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Most of exact solutions reported for the analysis of functionally graded piezo-
electric (FGP) plates are based on the assumption, that the graded plate consists of
a number of layers, where the material properties within each layer are invariant. The
limited works that consider the continuous variation of electro-mechanical properties
are restricted to FGP materials with the exponent-law dependence on the thickness-
coordinate. In the present paper, a three-dimensional (3D) exact solution is presented
for cylindrical bending of the FGP laminated plates based on the state space formal-
ism. In contrast to the other reported solutions which are restricted to FGP materi-
als with the exponent-law dependence on the thickness-coordinate, the present exact
solution considers materials with arbitrary compositional gradient. Moreover, no as-
sumption on displacement components and the electric potential along the thickness
direction of FGP layers is introduced. Regardless of the number of layers, equations
of motion, charge equation, and the boundary and interface conditions are satisfied
exactly. The obtained exact solution can be used to assess the accuracy of different
FGP laminated plate theories and/or for validating finite element codes.
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1. Introduction

Piezoelectric materials have found many application as sensors and
actuators for the purpose of monitoring and controlling the response of intelligent
structures due to their coupled mechanical and electrical properties. Accurate
simulation and theoretical modelling of intelligent structures have been intensive
areas of research for more than two decades. Various mathematical models have
been presented for laminated composite structures with piezoelectric sensors and
actuators until now [1–12].

In order to achieve large deformations, the piezoelectric actuators are often
made of several layers of different piezoelectric materials. Although this conven-
tional type of design may provide larger deformations, it has several restricting
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disadvantages that reduce its reliability. For the piezoelectric actuators made of
different piezoelectric layers or identical piezoelectric layers with different poling
directions, high stress concentrations usually appear at the layer interfaces under
mechanical or electrical loading. These stress concentrations lead to the initiation
and propagation of micro-cracks near the interfaces of two bonded piezoelectric
layers. Such drawbacks reduce lifetime and reliability of these structures.

To reduce the limitations of the conventional piezoelectric laminates, sensors
and actuators with graded properties were introduced and fabricated by Zhu
and Meng [13], and Wu et al. [14]. A functionally graded piezoelectric is a kind
of piezoelectric materials whose mechanical and electrical properties vary con-
tinuously in one or more directions. Functionally graded piezoelectric actuators
not only can produce large displacements but also reduce the internal stress con-
centrations and consequently significantly improve the lifetime of piezoelectric
actuators. It is obvious that functionally graded sensors and actuators will have
a significant function in the field of smart materials and structures.

Several researches have dealt in recent years with the static and dynamic
responses of FGP structures, such as beams, plates and shells. Most of these
studies are based on various beam and plate/shell theories. In early works on
the structural analysis of FGP structures, it was assumed that the FGP layer
consists of a number of sub-layers, where the material properties within each
sub-layer are invariant. The accuracy of these methods not only is dependent on
the number of sub-layers but also leads to inaccurate results in the prediction of
responses of thick FGP actuators. Liu and Tani [15] used this method to study
the wave propagation in FGP plates. Chen and Ding [16] analyzed the free
vibration of FGP rectangular plates using the aforementioned method. Lee [17]
used a layer-wise finite element formulation to investigate the displacement and
stress response of an FGP bimorph actuator. Using the state-space and differen-
tial quadrature method (DQM), Li and Shi [18] investigated the free vibration
of an FGP beam. By using the Timoshenko beam theory, Yang and Xiang [19]
investigated the static and dynamic response of FGP actuators under thermo-
electro-mechanical loadings. In their work, the numerical results were obtained
by using the DQM. A comprehensive study on the static, dynamic and free vi-
bration response of FGP panels under different sets of mechanical, thermal and
electrical loadings using the finite element method was presented by Behjat
et al. [20]. Behjat et al. [21] investigated also the static bending, free vibration
and dynamic response of FGP plates under mechanical and electrical loads us-
ing the first-order shear deformation theory. Wu et al. [22] derived a high-order
theory for FGP shells based on generalized Hamilton’s principle. The perfor-
mance of an FGP monomorph in static and dynamic states was investigated by
Li et al. [23] using the electrophoretic deposition. Liu and Shi [24], and Shi and
Chen [25] obtained closed form solutions for the FGP cantilever beams using the
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two-dimensional (2D) theory of elasticity and the Airy stress function. Xiang
and Shi [26] investigated thermo-electro-elastic response of an FGP sandwich
cantilever. They employed also the Airy stress function in order to study the
effect of parameters such as the electromechanical coupling, functionally graded
index, temperature change and thickness ratio on the static behavior of actua-
tors/sensors. Lezgy-Nazargah et al. [27] proposed an efficient finite element
model for static and dynamic analyses of FGP beams. They used an efficient
three-nodded beam element which is based on a refined sinus model. The pro-
posed beam element of these researchers does not require shear correction factor
and ensures continuity conditions for displacements, transverse shear stresses as
well as boundary conditions on the upper and lower surfaces of the FGP beam.
Lezgy-Nazargah and Farahbakhsh [28] investigated the relation between
the material gradient properties and the optimum sensing/actuation design of
the FGP beams. They employed 3D finite element analysis for the prediction of
an optimum composition profile in these types of sensors and actuators. By using
the refined 2D models, Brischetto and Carrera [29] studied the static re-
sponse of a single-layered FGP plate. In this work, Carrera’s unified formulation
has been extended to FGP plates in the framework of the principle of virtual
displacements.

