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In this paper a set of simple governing equations of shape-memory alloys was
derived by introducing some assumptions and a formula giving temperature varia-
tion was obtained by integrating one of the governing equations. The factors affecting
the temperature variation depending on loading frequency were analytically investi-
gated from the formula. The obtained temperature variation agreed qualitatively with
the measured data. The calculated stress-strain-temperature relationship also agreed
qualitatively with the measured data. It was found from the formula that the temper-
ature vibrates sinusoidally and approaches a certain value asymptotically, and that
the temperature variation is affected by the ratio of frequency to heat transfer and
the ratio of latent heat to generated heat.
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1. Introduction

Shape-memory alloys (SMAs), having unique properties such as shape mem-
ory effect and superelasticity, are applied in a wide range of fields such as
aerospace, medical and livingware [1, 2]. However, deformation behaviour based
on phase transformation is complicated since it depends on temperature and
loading frequency as well as loading history. Accordingly, to understand the
mechanism of such complicated behaviour and to optimally design products in-
cluding SMAs, fundamental experimental data and mathematical models are
necessary and many experimental and mathematical studies are performed.

With respect to fundamental aspects, Otsuka and Wayman [1] edited
a book on shape-memory materials and Otsuka and Ren [3] presented a review
of physical metallurgy including phase diagram, crystal structures, the mecha-
nism of martensitic transformations, the effect of composition and thermome-
chanical treatment and so on. Shaw et al. [4–8] published a series of articles
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on experimental characterization of TiNi SMA wires. They introduced thermo-
mechanical phenomena occurring in SMA wires and tips in their experiments.
As mentioned above, the properties of SMAs such as temperature, stress versus
strain relationship and damping capacity are strongly affected by the loading
frequency, which is observed in experiments [9–16]. Also, in Part 4 [7] thermome-
chanical coupling effects in superelastic SMA was presented and it was concluded
that rate sensitivity during stress-induced transformation comes from heat trans-
fer characteristics in the surrounding environment, latent heat exchanges and
temperature-dependent transformation stress. Recently, Yin et al. [17] have per-
formed systematic experiments for a superelastic SMA bar specimen over a wide
range of strain loading frequencies in stagnant air and showed detailed transient
and saturated stress and temperature response against the loading frequency.

Figures 1a and 1b, respectively, show stress versus strain curves and temper-
ature difference from surrounding air versus strain curves of a TiNi-SMA wire
with a diameter of 0.75 mm (Kantoc, material code EF3256) for the first cy-
cle of cyclic strain loading. This cyclic test was performed with a fatigue test
machine (Shimadzu EHF-FB10kN-10LA), and the temperature was measured
by a T-type thermocouple with a diameter of 0.025 mm (OMEGA Engineering,
COCO-001) fixed in the middle of the wire [15]. Before this measurement one
hundred training cycles were given to suppress the transition of the wire prop-
erties due to initial plastic deformation. The black short dashed lines, the red
chained lines, the blue dashed lines and the green line represent the relationships
for loading frequencies of 0.001 Hz, 0.01 Hz, 0.1 Hz and 1 Hz, respectively. For
the frequency of 0.001 Hz, since the temperature is assumed to vary little, the

a) Stress-strain curves b) Temperature-strain curves

Fig. 1. Measured stress-strain-temperature curves for various loading frequencies.
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stress keeps a constant value during the phase transformation in the stress versus
strain curve. For the frequency of 0.01 Hz, since the temperature increases by
8 K from the surrounding air during the loading and decreases by 6 K during
the unloading, the forward transformation stress becomes higher and the reverse
transformation stress becomes lower than those for 0.001 Hz. For the frequencies
of 0.1 Hz and 1 Hz, the temperature monotonically increases during the loading
and monotonically decreases during the unloading, both the stress versus strain
curves during the loading and the unloading become curves rising from the bot-
tom left to top right. It is noted that the temperature increases after the cycle at
1 Hz, although it decreases after the cycle at other frequencies. Figures 2a and 2b
show temperature variations for loading frequencies of 0.1 Hz and 1 Hz, respec-
tively. The amplitude of the variation is about 10 K for both frequencies, and
the mean temperature gradually decreases for 0.1 Hz while it increases for 1 Hz.

a) 0.1 Hz b) 1 Hz

Fig. 2. Measured temperature variation.

