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1. Introduction

A material with small, distributed voids may be called porous material
or material with voids. The theory of elastic materials with voids is a recent
generalization of the classical theory of elasticity. The intended applications of
this theory are to geological materials such as rocks, soils and wood, and to
biological and manufactured porous materials. Besides the usual elastic effects,
these materials have a microstructure with an important property: the mass in
each point can be obtained as the product of two fields: the density field of the
matrix material and the volume fraction field. This representation of the bulk
density is very important because it introduces an additional degree of kinematic
freedom. Such a representation was previously used by Goodman and Cowin [1]
in order to describe the flowing granular materials.

Ieşan [2] developed a linear theory of thermoviscoelastic porous materials, in
which the time derivative of the strain tensor, the time derivative of the volume
fraction field and the time derivative of the gradient of the volume fraction
field are included in the set of independent constitutive variables. This theory
represents an extension of the theory of elastic materials with voids (see, Cowin
and Nunziato [3]) and the theory of thermoelastic materials with voids (see,



312 A. Bucur

Ieşan [4]), because it takes into consideration the memory effects. For a review
of the literature on thermoviscoelastic materials with voids the reader is referred
to [5–8].

On the other hand, it is well known that the backward in time problems
are improperly posed problems, because they fail to have a global solution, or
the solution does not depend continuously on the data, or the solution is not
unique. There are several methods to “solve" this kind of ill-posed problems.
Some of them involve changing the initial and/or boundary conditions, while
others involve constraining solutions to exist in some constraint set. A number
of non-standard problems have attracted the attention of many researchers in
the last two decades (see, for example, Ames et al. [9], Payne et al. [10], Chir-
iţă [11], Chiriţă and Ciarletta [12], Quintanilla and Straughan [13],
Ames and Payne [14], Ames et al. [15]).

Knops and Payne [16] considered a non-standard problem associated with
the linear elasticity for a prismatic cylinder and established some decay and
growth exponential estimates with respect to the axial variable for some time
integrals of the cross-sectional energy, provided the elasticity tensor is positive
definite. Similar problems were studied by Chiriţă and Ciarletta [17, 18]
when studying the theory of thermoelastic materials, and by Bulgariu [19]
within the context of the linear theory of elastic materials with voids.

In this paper, we consider a prismatic cylinder occupied by an anisotropic
inhomogeneous compressible linear thermoviscoelastic material with voids, sub-
jected to zero body force and zero lateral boundary conditions. The motion
is induced by a time-dependent displacement, porosity and temperature varia-
tion specified pointwise over the base. Moreover, we consider that the motion
is constrained such that the displacement, the volume fraction, the temperature
variation and their derivatives with respect to time are proportional, but not
identical with their initial values. The spatial behavior of the solution is studied
by means of certain time-weighted integrals of the cross-sectional energy terms.
We derive some conditions upon the proportionality coefficients in order to see
how certain integrals of the cross-sectional energy evolve with respect to the
axial variable.

The problem studied in this article finds application in geology and structural
engineering. Following Knops and Payne [16], we give an example of a pile
driven into a rigid foundation that prevents movement of the lateral bound-
ary. The time-dependent displacement, porosity and temperature variation pre-
scribed over the excited end, constrains the motion such that the displacement,
the temperature variation, the volume fraction and their derivatives with respect
to time at some given time are proportional, but not identical with, their initial
values. It is convenient to predict the deformation at each cross-section of the
pile in terms of the base displacement, porosity, and temperature variation.
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2. Basic equations and formulation of the problem

Throughout this paper, we refer the motion of a continuum to a fixed sys-
tem of Cartesian axes Oxi, (i = 1, 2, 3). We shall employ the usual summation
and differentiation conventions: Latin subscripts have the range 1, 2, 3, Greek
subscripts have the range 1, 2, summation over repeated subscripts is implied,
subscripts preceded by a comma denote partial differentiation with respect to
the corresponding Cartesian coordinate, and a superposed dot denotes partial
differentiation with respect to time. Throughout this section we assume that a
regular region B is filled by an anisotropic and inhomogeneous thermoviscoelastic
material with voids. According to Ieşan [2], the governing equations for the lin-
ear theory of anisotropic and inhomogeneous thermoviscoelastic materials with
voids are given by:

(i) the equations of motion

tji,j + ρfi = ρüi,(2.1)

Hj,j + g + ρℓ = ρκϕ̈,(2.2)

for B × (0,∞),
(ii) the equation of energy

(2.3) ρT0η̇ = Qj,j + ρS,

for B × (0,∞),
(iii) the geometrical relations

(2.4) ers = 1
2(ur,s + us,r),

in B × [0,∞), and
(iv) the constitutive equations

tij = Cijrsers + Bijϕ + Dijkϕ,k − βijθ + S∗

ij ,

Hi = Aijϕ,j + Drsiers + diϕ − aiθ + H∗

i ,

g = −Bijeij − ξϕ − diϕ,i + mθ + g∗,(2.5)