To assess the validity of approximate theories related to FGP structures,
obtaining 3D analytical solutions based on the exact theory of piezoelasticity
is necessary. Lim and He [30] obtained the exact solution for a composition-
ally graded piezoelectric layer under uniform stretch, bending and twisting.
By dividing the FGP layer into a number of homogenous sub-layers, Reddy
and Cheng [31] obtained a 3D solution for smart functionally gradient plates.
Zhong and Shang [32] presented the exact 3D solution for rectangular piezo-
electric plates with exponent-law dependency of electromechanical properties on
the thickness-coordinate by means of the state space approach. Lu et al. [33] pre-
sented the exact solution for simply supported exponentially non-homogenous
piezoelectric laminates in cylindrical bending by Stroh-like formalism. Using this
method, Lu et al. [34] also proposed the exact solutions for simply supported
FGP plates.

Nowadays, the design and fabrication of materials with arbitrary composi-
tional gradient is possible by means of the modern materials processing tech-
nology. To the best knowledge of author, there is no exact solution in the liter-
ature for the accurate analysis of FGP laminates with arbitrary compositional
gradient. In this paper an exact solutions for cylindrical bending of FGP lam-
inates with arbitrary gradient composition is derived based on the state space
approach without a priori assumptions on displacement fields, electric potential
and stress fields. The obtained solution is exact in that the electric potential,
displacements and stresses satisfy exactly the governing equations of anisotropic
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piezoelasticity, the traction boundary conditions on the top and bottom planes,
the end conditions as well as the interlaminar continuity conditions on the inter-
faces between the layers, regardless of the number of layers. In contrast to the
reference [33] which assumes an exponential-law for the variation of the mechan-
ical and electrical properties along the thickness direction, the present obtained
exact solution is general and considers piezoelectric materials with arbitrary
compositional gradient. Moreover, the exact solution obtained in the present
study is very concise, simple in concept and systematic in operation. In order
to assess the accuracy of the present state-space formulation, comparisons have
been made with other results available in the literature. The numerical results
obtained from the present formulation exhibit excellent agreements with other
published results.

2. Formulation of the problem

The considered laminated plate is a prismatic one with a rectangular uniform
cross section of length L, height h and made of Nl layers either completely or in
part from FGP materials. The laminate is assumed to be infinitely long in the
x2-direction, with perfect bonding between layers. The geometric parameters of
the laminated plate and the chosen Cartesian coordinate system (x1, x2, x3) are
shown in Fig. 1.

Fig. 1. Functionally graded piezoelectric plate in cylindrical bending: Cartesian coordinate
system and geometric parameters.

In this study, the general type of piezoelectric materials is assumed to be
“monoclinic class 2”. Thus, the 3D linear constitutive equations of the kth layer,
polarized along its thickness direction in its global material coordinate system
can be expressed as:
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(2.1)




σ11

σ22

σ33

σ23

σ13

σ12





(k)

=




c11(x3) c12(x3) c13(x3) 0 0 c16(x3)
c12(x3) c22(x3) c23(x3) 0 0 c26(x3)
c13(x3) c23(x3) c33(x3) 0 0 c36(x3)

0 0 0 c44(x3) c45(x3) 0
0 0 0 c45(x3) c55(x3) 0

c16(x3) c26(x3) c36(x3) 0 0 c66(x3)



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
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

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
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,

where σij , εij and Ei denote the stress tensor, the infinitesimal strain tensor
and the electric field components respectively. Di is the electric displacement
vector components and ckl, eik, χij elastic, piezoelectric and dielectric material
constants. Unlike the homogeneous piezoelectric materials, ckl, eik and χij are
now functions of the coordinate x3. They may vary according to the power-law,
exponent-law or every other arbitrary distribution along the thickness direc-
tion of FGP layers. Indeed, the anisotropy of the considered laminated FGP
plate medium of the present study belongs to the monoclinic class 2 with the
symmetry axis 2 orthogonal to the layers. It is worthy to note that the simi-
lar studies available in the literature only consider the FGP materials with the
exponent-law dependence on the thickness-coordinate.