As can be seen, the temperature variation changes depending on the load-
ing frequency and it plays an important role in the deformation behaviour of
SMAs. Accordingly, it is important to investigate the factors of the temperature
variation analytically to predict the deformation behaviour.

To understand the phenomena observed in experiments and design systems
including SMA elements, several types of constitutive models have been estab-
lished [18, 19]. For example, Falk [20] proposed a model which obtains stress
versus strain relationship by differentiating a free energy function assumed to
be a polynomial of strain and temperature. Müller [21] and Seelecke [22]
expressed the free energy function as the sum of free energy functions multi-
plied by a fraction of each phase and additionally introduced interfacial en-
ergy between the domains. These models cannot duplicate stable hysteretic be-
haviour because energy dissipation during phase transformation is not consid-
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ered. Bertram [23], Tanaka [24], Liang and Rogers [25], Brinson [26], Sun
and Hwang [27], Boyd and Lagoudas [28], Raniecki et al. [29], Ivshin and
Pence [30], Leclercq and Lexcellent [31], Kamita and Matsuzaki [32],
Matsuzaki et al. [33], Auricchio and Sacco [34] and others have presented
models which express the transformation process between martensitic phase
and austenite phase or/and among martensitic variants by considering inter-
nal variables and the energy dissipation such as models in plastic deformation.
The historical summary of these types of models was presented by Machado
and Lagoudas [18]. Patoor et al. [35], Gall and Sehitoglu [36] and Nae
et al. [37] presented models which obtain macroscopic behaviour by averag-
ing variables in microscopic behaviour of individual grains where shape mem-
ory alloy was assumed to be composed of a number of grains. Graesser and
Cozzarelli [38] and Ortín [39] drew hysteresis mathematically without respect
to the detailed physical phenomena. As it is observed in the experiments the de-
formation behaviour strongly depended not only on temperature variation but
also on loading-rate. Although many constitutive models are developed, most
of them are temperature-dependent but rate-independent models. The effect of
loading-rate can be discussed by taking into account an energy flow balance
equation (a heat equation) in the temperature-dependent constitutive models
[28 (adiabatic), 29, 30, 33, 34]. The energy flow balance equation, which will be
shown later, is composed of the terms of temperature variation (sensible heat),
heat sources (latent heat, thermoelastic effect and heat generation due to internal
friction) and heat transfers (heat convection and heat conduction). Accordingly,
the temperature variation is determined by the competition between the rate of
heat release from the heat sources and the rate of heat transfer, and the rate-
dependent stress versus strain relationship can be calculated by substituting the
temperature variation into a temperature-dependent constitutive model.

Ikeda and his co-workers [37, 40–43] have proposed several types of con-
stitutive models with an energy-based transformation criterion. To understand
the behaviour of partial transformation theoretically, they proposed a grain-
based micromechanical constitutive model [37]. By mathematically increasing
the number of grains to infinity in the micromechanical model, another type of
lumped parameter model referred to as the one-dimensional (1D) phase trans-
formation model was obtained [40, in the paper this model was referred to as
the shift and skip model]. Moreover, this model was extended so as to be able to
describe tension-compression asymmetric behaviour [41, 42] and tension-torsion
behaviour [43]. These models include the energy flow balance equation.

Figures 3a and 3b, respectively, show the comparison of stress versus strain
curve [44] and temperature versus strain curves between the calculation obtained
by using the 1D phase transformation model and the experimental data. The
symbols represent the experimental data and the curves are the calculated values.
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a) Stress-strain curves b) Temperature-strain curves

Fig. 3. Comparison of stress-strain-temperature curves between the 1D phase
transformation model and the experiment.