ρη = βijeij + aθ + mϕ + aiϕ,i,

Qi = kijθ,j + firsėrs + biϕ̇ + aijϕ̇,j ,

with S∗

ij , H∗

i and g∗ given by

S∗

ij = C∗

ijrsėrs + B∗

ijϕ̇ + D∗

ijkϕ̇,k + M∗

ijkθ,k,

H∗

i = A∗

ijϕ̇,j + G∗

rsiėrs + d∗i ϕ̇ + P ∗

ijθ,j ,(2.6)

g∗ = −F ∗

ij ėij − ξ∗ϕ̇ − γ∗

kϕ̇,k − R∗

jθ,j ,

for B × [0,∞).
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Here, ui are the components of the displacement vector, ϕ is the void volume
fraction, θ is the variation of temperature from the uniform reference absolute
temperature T0 > 0, tij are the components of stress tensor, Hi are the compo-
nents of the equilibrated stress vector, g is the intrinsic equilibrated force, Qi

are the components of the heat flux vector, κ is the equilibrated inertia, η is the
entropy density per unit mass, ρ is the density mass, fi are the components of
the body force vector, ℓ is the extrinsic equilibrated body force per unit mass,
and S is the heat supply per unit mass.

The constitutive coefficients are prescribed functions depending on the spatial
variable x, with the following symmetries

Cijrs = Cjirs = Crsij , Bij = Bji, Dijk = Djik, βij = βji, Aij = Aji,(2.7)

C∗

ijrs = C∗

jirs = C∗

rsij , B∗

ij = B∗

ji, D∗

ijk = D∗

jik, A∗

ij = A∗

ji,

kij = kji, M∗

ijk = M∗

jik, G∗

rsi = G∗

sri, F ∗

ij = F ∗

ji,

P ∗

ij = P ∗

ji, firs = fisr, aij = aji.

(2.8)

Furthermore, in view of the second law of thermodynamics, the Clausius–
Duhem inequality must be satisfied, which provides the positive semi-definiteness
of the total dissipation energy Λ, that is

Λ ≡ C∗

ijrsėij ėrs + ξ∗ϕ̇2 + A∗

ijϕ̇,iϕ̇,j +
1

T0
kijθ,iθ,j + (B∗

ij + F ∗

ij)ėijϕ̇(2.9)

+ (D∗

ijk + G∗

ijk)ėijϕ̇,k +

(
M∗

ijk +
1

T0
fkij

)
ėijθ,k + (d∗i + γ∗

i )ϕ̇ϕ̇,i

+

(
R∗

j +
1

T0
bj

)
ϕ̇θ,j +

(
P ∗

ij +
1

T0
aji

)
ϕ̇,iθ,j ≥ 0.

Moreover, we consider that the displacement, temperature variation, and
volume fraction are such that a classical solution exists for B × [0,∞). This
means that: (i) ui and ϕ are of class C2,2 for B × (0,∞), (ii) θ is of class C2,1

for B × (0,∞), (iii) ui, u̇i, üi, ϕ, ϕ̇, ϕ̈, ui,j , u̇i,j , ϕ,i, ϕ̇,i, θ, θ,i, and θ̇ are continuous
for B × [0,∞).

In what follows, we consider that the region B ⊂ R3 is a prismatic cylinder
whose bounded uniform cross-section D ⊂ R2 has piecewise continuously differ-
entiable boundary ∂D. We suppose that the region B is made of an anisotropic
and inhomogeneous thermoviscoelastic material with voids. The origin of the
Cartesian coordinate system is located in the cylinder’s base and the positive
x3-axis is directed along that of the cylinder. For further convenience we intro-
duce the following notation:

B(z) = {x ∈ B : z ≤ x3},
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and, moreover, we will use D(x3) to indicate that the respective quantities are
evaluated over the cross-section whose distance from the origin is x3. We denote
by Π the lateral surface of the cylinder, that is Π = ∂D × [0, L], where L is the
length of the cylinder (see Fig. 1).

Fig. 1. The cylinder under study and its dimensions.