The displacement components uiare related to the strain components through
the relations

(2.2) ε
(k)
ij =

1

2
(u

(k)
i,j + u

(k)
j,i ).

The electric field components can be related to the electrostatic potential ϕ using
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the relation

(2.3) E
(k)
i = −ϕ(k)

,i .

The equilibrium equations in the absence of body forces and free charges for the
kth lamina made of a piezoelectric material are

(2.4) σ
(k)
ij,j = 0, D

(k)
i,i = 0.

In cylindrical bending, the laminate is simply supported and the vertical edges
are assumed to be grounded. These conditions can be expressed as:

σ
(k)
11 (0, x3) = σ

(k)
11 (L, x3) = 0, σ

(k)
12 (0, x3) = σ

(k)
12 (L, x3) = 0,(2.5)

u
(k)
3 (0, x3) = u

(k)
3 (L, x3) = 0, ϕ(k)(0, x3) = ϕ(k)(L, x3) = 0.(2.6)

Although the electric potential does not vanish at the boundaries, exact 3D
solutions for laminated plates can be obtained only for certain combinations of
boundary conditions on the edges. In other words, we are able to obtain exact
solutions only when the vertical edges of the laminated plate are assumed to
be electrically grounded. Heyliger and Brooks [35] have also employed the
same assumption in order to obtain exact solutions for the cylindrical bending of
laminated piezoelectric plates. All of the above Eqs. (2.1)–(2.6) must be satisfied
for the material properties of a specific layer. In addition to these equations, the
mechanical and electrical boundary conditions on the upper and lower planes
must be satisfied:

σ33(x1, h) = qt
0 sin px1, σ33(x1, 0) = qb

0 sin px1,

σ13(x1, h) = 0, σ13(x1, 0) = 0,

σ23(x1, h) = 0, σ23(x1, 0) = 0,(2.7)

ϕ(x1, h) = ϕt
0 sin px1 or D3(x1, h) = 0,

ϕ(x1, 0) = ϕb
0 sin px1 or D3(x1, 0) = 0.

The interlaminar continuity conditions on the interfaces between the layers must
be also ensured:

(2.8)
σ

(k)
3i (x1, zk+1) = σ

(k+1)
3i (x1, zk+1), u

(k)
i (x1, zk+1) = u

(k+1)
i (x1, zk+1),

ϕ(k)(x1, zk+1) = ϕ(k)(x1, zk+1), D
(k)
3 (x1, zk+1) = D

(k+1)
3 (x1, zk+1),

where qt
0, q

b
0, ϕ

t
0 and ϕb

0 are known constants, p = nπ/L and n is a positive
integer. It is worthy to note that any applied traction load or prescribed electric
potential on the surfaces of an FGP plate can be expanded in terms of a Fourier
series.
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3. Exact solution

A solution in the following form is sought for the displacement components
and the electric potential of the kth lamina

(3.1)
u

(k)
1 (x1, x3) = U (k)(x3) cos px1, u

(k)
2 (x1, x3) = V (k)(x3) cos px1,

u
(k)
3 (x1, x3) = W (k)(x3) sin px1, ϕ(k)(x1, x3) = Φ(k)(x3) sin px1.

The above assumed solution is reasonable because the applied loads (mechan-
ical and/or electrical) and material properties are independent of x2. Moreover,
the laminated plate is of infinite extent in the x2-direction. Indeed, the laminate
is in a generalized plane state of deformation. It can be also observed that Eqs.
(3.1) satisfy the boundary conditions (2.5)–(2.6) on the edges x1 = 0 and L.
It is worthy to note that no assumption for U (k)(x3), V

(k)(x3), W
(k)(x3) and

Φ(k)(x3) is introduced in Eq. (3.1). They are unknown functions that must be
determined. Substitution of (3.1) into (2.2)–(2.3) and the result into (2.1) gives
the following expressions for the stresses and electric displacements

σ
(k)
11 =

(
−pc(k)

11 (x3)U
(k)(x3) + c

(k)
13 (x3)

dW (k)(x3)

dx3

− pc
(k)
16 (x3)V

(k)(x3) + e
(k)
31 (x3)

dΦ(k)(x3)

dx3

)
sin px1,

σ
(k)
22 =

(
−pc(k)

12 (x3)U
(k)(x3) + c

(k)
23 (x3)

dW (k)(x3)

dx3

− pc
(k)
26 (x3)V

(k)(x3) + e
(k)
32 (x3)

dΦ(k)(x3)

dx3

)
sin px1,

σ
(k)
33 =

(
−pc(k)