It is seen that the 1D phase transformation model can quantitatively capture
the features of the effect of loading frequency.

However, even though the 1D phase transformation model can quantitatively
duplicate the stress-strain-temperature behaviour depending on the loading fre-
quency , it is not clear what factors explicitly affect the temperature variation.
He and Sun [16] divided the cycle into five characteristic stages and solved the
heat transfer equations for each phase of the stages. The five stages were: (1) elas-
tic loading stage, (2) forward transformation stage, (3) elastic unloading stage,
(4) reverse transformation stage and (5) elastic unloading stage. As a result the
mean temperature variation and the amplitude depending on the strain rate were
discussed. However, in the formulae it is still not easy to see the contribution of
the parameters. Yin et al. [17] also analysed the temperature variation and the
hysteresis loop area observed in their experiments. An explicit formulation of
temperature was obtained from a simplified heat transfer equation by assuming
sinusoidal strain loading and heat generation proportional to the square of the
strain rate. To calculate the hysteresis loop area, Clausius–Clapeyron relation-
ship with the calculated temperature was added to an isothermal stress versus
strain relationship.

In this paper, in order to investigate the factors analytically, the 1D phase
transformation model [40–43] is simplified by introducing some assumptions so
that the temperature variation can be obtained by simple integration. Although
explicit formulae of temperature and stress will be similar to Yin et al.’s for-
mulae as a result, their derivations are different. Using the obtained formula,
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general properties of the factors causing the temperature variation depending on
the loading frequency are analysed by using normalized factors and frequency.
Additionally, by using the temperature variation obtained by substituting typ-
ical material and environmental constants, the corresponding stress variation
is calculated and validity of the simplified model is shown by comparing the
calculated stress-strain-temperature relationship with the experimental data.

2. Governing equations

The governing equations, which can duplicate the thermodynamic behaviour
of shape-memory alloys, are comprised of the following three equations [40–43]:
the phase transformation criterion,

(2.1)
1

2
σ2

(
1

Eβ
− 1

Eα

)
+ σ(εβ − εα) + (sβ − sα)(T − Tα↔β)

= Ψα→β [zα1]

= Ψc1 + Ψc2{1 − a−zα1
1 + ba

−(1−zα1)
2 },

the constitutive equation,

(2.2) ε = σ
∑

α

zα

Eα
+

∑

α

εαzα + αT (T − Ts),

and the energy flow balance equation,

(2.3) C
dT

dt
+

∑

α→β

(sβ − sα)T
dzα→β

dt
+ αT T

dσ

dt

= −h
A

V
(T − Ts) +

∑

α→β

Ψα→β
dzα→β

dt
.

In the above equations σ is the stress, Eα is the Young’s modulus of phase α, εα is
the intrinsic strain of phase α, sα is the entropy of phase α, T is the temperature
of the material, Tα↔β is the ideal reversible transformation temperature between
phase α and phase β, Ψα→β is the energy required when phase α transforms into
phase β due to the dissipation such as internal friction and zα1 is the variable
related to the volume fraction of phase α. It is known that the required transfor-
mation energy can be approximated by the sum of two exponential functions in
terms of the volume fraction. Ψc1, Ψc2, a1, b and a2 are material constants and
the set of the constants take each set of values for each transformation. In the
constitutive equation ε is the strain, zα is the volume fraction of phase α, αT is
the linear coefficient of expansion and Ts is the surrounding temperature. In the
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energy flow balance equation C is the specific heat capacity, t is the time, zα→β

is the volume fraction transforming from phase α to phase β, h is the coefficient
of conduction and A/V is the area/volume. α and β are A for austenite phase
or M for martensitic phase in this paper.

The transformation criterion means that during the transformation process
the thermomechanical driving energy of the left-hand side is equal to the required
transformation energy of the right-hand side. The strain is assumed to be the sum
of the elastic strain, the transformation strain and the thermal strain. The energy
flow balance equation is comprised of the sensible heat, the latent heat, the
thermoelastic effect, the heat exchange between the SMA and the surrounding
air and the heat generated due to the internal friction.