In what follows, we consider that the displacement, the temperature vari-
ation, and the volume fraction field on the base of the cylinder are pointwise
prescribed, the supply terms are absent and zero lateral specific boundary con-
ditions are considered. Therefore, we will consider the problem described by the
following differential system:

tji,j = ρüi,(2.10)

Hj,j + g = ρκϕ̈,(2.11)

ρT0η̇ = Qj,j ,(2.12)

for B × [0, T ], subject to the lateral boundary conditions

u̇i

[
Cijrsur,s + Bijϕ + Dijkϕ,k − βijθ + S∗

ij

]
nj = 0,

ϕ̇
[
Ajiϕ,i + Drsjur,s + djϕ − ajθ + H∗

j

]
nj = 0,(2.13)

θ
[
kjiθ,i + fjrsu̇r,s + bjϕ̇ + aijϕ̇,i

]
nj = 0,
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for (x, t) ∈ Π × [0, T ], the base boundary conditions

ui(x, t) = fi(x1, x2, t), ϕ(x, t) = g(x1, x2, t), θ(x, t) = h(x1, x2, t),(2.14)

for (x, t) ∈ D(0) × [0, T ], and the final conditions at time T given by

ui(x, T ) = λui(x, 0), ϕ(x, T ) = λϕ(x, 0), θ(x, t) = µθ(x, 0),

u̇i(x, T ) = αu̇i(x, 0), ϕ̇(x, T ) = βϕ̇(x, 0), for x ∈ B.(2.15)

Here, ni are the components of the unit outward normal on Π, fi(x1, x2, t),
g(x1, x2, t), and h(x1, x2, t) are prescribed differentiable functions compatible
with the initial/final data and the lateral boundary data. The parameters λ, µ,
α, and β are prescribed and satisfy the conditions

(2.16) |λ| > 1, |µ| > 1, |α| > 1, |β| > 1.

We are interested in the study of the spatial behavior of the solution
{u, ϕ, θ}(x, t) of the non-standard problem (P) defined by the evolution equa-
tions (2.10)–(2.12), the geometrical relations (2.4), the constitutive equa-
tions (2.5), the lateral boundary conditions (2.13), the base boundary condi-
tions (2.14), and the initial-final conditions (2.15).

The conditions (2.15) are also called non-standard conditions, because when
λ = 0, µ = 0, α = 0 and β = 0 this leads to an improperly posed problem.
In what follows, we are interested in determining a range of values for the λ,
µ, α and β for which the problem is well-posed and to obtain spatial estimates
which describe how the solution evolves with respect to the distance from the
cylinder’s base.

Note that the standard problem (the forward in time problem) associated
with the linear theory of thermoviscoelastic materials with voids has been studied
by Ieşan in [2].

3. Constitutive hypotheses and auxiliary estimates

In what follows, we assume some constitutive hypotheses that are necessary
for the study of the spatial behavior of the solution to the problem (P) (defined
in Section 2). Therefore, we suppose that ρ, κ, and the constitutive coefficients
are continuous and bounded fields on B and

(3.1) ρ(x) ≥ ρ0 > 0, a(x) ≥ a0 > 0, κ(x) ≥ κ0 > 0,

with ρ0, a0, and κ0 positive constants.



On spatial behavior of the solution of a non-standard problem 317

Moreover, we suppose that the dissipation energy density Λ is a positive
quadratic form in terms of ėij , ϕ̇, ϕ̇,i, and θ,i, so there exist µ∗

m, µ∗

M , ν∗

m, ν∗

M , γ∗

m,
γ∗

M , km, and kM such that

(3.2) Λ ≤ µ∗

M ėij ėij + ν∗

M ϕ̇2 + γ∗

Mκ0ϕ̇,iϕ̇,i +
1

T0
kMθ,iθ,i,

and

(3.3) Λ ≥ µ∗

mėij ėij + ν∗

mϕ̇2 + γ∗

mκ0ϕ̇,iϕ̇,i +
1

T0
kmθ,iθ,i.

We also assume that the specific internal energy W defined by

(3.4) W =
1

2
Cijrseijers +

1

2
ξϕ2 +

1

2
Aijϕ,iϕ,j + Bijeijϕ + Dijkeijϕ,k + diϕϕ,i,

is a positive quadratic form in terms of the variables eij , ϕ, and ϕ,i. Therefore,
there exist positive constants µm and µM such that

(3.5) µm(eijeij + ϕ2 + κ0ϕ,iϕ,i) ≤ 2W ≤ µM (eijeij + ϕ2 + κ0ϕ,iϕ,i).

In what follows, we will establish some estimates that we will use further to
prove the spatial behavior of the solution to the non-standard problem (P).

Following [8], we introduce the linear space D4 as the set of all four-dimensio-
nal displacements fields U defined by

(3.6) U := {ui,
√

κ0ϕ}.

For every U ∈ D4, we consider the state of strain E(U) defined by

(3.7) E(U) := {eij(U), ϕ,
√

κ0ϕ,i(U)}.