13 (x3)U
(k)(x3) + c

(k)
33 (x3)

dW (k)(x3)

dx3
(3.2)

− pc
(k)
36 (x3)V

(k)(x3) + e
(k)
33 (x3)

dΦ(k)(x3)

dx3

)
sin px1,

σ
(k)
12 =

(
−pc(k)

16 (x3)U
(k)(x3) + c

(k)
36 (x3)

dW (k)(x3)

dx3

− pc
(k)
66 (x3)V

(k)(x3) + e
(k)
36 (x3)

dΦ(k)(x3)

dx3

)
sin px1,

σ
(k)
23 =

(
c
(k)
44 (x3)

dV (k)(x3)

dx3
+ c

(k)
45 (x3)

dU (k)(x3)

dx3

+ pc
(k)
45 (x3)W

(k)(x3) + pe
(k)
14 (x3)

dΦ(k)(x3)

dx3

)
cos px1,
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σ
(k)
13 =

(
c
(k)
45 (x3)

dV (k)(x3)

dx3
+ c

(k)
55 (x3)

dU (k)(x3)

dx3

+ pc
(k)
55 (x3)W

(k)(x3) + pe
(k)
15 (x3)

dΦ(k)(x3)

dx3

)
cos px1,

D
(k)
1 =

(
e
(k)
14 (x3)

dV (k)(x3)

dx3
+ e

(k)
15 (x3)

dU (k)(x3)

dx3

+ pe
(k)
15 (x3)W

(k)(x3) − pχ
(k)
11 (x3)

dΦ(k)(x3)

dx3

)
cos px1,

(3.2)
[cont.]

D
(k)
2 =

(
e
(k)
24 (x3)

dV (k)(x3)

dx3
+ e

(k)
25 (x3)

dU (k)(x3)

dx3

+ pe
(k)
25 (x3)W

(k)(x3) − pχ
(k)
12 (x3)

dΦ(k)(x3)

dx3

)
cos px1,

D
(k)
3 =

(
−pe(k)

31 (x3)U
(k)(x3) + e

(k)
33 (x3)

dW (k)(x3)

dx3

− pe
(k)
36 (x3)V

(k)(x3) − χ
(k)
33 (x3)

dΦ(k)(x3)

dx3

)
sin px1.

Substitution of (3.2) into the governing equations (2.4), and writing the re-
sulting system of second-order differential equations as a set of first-order differ-
ential equations, the following state space matrix equation can be obtained

(3.3) K(k)X
(k)
,3 + B(k)X(k) = 0

or

(3.4) X
(k)
,3 = A(k)X(k),

where

A(k) = −(K(k))−1B(k),(3.5)

K(k) =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 c55(x3) c45(x3) 0 0
0 0 0 0 c45(x3) c44(x3) 0 0
0 0 0 0 0 0 c33(x3) e33(x3)
0 0 0 0 0 0 e33(x3) −χ33(x3)




,
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B(k) =




0 0 0 0 −1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−p2c11(x3) −p2c16(x3) pdc55(x3)
dx3

pde15(x3)
dx3

dc55(x3)
dx3

−p2c16(x3) −p2c66(x3) pdc45(x3)
dx3

pde14(x3)
dx3

dc45(x3)
dx3

−pdc13(x3)
dx3

−pdc36(x3)
dx3

−p2c55(x3) −p2e15(x3) −p(c55(x3) + c13(x3))

−pde31(x3)
dx3

−pde36(x3)
dx3

−p2e15(x3) p2χ11(x3) −p(e15(x3) + e31(x3))

0 0 0

−1 0 0

0 −1 0

0 0 −1
dc45(x3)

dx3
p(c13(x3) + c55(x3)) p(e31(x3) + e15(x3))

dc44(x3)
dx3

p(c36(x3) + c45(x3)) p(e36(x3) + e14(x3))

−p(c45(x3) + c36(x3))
dc33(x3)

dx3

de33(x3)
dx3

−p(e14(x3) + e36(x3))
de33(x3)

dx3
−dχ33(x3)

dx3




,

X(k) =
[
U (k)(x3) V

(k)(x3) W
(k)(x3) Φ

(k)(x3)
dU(k)(x3)

dx3

dV (k)(x3)
dx3

dW (k)(x3)
dx3

dΦ(k)(x3)
dx3

]T
.