First, the phase transformation criterion is simplified. If it is assumed that
EM = EA = E and ΨA→M = ΨM→A = Ψ = constant, Eq. (2.1) is reduced to

(2.4)

{
σA→M∆ε − ∆s(T − Tα↔β) = Ψ,

−σM→A∆ε + ∆s(T − Tα↔β) = Ψ,

and the transformation stresses are obtained as

(2.5)





σA→M =
∆s

∆ε
(T − TA↔M ) +

Ψ

∆ε
,

σM→A =
∆s

∆ε
(T − TA↔M ) − Ψ

∆ε
,

where ∆ε = εM − εA and ∆s = −(sM − sA).
Next, the constitutive equation is simplified. If it is assumed that EM =

EA = E and the thermal expansion is much smaller than the transformation
strain, Eq. (2.2) is reduced to

(2.6) ε =
σ

E
+ ∆εzM .

Finally, the energy balance equation is simplified. If it is assumed that ΨA→M

= ΨM→A = Ψ , the thermoelastic effect is much smaller than the latent heat, the
variation of martensite volume fraction is given by one minus cosine function as
zM = 0.5{1 − cos(2πft)}, the temperature variation is much smaller than the
surrounding temperature and the heat generation rate is constant as Ψπf/2, Eq.
(2.3) is reduced to

(2.7)
dΘ

dt
+ HΘ = Sπf sin(2πft) + F

πf

2
,

where f is the loading frequency,

Θ = T − Ts, H =
hA/V

C
, S =

∆sTs

C
, F =

Ψ

C
.



282 T. Ikeda

If it is assumed that Θ = 0 at t = 0 as the initial condition, Eq. (2.7) can be
integrated as

(2.8) Θ = Θ1e
−Ht + Θ2 sin(2πft − φ) + Θ3,

where

Θ1 = Θ2 sin φ − Θ3, Θ2 =
Sπf√

(2πf)2 + H2
=

S

2

(2πf/H)√
(2πf/H)2 + 1

,

Θ3 =
F

H

πf

2
=

F

4

(
2πf

H

)
, φ = tan−1

(
2πf

H

)
,

or they are rewritten as

Θ1 =
S

2
sin2 φ − F

4
tanφ, Θ2 =

S

2
sin φ, Θ3 =

F

4
tanφ

using φ.

3. Numerical example and discussion

3.1. Analytical discussion

It is seen from Eq. (2.8) that the temperature vibrates sinusoidally and the
mean temperature approaches a certain value asymptotically since the first term
becomes 0 as t → ∞ with a positive value of H .

Figures 4a, b and c show variation of Θ1/(F/4), Θ2/(S/2) and φ against
(2πf/H), respectively. Θ1 is calculated from Θ2, Θ3 and φ. The mean tem-
perature decreases when Θ1 is positive and increases when Θ1 is negative. Θ1

is zero and dΘ1/d(2πf/H) is negative at (2πf/H) = 0 and Θ1 → −∞ as
(2πf/H) → ∞. When 2S/F is higher than 2, Θ1 can take a positive value and
the mean temperature decreases in the frequency range of

S

F
−

√(
S

F

)2

− 1 <

(
2πf

H

)
<

S

F
+

√(
S

F

)2

− 1.

Θ2 is calculated from S, H and f . Θ2 is the amplitude of the vibrating tem-
perature, and it becomes larger as (2πf/H) becomes higher and converges to
S/2 as (2πf/H) → ∞. It is noted that in this case since the temperature also
goes to infinity (as will be explained later) the assumption that the tempera-
ture variation is much smaller than the surrounding temperature is no longer
satisfied. Θ3 is calculated from F , H and f , and proportional to (2πf/H). Θ3 is
the mean temperature as t → ∞. Here the mean temperature at t=0 is given by
Θ1 +Θ3. φ is calculated from f and H , and it is the phase difference between the
martensite volume fraction and the temperature. It is 0 degrees at (2πf/H) = 0
and becomes 90 degrees as (2πf/H) → ∞.
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a) Θ1/(F/4) vs (2πf/H) for 2S/F b) Θ2/(S/2) vs (2πf/H)

c) φ vs (2πf/H)

Fig. 4. Variation of Θ1, Θ2 and φ.