We will denote by E the vector space of all objects of the form (3.7). For every
state E ∈ E , we introduce the field

(3.8) S(E) =

{
Sij(E), G(E),

1√
κ0

hi(E)

}
,

where

Sij(E) = Cijrsers + Bijϕ + Dijkϕ,k,(3.9)

G(E) = −Bijeij − ξϕ − diϕ,i,(3.10)

hi(E) = Aijϕ,j + Drsiers + diϕ.(3.11)
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Throughout the following, we consider the bilinear form defined by

G(E(1),E(2)) =
1

2

[
Cijrse

(1)
ij e(2)

rs + ξϕ(1)ϕ(2) + Aijϕ
(1)
,i ϕ

(2)
,j(3.12)

+ Bij(e
(1)
ij ϕ(2) + e

(2)
ij ϕ(1)) + Dijk(e

(1)
ij ϕ

(2)
,k + e

(2)
ij ϕ

(1)
,k )

+ di(ϕ
(1)ϕ

(2)
,i + ϕ(2)ϕ

(1)
,i )

]
,

for every E
(α)(U) ∈ E , α = 1, 2, where

E
(α)(U) =

{
eij(U

(α)), ϕ(U(α)),
√

κ0ϕ,i(U
(α))

}
.

We can remark that

(3.13) G(E,E) = W(E), ∀ E ∈ E .

Moreover, by using the Cauchy–Schwarz inequality, we can write

(3.14) G(E(1),E(2)) ≤ [W (E(1))]1/2[W (E(2))]1/2, ∀ E
(1),E(2) ∈ E .

On the other hand, according to Eqs. (3.9)-(3.11), we have

|S(E)|2 = Sij(E)Sij(E) + G2(E) +
1

κ0
hi(E)hi(E)(3.15)

= CijrsersSij + BijϕSij + Dijkϕ,kSij − BijeijG − ξϕG

− diϕ,iG +
1

κ0
Aijϕ,jhi +

1

κ0
Drsiershi +

1

κ0
diϕhi.

If we introduce the following notation:

(3.16) Γ (E) =

{
Sij(E),−G(E),

1√
κ0

hi(E)

}
,

then, from (3.15) we get

(3.17) |S(E)|2 = 2G(E, Γ (E)).

From the assumption that W (E) is a positive definite quadratic form, we obtain

(3.18) 2W (Γ (E)) ≤ µM

(
SijSij + G2 +

1

κ0
hihi

)
,

and consequently, by means of the Cauchy–Schwarz inequality and relation
(3.18), we get

(3.19) Sij(E)Sij(E) +
1

κ0
hi(E)hi(E) ≤ 2µMW (E), ∀ E ∈ E .
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In view of the relations (2.5), (2.6), and (3.9)–(3.11), we can write

tijtij +
1

κ0
HiHi ≤ 2

[
(Sij − βijθ)(Sij − βijθ) +

1

κ0
(hi − aiθ)(hi − aiθ)(3.20)

+ S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i

]
.

We recall that for all second-order tensors Mij , Nij and every positive number
ε, the following inequality holds

(3.21) (Mij + Nij)(Mij + Nij) ≤ (1 + ε)MijMij +

(
1 +

1

ε

)
NijNij .

Therefore, applying (3.21) in (3.20), we obtain

tijtij +
1

κ0
HiHi ≤ 2

[
(1 + ε)

(
SijSij +

1

κ0
hihi

)
+

(
1 +

1

ε

)
M2θ2(3.22)

+ S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i

]
,

where

(3.23) M2 = max
x∈B

(
βijβij +

1

κ0
aiai

)
.

Moreover, with the aid of the inequality established in (3.19), we get

tijtij +
1

κ0
HiHi ≤ 4µM (1 + ε)W (E) + 2

(
1 +

1

ε

)
M2θ2(3.24)

+ 2

(
S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i

)
,

for all ε > 0.

We proceed now to estimate S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i . According to the constitutive

equations (2.6), we can write

(3.25) S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i = C∗

ijrsėrsS
∗

ij + B∗

ijϕ̇S∗

ij + D∗

ijkϕ̇,kS
∗

ij + M∗

ijkθ,kS
∗

ij

+
1

κ0
A∗

ijϕ̇,jH
∗

i +
1

κ0
G∗

rsiėrsH
∗

i +
1

κ0
d∗i ϕ̇H∗

i +
1

κ0
P ∗

ijθ,jH
∗

i .