For the homogeneous piezoelectric layers, the matrix A(k) in basic Eq. (3.4)
reduces to a homogenous constant matrix. In this case, the solution of Eq. (3.4)
can be written as [36–37]:

(3.6) X(k) = exp[A(k)x3]δ
(k),

where δ(k) is an 8 × 1 vector of unknown constants. In the particular case
where the piezoelectric layers have an exponent-law dependence on the thickness-
coordinate, the matrices K(k) and B(k) have the factorized inhomogeneity
K(k) ∝ exp(ax3), B(k) ∝ exp(ax3) (a is a constant characterizing the degree
of the material gradient along x3). Thus, in this particular case, the matrix A(k)

in Eq. (3.4) becomes a homogenous constant matrix, and Eq. (3.6) is still a valid
solution for the basic Eq. (3.4). This fact specifies why the previous authors
in [32] and other similar works have limited themselves to the consideration of
plates with the exponential variation of the mechanical and electrical properties
along the thickness direction. For the FGP layers with arbitrary compositional
gradient, it is obvious that the components of matrix A(k) in Eq. (3.4) are not
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constants. It is evident that they are now functions of the coordinate x3. Thus,
the typical solution X(k) = exp[A(k)x3]δ

(k) is no longer valid for Eq. (3.4). In
mathematics and mechanics of inhomogeneous media, the solution to Eq. (3.4)
can be written as [36–43]:

(3.7) X(k) = W(k)(x3)δ
(k),

where W(k)(x3) = Ord exp[
∫ x3

0 A(k)(x)dx] is called the propagator matrix, which
can be expressed as the following Peano expansion [36–37]:

W(k)(x3) = I +

x3∫

0

A(k)(x)dx+

∫ x3

0
A(k)(x)

x∫

0

A(k)(y1)dy1dx(3.8)

+

x3∫

0

A(k)(x)

x∫

0

A(k)(y1)

y1∫

0

A(k)(y2)dy2dy1dx+ · · · .

Thus, the solutions for the displacement components ui and the electric potential
ϕ are expressed in terms of eight unknown constants for each of the N layers.
This yields 8N total unknowns for the complete graded piezoelectric laminated
plate. These constants are determined by satisfying the boundary and interface
continuity conditions at the upper and lower surfaces of each layer. There are
four boundary conditions at the top of layer Nl and the bottom of layer 1, with
a total of eight boundary conditions (Eq. (2.7)). At each interface the continu-
ity conditions as expressed in Eq. (2.8) must be ensured, leading to 8(Nl − 1)
equations. Thus, the total number of equations and unknowns is 8Nl which can
be easily solved. Once the constants are determined, the mechanical displace-
ments, stresses, electric potential and electric displacement can be evaluated at
any location within the FGP laminate.

4. Numerical results and discussion

In this section, some numerical examples are considered to ascertain the
accuracy of the proposed exact state-space solution. To this end, results of the
present formulation are compared with available previously published results.
Although the first two examples of the present section are mainly devoted to the
verification purposes, the third example included in this section contains new
results.

4.1. Example 1

A single layer FGP plate with the length L = 1 m and length-to-thickness
ratio S = 1 is considered in this example. The plate is made of a PZT-4 based
exponentially graded piezoelectric with the following material properties:
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ckl = c0klf(x3), eik = e0ikf(x3), χij = χ0
ijf(x3),

where
f(x3) = eax3 , 0 < x3 < 1

and a is a constant characterizing the degree of the material gradient along x3,
c0kl, e

0
ik and χ0

ij are the values of material properties at the plane x3 = 0. The
mechanical and electrical properties of PZT-4 are cited in Table 1. The plate is
simply supported along two edges. The exact electro-mechanical solution for this
graded piezoelectric plate has been previously obtained by Lu et al. [33] based
on the Stroh-like formalism. Accuracy of the results of the present state-space
formulation is evaluated by comparing the obtained results with those obtained
in [33]. The low value of the length-to-thickness ratio employed in [33] help
to assess the effect of gradient index a on the distribution of stresses, electric
displacements, displacements and electric potential with more clarity.

Table 1. Mechanical and electrical properties of some piezoelectric materials.