3.2. Numerical example

When material, shape and environmental conditions are assumed as listed in
Table 1, H , S and Fare calculated as listed in Table 2 and the values of Θ1,
Θ2, Θ3 and φ are calculated as listed in Table 3 for some loading frequencies.
The values of the constants are roughly estimated based on the material and the
environment in the experiment shown in Figs. 1 and 2 to examine qualitative
behaviour by using the simplified governing equations.

It is seen from Table 3 that the amplitude of temperature is 14.8 K and the
mean temperature decreases from 14.7 K at t = 0 and approaches asymptotically
to 1.57 K as t → ∞ for 0.1 Hz, and that the amplitude of temperature is 15.0 K
and the mean temperature increases from 15.0 K at t = 0 to 15.7 K as t → ∞
for 1 Hz. Figures 5a and 5b show the temperature variation at the frequencies
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Table 1. Material, shape and environmental constants.

h [W/(m2K)] A/V [m−1] C [MJ/(m3K)] ∆s [MJ/(m3K)] Ts [K]

57 5.3 × 103 3 0.3 300

Ψ [MJ/m3] TA↔M − Ts [K] ∆ε E [GPa]

3 −40 0.03 30

Table 2. Constants H, S and F .

H [s−1] S [K] F [K]

0.1 30 1

Table 3. Θ1, Θ2, φ and Θ3 for several loading frequencies.

f [Hz] Θ1 [K] Θ2 [K] Θ3 [K] φ [deg]

0.001 0.0433 0.941 0.0157 3.60

0.01 4.09 7.98 0.157 32.1

0.1 13.1 14.8 1.57 81.0

1 −0.712 15.0 15.7 89.1

of 0.1 Hz and 1 Hz, respectively, which are obtained from Eq. (2.8). This figure
confirms the above mentioned trend. Comparing this analytical result with the
experimental data shown in Figs. 2a and 2b, it is seen that this analytical solution
using the simplified equation qualitatively captures the trend of the experimental
data.

a) 0.1 Hz b) 1 Hz

Fig. 5. Calculated temperature variation.
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a) Stress-volume fraction curves b) Temperature-volume fraction curves

Fig. 6. Calculated stress-volume fraction-temperature curves for various loading frequencies.

a) Stress-strain curves b) Temperature-strain curves

Fig. 7. Calculated stress-strain-temperature curves for various loading frequencies.

Figures 6a and 6b show stress versus volume fraction curves and temperature
difference between SMA and surrounding air versus volume fraction curves, re-
spectively, and Figs. 7a and 7b show stress versus strain curves and temperature
difference versus strain curves, respectively. They are obtained by substituting
the temperature calculated from Eq. (2.8) into Eq. (2.5) and Eq. (2.6) with
zM = 0.5{1 − cos(2πft)}. Here it is assumed that the elastic deformation stages
are short enough not to change the temperature. Comparing these figures with
Figs. 1a and 1b, it is seen that the analytical equations can also capture the
stress-strain-temperature behaviour qualitatively.
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3.3. Isothermal and adiabatic conditions

From Eq. (2.8) when H → ∞, which corresponds to the isothermal condition

(3.1) Θ = 0,

since e−Ht →0, Θ2 →0 and Θ3 →0. Accordingly, of course, the temperature does
not vary.

When H →0, which corresponds to the adiabatic condition, integrating Eq.
(2.7) with H = 0,

(3.2) Θ =
S

2
[1 − cos(2πft)] + F

πf

2
t

is obtained. Therefore, the temperature keeps increasing to infinity while it vi-
brates.