In order to obtain an estimation for S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i , we must evaluate every

term of (3.25). For instance, we have
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(3.26) C∗

ijrsėrsS
∗

ij +
1

κ0
G∗

rsiėrsH
∗

i

≤ (C∗

mnpqC
∗

mnpq)
1/2(ėrsS

∗

ij ėrsS
∗

ij)
1/2

+

(
1

κ0
G∗

mnpG
∗

mnp

)1/2(
ėrsėrs

1

κ0
H∗

i H∗

i

)1/2

≤ (C∗

mnpqC
∗

mnpq)
1/2(ėrsėrs)

1/2(S∗

ijS
∗

ij)
1/2

+

(
1

κ0
G∗

mnpG
∗

mnp

)1/2

(ėrsėrs)
1/2

(
1

κ0
H∗

i H∗

i

)1/2

,

and hence we obtain

C∗

ijrsėrsS
∗

ij +
1

κ0
G∗

rsiėrsH
∗

i ≤ α1(ėrsėrs)
1/2

(
S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i

)1/2

,

with

(3.27) α1 = max
x∈B

[(
C∗

mnpqC
∗

mnpq

)1/2
+

(
1

κ0
G∗

mnpG
∗

mnp

)1/2]
.

Applying the same procedure to the other terms of (3.27), we get

S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i ≤
[
α1(ėrsėrs)

1/2 + α2|ϕ̇| + α3(κ0ϕ̇,jϕ̇,j)
1/2(3.28)

+ α4

(
1

T0
θ,jθ,j

)1/2](
S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i

)1/2

,

with

α2 = max
x∈B

[
(B∗

mnB∗

mn)1/2 +

(
1

κ0
d∗md∗m

)1/2]
,

α3 = max
x∈B

[(
1

κ0
D∗

mnpD
∗

mnp

)1/2

+

(
1

κ2
0

A∗

mnA∗

mn

)1/2]
,(3.29)

α4 = max
x∈B

[
(T0M

∗

mnpM
∗

mnp)
1/2 +

(
T0

κ0
P ∗

mnP ∗

mn

)1/2]
,

and α1 given by (3.27). Thus, the inequality (3.28) can be written in the following
form:

S∗

ijS
∗

ij +
1

κ0
H∗

i H∗

i ≤ 4

[
α2

1ėij ėij + α2
2ϕ̇

2 + α2
3κ0ϕ̇,iϕ̇,i + α2

4

1

T0
θ,iθ,i

]
.
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Hence, we obtain the following estimation:

(3.30) S∗

ijS
∗

ij +
1

κ
H∗

i H∗

i ≤ ℵMΛ1,

with

(3.31) Λ1 =
µ∗

m

2
ėij ėij +

ν∗

m

2
ϕ̇2 +

γ∗

m

2
κ0ϕ̇,iϕ̇,i +

1

2T0
kmθ,iθ,i,

and

ℵM = max
x∈B

{
8α2

1

µ∗
m

,
8α2

2

ν∗
m

,
8α2

3

γ∗
m

,
8α2

4

km

}
.

Therefore, a consequence of the relations (3.30) and (3.23) is the following:

(3.32) tijtij +
1

κ0
HiHi ≤ 4µM (1 + ε)W (E) + 2

(
1 +

1

ε

)
M2θ2 + 2ℵMΛ1.

In order to estimate QiQi, we introduce the following notations:

qi = kijθ,j ,

q̃i = firsėrs + biϕ̇ + aijϕ̇,j .(3.33)

Thus, we can write

(3.34) qiqi ≤ (T0krskrs)
1/2

(
1

T0
θ,jθ,j

)1/2

(qiqi)
1/2,

so that we derive

(3.35) qiqi ≤ 2KM

(
1

2T0
kmθ,iθ,i

)
,

where

KM =
krskrsT0

km
.

In a similar way, from (3.33) it follows that

q̃iq̃i = (firsėrs + biϕ̇ + aijϕ̇,j)q̃i(3.36)

≤
[
(fmnpfmnp)

1/2(ėrsėrs)
1/2 + (bmbm)1/2|ϕ̇|

+

(
1

κ0
amnamn

)1/2

(κ0ϕ̇,jϕ̇,j)
1/2

]
(q̃iq̃i)

1/2.



322 A. Bucur

If we denote by

(3.37)

ϑ1 = max
x∈B

(fmnpfmnp)
1/2, ϑ2 = max

x∈B
(bmbm)1/2,

ϑ3 = max
x∈B

(
1

κ0
amnamn

)1/2

,

then, in view of the relation (3.36) we obtain

q̃iq̃i ≤ 3(ϑ2
1ėij ėij + ϑ2

2ϕ̇
2 + ϑ2

3ϕ̇,iϕ̇,i)(3.38)

≤ iM

(
µ∗

m

2
ėij ėij +

ν∗

m

2
ϕ̇2 +

γ∗

m

2
κ0ϕ̇,iϕ̇,i

)
,

with

iM = max
x∈B

{
6ϑ2

1

µ∗
m

,
6ϑ2

2

ν∗
m

,
6ϑ2

3

γ∗
m

}
.