PZT-4 PZT-5H

c0
11 (GPa) 139 127.20

c0
12 (GPa) 77.8 80.21

c0
22 (GPa) 139 127.20

c0
13 (GPa) 74.3 84.67

c0
23 (GPa) 74.3 84.67

c0
33 (GPa) 115 117.44

c0
44 (GPa) 25.6 22.99

c0
55 (GPa) 25.6 22.99

c0
66 (GPa) 30.6 23.47

e0
15 (Cm−2) 12.7 17.03

e0
24 (Cm−2) 12.7 17.03

e0
31 (Cm−2) −5.2 −6.62

e0
32 (Cm−2) −5.2 −6.62

e0
33 (Cm−2) 15.1 23.24

χ0
11 (10−8Fm−1) 1.306 2.771

χ0
22 (10−8Fm−1) 1.306 2.771

χ0
33 (10−8Fm−1) 1.151 3.010

ρ (kg/m3) 7500 7500

Actuator case. The FGP plate is first subjected to a top sine potential along
the length of the laminate with peak amplitude of 1 (ϕ(x1, h) = sinπx1/L). The
bottom plane of the plate is electrically grounded. The top and bottom planes
of the plate are traction-free. The variation of displacements u1 and u3, stresses
σ11, σ22, σ33 and σ13, transverse electric displacement D3, and electric potential
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Fig. 2. Through-the-thickness variations of u1, u3, σ11, σ22, σ33, σ13, D3 and ϕ in the single
layer functionally graded piezoelectric plate under the sinusoidal electric potential.
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ϕ are shown in Fig. 2 as a function of the plate thickness coordinate x3. In these
figures, the material property gradient index a is taken for two values: −1, 1.

The numerical results for the aforementioned quantities are also presented in
Table 2. Since the 3D solutions by Lu et al. [33] were unfortunately only given
in graphic forms, only a few significant digits are considered in this table. All the
numerical results are calculated across 0 < x3 < 1 on the section x1 = 0.25L.
It is seen that the excellent agreement exists between the present results with
those obtained from the Stroh-like formalism of Lu et al. [33]. In comparison
to the Stroh-like formalism of Lu et al. [33] which is restricted to the analysis
of FGP plate with the exponential variation of the mechanical and electrical
properties along the thickness direction, the present state-space solution consid-
ers piezoelectric materials with arbitrary compositional gradient. From Fig. 2,
we discover that the gradient index a will influence the distribution of stresses,
electric displacements, displacements and electric potential in different degree.
The depicted graphs of Fig. 2 also reveal that under a similar electric force,
the transverse deflection of the plate made of hard gradient materials (a = +1)
is higher than the plate made of soft gradient materials (a = −1). The maxi-
mal absolute values of stress components and transverse electric displacement
of the graded plate made of hard piezoelectric materials are also higher than
soft one. For a = 1, the maximal absolute value of D3 is 5.54 times larger
than that of a = −1. The maximal absolute value of σ11 is also 5.01 times
larger than that of a = −1. Such behaviors can be interpreted using the cou-
pled electromechanical properties of piezoelectric materials. Due to its higher
electromechanical stiffness, the induced mechanical deformations of the hard

Table 2. Results for the actuated single layer functionally graded piezoelectric
plate under sinusoidal electric potential.

a Present Lu et al. [33]

u1(0.25L, h) × 1010 1 −1.758 −1.762

−1 −2.080 −2.089

u3(0.25L, h) × 1010 1 −2.769 −2.777

−1 −2.353 −2.356

σ11(0.25L, h) 1 −52.751 −53.695

−1 −10.531 −10.633

σ33(0.25L, 0.6h) 1 −1.603 −1.607

−1 0.000 0.000

σ13(0.25L, 0.3h) 1 −1.269 −1.258

−1 0.019 0.018

D3(0.25L, h) × 108 1 −9.200 −9.204

−1 −1.661 −1.669
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Fig. 3. Through-the-thickness distributions of u1, u3, σ11, σ22, σ33, σ13, D3 and ϕ in the
single layer graded piezoelectric plate under the sinusoidal mechanical force – CC electric

boundary conditions.
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FGP plate will be more than the soft one. Consequently, the maximal values
of stress components in the hard FGP plate will be more than the soft one.
Although it seems that the hard gradient materials are more effective actuators
than soft ones, the possible failure material in them are also higher than in soft
ones.

Sensor case. In the next case, the mechanical force σ33(x1, h) = sin πx1/L
is applied to the top of the FGP plate. Through-the-thickness distributions of
u1, u3, σ11, σ22, σ33, σ13, D3 and ϕ with closed circuit (CC) electric bound-
ary conditions are shown in Fig. 3 at the chosen point x1 = 0.25L. For further
comparison, the results are also summarized in Table 3. Similar to the actuator
case, the numerical results obtained from the present state-space formulation ex-
hibit excellent agreements with the results obtained by the Stroh-like formalism
of Lu et al. [33]. These obtained numerical results justify the accuracy of the
proposed 3D exact state-space formulation for the electro-mechanical analysis
of FGP plates. Moreover, it can be observed from Fig. 3 that the mechanical
deformations of the plate made of soft gradient materials are higher than the
plate made of hard gradient materials while its maximal absolute values of stress
components are lower. For a = 1, the maximal deflection of plate is 6.53 times
larger than that of a = −1, while the corresponding transverse shear stress is
0.84 times lower than that of a = −1. Due to the fact that the electromechanical
stiffnessess of the graded plate made of hard piezoelectric materials are higher
than soft one, such behaviors are expected. Figure 3 shows also that the induced
electric potential in the soft FGP plate is higher than hard one (3.27 times).
Under mechanical loadings, the soft piezoelectric plate undergoes more mechan-
ical deformations and consequently converts more mechanical energy into the
electrical energy.

