also,
(4.24) ri5(AT = A3) (A3 — A (A — A5 (AT — A3)
_ A=) - AN - ) (N )
B I S P PO PV PN
(4.25) (A+M)sm(x) =6(x) + (A = X2)on(x), L,m=1,...,5.
Now, let us consider the following:

(4.26) T(A)(A + M) Y1i(x)

5
= (A+AD(A+X)(A+ M)A+ AD(A+AD) Z T1mSm (X)

m=1

5
= (A+2) (A + A A+ MDA +X) Y riml6(x) + (A = A2)m(x)]

m=1

5 5
= (A+2)A+ M)A+ IDA+A)E) D rim+ Y r1m(A = A2 em(x)]
m=1 m=2

Using Eq. (4.20) in the above relation (4.26), we obtain
T(A)(A 4+ X3)Y11(x)

5
= (A+2)A+ (A +ADA +22) D 11 (A = A2)n(x)

m=2

= (A+ M)A+ ADA+AD) D rim(AF = A1) + (A = A7 )am (%))

WE

m=2
5
= (A+ADA+ADA+A2) ) rim(AT = A3 = A2)em ()
m=3
5
= (A ADA+ X)) rim(AT = AL)(A3 = A2)[6(x) + (A3 = A2 )om(x)]
m=3

oul

= (A+AD(A+A2) D rim(AT = M) (A3 =A%) (A3 = A )sm(x)
4

3
Il

5
(A+A3) D rim )3 = A0 (5 = X)) + (Af = A% )sm (x)]

m=4

= (A +X3)s5(x) = 8(x).
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Similarly to Eqs (4.20)-(4.24), we find that

(4.27) ro1 + 722 + 123 + 124 = 0,
(4.28) 791(A3 — M) 4+ rog(A3 — A3) + r2a(N3 — AF) =0,
(4.29) ro3(AT — A5)(A3 — A7) + raa(A] — AD(A5 — A3) =0,
(4.30) roa(A = MDA = AD(AF = A)) = L.

Now, we consider the second part of Eq. (4.19), that is,

L(A)Yaa(x) = (A +AD(A +A)(A + A (A + D) D ramm(x)

m=1

4
= (A + (A + ) (A + D) Y raml6(x) + (A = A2 )sm (x)]

m=1

4
= (A+ XA+ M)A+ 2D D) ram(A = A2)om(x)

m=2

4
= (A+2)(A+AD) Y ram(A = X)) + (A3 = A7)sm(x)]

m=2

5
= (A+X)A+ D) D ram(AF =A%) (A3 = A2 )om (%)
m=3
4

= (A1) D ram(AF =A%) (A3 = AL)[6(x) + (A = A7) em (%))

(A Ner) = )
We introduce the matrix
(4.31) G(x) = R(Dy)Y (x).
From Egs. (4.17), (4.18) and (4.31), we obtain
F(Dy)G(x) = F(Dx) R(DX)Y (x) = O(A)Y (x) = d(x)I(x).

Hence, G(x) is a solution to Eq. (3.7).
Therefore, we have proved the following theorem:

THEOREM. The matriz G(x) defined by the equation (4.31) is the fundamen-
tal solution of system of equations (3.2)—(3.5).
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5. Basic properties of the matrix G(x)

Property 1. Each column of the matrix G(z) is the solution of the system
of equations (3.2)-(3.5) at every point & € E? except the origin.

Property 2. The matrix G(x) can be written in the form

c) g
G = HGrsHGXG = H G(3) G(4) 5
6x6
(5.1) GV (x) = RO(Dy)V11(x), [=1,3,

6. Conclusions

The fundamental solution of a system of equations in the theory of elasto-
thermodiffusive(ETNP) semiconductor materials in case of steady oscillations in
terms of elementary functions has been constructed. The fundamental solution
G(x) of the system of equations (3.2)—(3.5) makes it possible to investigate three-
dimensional boundary value problems of generalized theories of thermoelastic
diffusion by potential method [22].
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