By using relations (3.21) and (3.33) we obtain

(3.39) QiQi ≤ (1 + ε′)qiqi +

(
1 +

1

ε′

)
q̃iq̃i,

for every ε′ > 0.
Consequently, by means of (3.35), (3.38) and (3.39), we obtain the following

estimation for QiQi:

(3.40) QiQi ≤ 2KM (1 + ε′)Λ2 + iM

(
1 +

1

ε′

)
Λ3,

where

Λ2 =
km

2T0
θ,iθ,i,(3.41)

Λ3 =
µ∗

m

2
ėij ėij +

ν∗

m

2
ϕ̇2 +

γ∗

m

2
κ0ϕ̇,iϕ̇,i.(3.42)

4. Spatial behavior

In this section we will study the spatial behavior of the solution to the non-
standard problem (P) defined previously. In order to do that, we introduce the
following function:

(4.1) I(x3) =

T∫

0

∫

D(x3,τ)

e−στ
(
t3iu̇i + H3ϕ̇ +

1

T0
Q3θ

)
da dτ, x3 ∈ [0, L],

with σ a positive parameter at our disposal whose values will be explicitly given
later. In the above relation we have used the notation D(x3, τ) to indicate that
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relevant quantities are to be evaluated at time τ over the cross-section of the
cylinder whose distance from the origin is x3.

By differentiation with respect to x3 in (4.1), and by using the evolution
equations (2.10)–(2.12), we obtain

dI

dx3
(x3) = −

T∫

0

∫

∂D(x3,τ)

e−στ

(
tαinαu̇i + Hαnαϕ̇ +

1

T0
Qαnαθ

)
ds dτ(4.2)

+

T∫

0

∫

D(x3,τ)

e−στ

[
∂

∂τ

(
1

2
ρu̇iu̇i +

1

2
ρκϕ̇2

)
+ tij ėij + Hiϕ̇,i

− gϕ̇ + ρη̇θ +
1

T0
Qiθ,i

]
da dτ.

In view of the lateral boundary conditions (2.13) and the constitutive equations
(2.5), we obtain

dI

dx3
(x3) =

T∫

0

∫

D(x3,τ)

e−στ

[
1

2

∂

∂τ
(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) + Λ

]
da dτ(4.3)

=

T∫

0

∫

D(x3,τ)

e−στ

[
σ

2
(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) + Λ

]
da dτ

+

∫

D(x3,T )

1

2
e−σT (ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W )da

−
∫

D(x3,0)

1

2
(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W )da.

Therefore, if we use the constraint relations (2.15), we obtain

dI

dx3
(x3) =

T∫

0

∫

D(x3,τ)

e−στ

[
σ

2
(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) + Λ

]
da dτ(4.4)

+
α2e−σT − 1

2

∫

D(x3,0)

ρu̇iu̇ida +
β2e−σT − 1

2

∫

D(x3,0)

ρκϕ̇2 da

+
µ2e−σT − 1

2

∫

D(x3,0)

aθ2 da +
λ2e−σT − 1

2

∫

D(x3,0)

2W da.
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Let us assume that the conditions (2.16) hold true. Then, it is possible to
choose the parameter σ so that we have

(4.5) λ2e−σT − 1 > 0, µ2e−σT − 1 > 0, α2e−σT − 1 > 0, β2e−σT − 1 > 0.

Therefore, we will assume that σ ranges in the set

(4.6) 0 < σ <
2

T
min
x∈B

{ln|λ|, ln|µ|, ln|α|, ln|β|}.

Further, we establish

(4.7) 0 < κσ = 1
2 min

B
{λ2e−σT − 1, µ2e−σT − 1, α2e−σT − 1, β2e−σT − 1},

and note that

dI

dx3
(x3) ≥ κσ

∫

D(x3,0)

(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) da(4.8)

+

T∫

0

∫

D(x3,τ)

e−στ

[
σ

2
(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) + Λ

]
da dτ.

It is easy to observe that in view of assumptions of the positive definiteness of
the internal energy density W and the dissipation energy density Λ, we obtain
that I(x3) is a non-decreasing function with respect to x3 on [0, L].