Table 3. Results for the sensory single layer functionally graded piezoelectric
plate under sinusoidal mechanical force.

a Present Lu et al. [33]

u1(0.25L, h) × 1012 1 −1.024 −1.046

−1 −2.107 −2.135

u3(0.25L, h) × 1011 1 0.440 0.433

−1 1.550 1.537

σ11(0.25L, h) 1 0.858 0.852

−1 0.618 0.613

σ13(0.25L, 0.6h) 1 0.332 0.331

−1 0.308 0.308

ϕ(0.25L, 0.7h) × 103 1 0.945 0.951

−1 3.121 3.127
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Fig. 4. Through-the-thickness variations of u1, u3, σ11, σ22, σ33, σ13, D3 and ϕ in the
two-layer functionally graded piezoelectric plate under the sinusoidal electric potential.
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4.2. Example 2

In this example, a two-layered FGP plate with the length L = 1 m and length-
to-thickness ratio S = 1 is considered. The lower layer is made of a homogenous
PZT-4 piezoelectric material. The upper layer is a PZT-4 based exponentially
graded piezoelectric layer with the following material properties:

ckl = c0klf(x3), eik = e0ikf(x3), χij = χ0
ijf(x3),

where

f(x3) = ea(x3−0.2), 0.2 < x3 < 1.

The ratio of the upper graded layer to the lower homogenous layer has been
taken as 4. It is pointed out that c0kl, e

0
ik and χ0

ij in the present example are the
values of material properties at the bottom of top layer. Similar to the previous
example, all the numerical results are calculated across 0 < x3 < 1 on the section
x1 = 0.25L. Concerning the material property gradient index a, two values: −1, 1
are chosen. The obtained numerical results have been compared with the results
obtained from the Stroh-like formalism of Lu et al. [33].

Actuator case. A sine potential with peak amplitude of 1 is applied to the
top of the two layered FGP plate. The top and bottom planes of the plate
are traction-free. The bottom plane of the graded plate is assumed to be elec-
trically grounded. The numerical results for displacements u1 and u3, stresses
σ11, σ22, σ33 and σ13, transverse electric displacement D3, and electric poten-
tial ϕ are presented in Fig. 4 and summarized in Table 4. It is seen again that

Table 4. Results for the actuated two-layer functionally graded piezoelectric
plate under sinusoidal electric potential.

a Present Lu et al. [33]

u1(0.25L, h) × 1010 1 −1.762 −1.766

−1 −2.077 −2.081

u3(0.25L, h) × 1010 1 −2.763 −2.767

−1 −2.357 −2.359

σ11(0.25L, h) 1 −43.119 −43.168

−1 −12.870 −12.898

σ33(0.25L, 0.6h) 1 −1.379 −1.381

−1 0.038 0.039

σ13(0.25L, 0.2h) 1 −1.057 −1.063

−1 0.046 0.047

D3(0.25L, h) × 108 1 −7.534 −7.524

−1 −2.028 −2.025
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the present state-space results are in excellent agreements with the Lu et al.’s
solution [33]. Considering various values for aspect ratio, the normalized trans-
verse displacement (ũ3) obtained at the middle of the simply supported FGP
plate is also shown in Fig. 5 for three values of the material property gradi-
ent index a = −1, 0, 1. Note that when a=0, the plate is a homogenous one
made of material PZT-4. It is seen that the increasing of ũ3 is significant when
L/h < 10, but when L/h > 10 all curves tend to be horizontal indicating
that ũ3 becomes almost invariant. The obtained numerical results of this chart
can be used as benchmarks to assess the accuracy of different 2D FGP plate
theories.

Fig. 5. Variation of the normalized transverse displacement ũ3 = u3(L/2, h)/S2 with respect
to aspect ratio – the two-layer functionally graded piezoelectric plate under the sinusoidal

electric potential.