3.4. Heat generation rate

In this study it is assumed that the heat generation rate is constant during
the vibration, although it is a function of |sin(2πft)|, since

(3.3)
∑

α→β

Ψα→β
dzα→β

dt
= Ψπf |sin(2πft)|.

When Eq. (3.3) is used instead of the assumption of constant heat generation
rate, Eq. (2.7) becomes

(3.4)
dΘ

dt
+ HΘ = Sπf sin(2πft) + Fπf |sin(2πft)|.

This equation can be solved as

(3.5) Θ = Θ1e
−Ht + Θ2 sin(2πft − φ),

where

Θ2 =





Θ+
2 =

S+F

2

2πf/H√
(2πf/H)2+1

=
S+F

2
sin φ for forward transformation,

Θ−

2 =
S−F

2

2πf/H√
(2πf/H)2+1

=
S−F

2
sin φ for reverse transformation,

and

φ = tan−1

(
2πf

H

)
.



Analytical investigation of strain loading frequency 287

Since Θ2 for the reverse transformation takes different values from Θ2 for the
forward transformation, Θ1 and Θ cannot be written by one formula as well, and

for 0 ≤ t < 1/2f ,

Θ1 = Θ+
2 sin φ =

S + F

2
sin2 φ,

Θ2 = Θ+
2 =

S + F

2
sin φ,

for 1/2f ≤ t < 1/f ,

Θ1 = Θ+
2 sin φ + (Θ+

2 − Θ−

2 ) sinφ/e−H/(2f)

=
S + F

2
sin2 φ + F sin2 φ/e−H/(2f),

Θ2 = Θ−

2 =
S − F

2
sin φ,

and so on.

Table 4. Θ1, Θ2 and φ for non-constant heat generation rate.

f [Hz] Θ1 [K] Θ2 [K] φ [deg] t [s]

0.1
15.1 15.3 81.0 0 ≤ t < 5

16.7 14.3 81.0 5 ≤ t < 10

1
15.5 15.5 89.1 0 ≤ t < 0.5

16.5 14.5 89.1 0.5 ≤ t < 1

a) 0.1 Hz b) 1 Hz

Fig. 8. Comparison in temperature variation between constant and non-constant heat
generation rate.
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The values of Θ1, Θ2 and φ are listed in Table 4 for non-constant heat gen-
eration rate. In this case the meaning of Θ1 and Θ2 can no longer be explained
directly, although the amplitude of the temperature vibration is calculated as

(3.6)
Θ+

2 × 1 − Θ−

2 × (−1)

2
=

S

2
sin φ,

which is the same value as the amplitude for the constant heat generation rate.
The comparison of temperature vibration between Eq. (3.5) and Eq. (2.8) is
shown in Figs. 8a and 8b for 0.1 Hz and 1 Hz, respectively. Their difference is
not distinguished. Therefore, it is confirmed that the assumption of constant
heat generation rate is reasonable.

4. Conclusions

A constitutive “one-dimensional phase transformation model” proposed by
the author and his co-workers [40–43] was simplified by introducing some as-
sumptions and the formula giving temperature variation was obtained. The fac-
tors affecting the temperature variation depending on loading frequency were
analyzed from the formula. The obtained temperature variation agreed quali-
tatively with the measured data. The calculated stress-strain-temperature rela-
tionship also agreed qualitatively with the measured data, which indicates the
proposed set of equations is reasonable.

The following findings were obtained from the formula giving temperature
variation.

(1) The temperature vibrates sinusoidally and the mean temperature ap-
proaches a certain value asymptotically.

(2) The mean temperature decreases in a certain frequency range when the
ratio of latent heat to generated heat is higher than a certain value.

(3) The amplitude of the vibrating temperature becomes larger as the ratio
of frequency to heat transfer becomes higher and converges to a half of the latent
heat per heat capacity.

(4) The mean temperature converges to a certain value calculated from the
generated heat, frequency and heat transfer.

(5) In the adiabatic condition, the temperature keeps increasing to infinity
while it vibrates.
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