In what follows, we want to obtain an appropriate estimate for the function
I(x3). Therefore, by using the Schwarz inequality in (4.1), we obtain

(4.9) |I(x3)| ≤
1

2

T∫

0

∫

D(x3,τ)

e−στ

[
ε1

ρ0

(
tijtij +

1

κ0
HiHi

)
+

1

ε1
(ρu̇iu̇i + ρκϕ̇2)

+
ε2

a0T0
QiQi +

1

ε2T0
aθ2

]
da dτ,

for every ε1, ε2 positive numbers. According to the estimates (3.24), (3.30), and
(3.39), we can write

|I(x3)| ≤
T∫

0

∫

D(x3,τ)

e−στ

{
1

ε1σ

σ

2
(ρu̇iu̇i + ρκϕ̇2) +

2µMε1(1 + ε)

ρ0σ
σW(4.10)

+

[
2ε1M

2

ρ0a0σ

(
1 +

1

ε

)
+

1

ε2T0σ

]
σ

2
aθ2 +

ε2KM (1 + ε′)

a0T0
Λ2

+
ε2iM

2a0T0

(
1 +

1

ε′

)
Λ3

}
da dτ +

T∫

0

∫

D(x3,τ)

e−στ ε1ℵM

ρ0
Λ1da dτ.
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Further, we equate the coefficients of the various energy terms of the last
integral:

1

ε1σ
=

2µMε1(1 + ε)

ρ0σ
=

2ε1M
2

ρ0a0σ

(
1 +

1

ε

)
+

1

ε2T0σ

=
ε2KM (1 + ε′)

a0T0
=

ε2iM

2a0T0

(
1 +

1

ε′

)
.

Therefore, we set

ε1 =
1

c
, ε2 =

2a0T0c

σ(2KM + iM )
, ε′ =

iM

2KM
,(4.11)

where

c =

√
2µM (1 + ε)

ρ0
,(4.12)

and

(4.13) ε =
1

2

[
−1 +

M2

µMa0
+

ρ0σiM

4µMa0T 2
0

+
ρ0σKM

2µMa0T 2
0

+

√(
1 − M2

µMa0
− ρ0σiM

4µMa0T 2
0

− ρ0σKM

2µMa0T 2
0

)2

+
4M2

µMa0

]
.

With these choices, the relation (4.10) becomes

(4.14) |I(x3)| ≤
ω

σ

T∫

0

∫

D(x3,τ)

e−στ

[
σ

2
(ρu̇iu̇i + ρκϕ̇2 + aθ2) + σW + 2Λ1

]
da dτ,

where

(4.15) ϑ = max
X∈B

{
c,

σαMε1

ρ0

}
.

Therefore, we obtain the following first-order differential inequality:

(4.16)
σ

ω
|I(x3)| ≤

dI

dx3
(x3), ∀x3 ∈ [0, L].

In order to discuss the implications of (4.16), we first have to observe that
the non-decreasing function I(x3) implies only two possibilities:
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(i) I(x3) ≤ 0 for all x ∈ [0, L]
or

(ii) there exists x∗

3 ∈ [0, L] so that I(x∗

3) > 0.

Let us consider the case (i). If we assume that I(x3) ≤ 0, ∀x3 ∈ [0, L], then the
differential inequality (4.16) implies that

(4.17)
dI

dx3
(x3) +

σ

ω
I(x3) ≥ 0, for all x3 ∈ [0, L].

By integrating the above relation, we obtain the following decay estimate of
Saint-Venant type:

(4.18) 0 ≤ −I(x3) ≤ −I(0)e−
σ
ω

x3 , for all x3 ∈ [0, L].

If we consider the case of a semi-infinite cylinder (i.e., the case when L → ∞),
then the relation (4.18) proves that I(x3) → 0 as x3 → ∞. Moreover, the relation
(4.8) gives us the following decay estimate:

(4.19) E(x3) ≤ −I(0)e−
σ
ω

x3 , for all x3 ∈ [0,∞),

with

E(x3) = κσ

∫

D(x3,0)

(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W )dv

+

T∫

0

∫

D(x3,τ)

e−στ

[
σ

2
(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) + Λ

]
dv dτ.(4.20)

We consider now the case (ii). If we suppose that there exists x∗

3 ∈ [0, L]
so that I(x3) > 0, then, by taking into account that I(x3) is a non-decreasing
function with respect to x3, we obtain that

I(x3) ≥ I(x∗

3) > 0, for all x3 ∈ [x∗

3, L].

Therefore, in view of the relation (4.16) we obtain the following differential
inequality:

(4.21)
dI

dx3
(x3) −

σ

ω
I(x3) ≤ 0, for all x3 ∈ [x∗

3, L],

which after integration furnishes the following growth estimate:

(4.22) I(x3) ≥ I(x∗

3)e
σ
ω

(x3−x∗

3), for all x3 ∈ [x∗

3, L].

For a semi-infinite cylinder the above relation proves that I(x3) becomes un-
bounded for asymptotically large values of x3, and hence E(x3) becomes un-
bounded for L → ∞. Therefore, we have obtained for the semi-infinite cylinder,
an alternative of Phragmén–Lindelöf type.
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5. Further comments

Our analysis in this work was developed under the assumptions that the
constraint parameters |λ| > 1, |µ| > 1, |α| > 1 and |β| > 1. When we use other
values for the constraint parameters, we can observe that it is not possible to
develop an analysis similar with the one obtained in the previous section. For
example, if we take the conditions |λ| < 1, |µ| < 1, |α| < 1 and |β| < 1, then we
will obtain an ill-posed problem (see, Quintanilla and Straughan [13]).

In Section 4 we have considered the non-standard problem (P) described by
the evolution equations (2.10)-(2.12), the lateral boundary conditions (2.13), the
base boundary conditions (2.14), and the final conditions (2.15), in which the
displacement and the volume fraction have the same proportionality coefficient.

In what follows, we consider a similar non-standard problem (P), but in-
stead of the initial-final conditions (2.15), we take the following more general
conditions:

(5.1)
ur(x, T ) = λur(x, 0), ϕ(x, T ) = γϕ(x, 0), θ(x, t) = µθ(x, 0),

u̇r(x, T ) = αu̇r(x, 0), ϕ̇(x, T ) = βϕ̇(x, 0), for x ∈ B.

We want to see what conditions we would have to take for the proportionality
coefficients λ, γ, µ, α, and β, so that our just presented study may follow the same
path.

According to the assumption that the internal energy density W is a positive
definite quadratic form, we obtain

(5.2)

∫

D(x3,T )

2W da ≥ µm

∫

D(x3,T )

(eijeij + ϕ2 + κ0ϕ,iϕ,i) da.

If we use now the conditions (5.1), we get

(5.3)

∫

D(x3,T )

2W da ≥ µmλ2

∫

D(x3,0)

eijeij da + µmγ2

∫

D(x3,0)

(ϕ2 + κ0ϕ,iϕ,i) da.

On the other hand, from (3.5) we can write

∫

D(x3,0)

2W ≤ µM

∫

D(x3,0)

(eijeij + ϕ2 + κ0ϕ,iϕ,i) da.(5.4)
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If we combine the relations (5.3) and (5.4), we obtain

(5.5)
1

2
e−σT

∫

D(x3,T )

2W da − 1

2

∫

D(x3,0)

2W da

≥ 1

2

(
µmλ2e−σT

µM
− 1

) ∫

D(x3,0)

µMeijeij da

+
1

2

(
µmγ2e−σT

µM
− 1

) ∫

D(x3,0)

µM (ϕ2 + κ0ϕ,iϕ,i) da.

Therefore, in this case, instead of relation (4.4), we will have

(5.6)
dI

dx3
(x3) ≥

T∫

0

∫

D(x3,τ)

e−στ

[
σ

2
(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) + Λ

]
da dτ

+
1

2
(α2e−σT − 1)

∫

D(x3,0)

ρu̇iu̇i da +
1

2
(β2e−σT − 1)

∫

D(x3,0)

ρκϕ̇2 da

+
1

2
(µ2e−σT − 1)

∫

D(x3,0)

aθ2 da +
1

2

(
µmλ2e−σT

µM
− 1

) ∫

D(x3,0)

µMeijeij da

+
1

2

(
µmγ2e−σT

µM
− 1

) ∫

D(x3,0)

µM (ϕ2 + κ0ϕ,iϕ,i) da.

We will choose the parameter σ so that we have

0 < κσ =
1

2
min

B

{
α2e−σT − 1, β2e−σT − 1, µ2e−σT − 1,

µmλ2e−σT

µM
− 1,

µmγ2e−σT

µM
− 1

}
.

Thus, we can assume that σ ranges in the set

(5.7) 0 < σ <
1

T
min

B

{
lnα2, ln β2, ln µ2, ln

λ2µm

µM
, ln

γ2µm

µM

}
,

if the following conditions hold true:

(5.8) |α| > 1, |β| > 1, |µ| > 1, |λ| >

√
µM

µm
> 1, |γ| >

√
µM

µm
> 1.
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With these choices, we can write (5.6) in the following form:

dI

dx3
(x3) ≥ κσ

∫

D(x3,0)

(ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W ) da(5.9)

+

T∫

0

∫

D(x3,τ)

e−στ

[
σ

2

(
ρu̇iu̇i + ρκϕ̇2 + aθ2 + 2W

)
+ Λ

]
da dτ.

So, we can continue to determine spatial estimates of Saint–Venant type or an
alternative of Phragmén–Lindelöf type, following the same procedure as in the
previous section.

In conclusion, if instead of conditions (2.15) we have (5.1), then the results
obtained in Section 4 hold true if the parameters λ, γ, µ, α and β meet the
conditions (5.8).
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