Sensor case. The mechanical force σ33(x1, h) = sinπx1/L is applied to the top
plane of the FGP plate. The variations of mechanical and electrical responses
with open circuit (OC) electric boundary conditions are depicted in Fig. 6 as
a function of the plate thickness coordinate x3. The corresponding numerical
results are also presented in Table 5 for further comparison. The excellent agree-
ment between the present results with those obtained from Stroh-like formalism
can be observed. It is seen from these figures that the nonlinear distribution of u1,
u3 and ϕ along the thickness direction increases with decreasing of the material
gradient index. Therefore, the available two-dimensional laminated plate theories
do not seem to be able to predict accurately the electromechanical response of
FGP plates made of soft materials. This means that more refined plate theories
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Fig. 6. Through-the-thickness distributions of u1, u2, σ11, σ22, σ33, σ13, D3 and ϕ in the
two-layer graded piezoelectric plate under the sinusoidal mechanical force – OC electric

boundary conditions.
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Table 5. Results for the sensory two-layer functionally graded piezoelectric plate
under sinusoidal mechanical force.

a Present Lu et al. [33]

u1(0.25L, h) × 1012 1 −1.694 −1.684

−1 −3.466 −3.454

u3(0.25L, h) × 1011 1 0.462 0.458

−1 1.078 1.071

σ11(0.25L, h) 1 0.742 0.737

−1 0.514 0.507

σ13(0.25L, 0.6h) 1 0.330 0.334

−1 0.11 0.311

ϕ(0.25L, 0.7h) × 103 1 2.604 2.585

−1 8.285 8.257

are needed for the analysis of functionally graded laminated piezoelectric plates,
particularly those made of soft materials.

Figure 7 shows the normalized transverse displacement obtained at the mid-
dle of the simply supported FGP plate with respect to various aspect ratios.
Similar to the actuator case, the decreasing of the normalized transverse dis-
placement (ū3) is considerable when L/h < 10. For L/h > 10, the change of
ū3 with respect to the aspect ratio is poor. For assessing the accuracy of differ-
ent FGP laminated plate theories and/or validating finite element codes, these
numerical results will be useful.

Fig. 7. Variation of the normalized transverse displacement ū3 = u3(L/2, h)/S4 with respect
to aspect ratio – the two-layer functionally graded piezoelectric plate under the sinusoidal

mechanical force – OC electric boundary conditions.
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4.3. Example 3

As the last example, a single layer FGP plate with a total thickness h = 1 mm
and length L = 5 mm is considered. The material properties of this plate vary
according to the following power-low distribution:

ψ = (1 − f(x3))ψ
B + f(x3)ψ

T,

where f(x3) =
(

2x3+h
2h

)a
and ψ is an arbitrary material properties of the FGP ma-

terial. ψB and ψT represent the values of ψon the top and bottom of the graded
plate respectively. The symbol a is the material gradient index. In the consid-
ered plate, the material properties vary from 100% PZT-4 at the top surface
to 100% PZT-5H at the bottom surface. The elastic, piezoelectric and dielectric
constants for these two piezoelectric materials can be found in Table 1. It is
worthy to note that by employing the Stroh-like formalism of Lu et al. [33], one
cannot find the exact 3D solution for the present example. It is due to this fact
that the mathematical formulations derived in [33] are valid only for FGP plates
whose mechanical and electrical properties along the thickness direction vary
according to the exponent-low distribution. However, the material properties of
the considered FGP plate of the present example vary according to a power-low
distribution. To the knowledge of the authors, there is no exact solution for the
analysis of these types of FGP plates in the literature. As stated before, the
available exact solutions reported for the analysis of FGP plates either assume
that the graded plate consists of a number of homogenous layers or have limited
themselves to a consideration of only exponentially graded materials.

Actuator case. The sinusoidal electric potential ϕ(x1, h) = ϕ0 sin πx1/L is
applied to the top of the FGP plate. Through-the-thickness distributions of u1,
u3, σ11, σ33, σ13, D3 and ϕ are shown in Fig. 8. The results are also summarized
in Table 6 for further comparison. Note that the mechanical and electrical entities
are normalized as the below:

Table 6. Results for the actuated FGP plate with material properties varying in
a power-law distribution under sinusoidal electric potential.

a

0 1 10

u1(0, h) × 1010 −3.034 −4.427 −5.749

u3(0.5L, h) × 1010 −2.623 −1.733 −3.490

σ11(0.5L, h) 192.940 −1840.900 −5159.270

σ33(0.5L, 0.5h) −2.489 17.020 12.032

σ13(0, 0.2h) −12.060 74.675 44.831

D3(0.5L, h) × 105 −1.833 −2.891 −4.286
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Fig. 8. Through-the-thickness distributions of u1, u2, σ11, σ33, σ13, D3 and ϕ in the
piezoelectric plate with material properties varying in a power law under the sinusoidal

electric potential.
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Fig. 9. Through-the-thickness distributions of u1, u2, σ11, σ33, σ13, D3 and ϕ in the
piezoelectric plate with material properties varying in a power law under the sinusoidal

mechanical force.
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σ̄ij = σij/ϕ0, ūi = ui/ϕ0, D̄i = Di/ϕ0, ϕ̄ = ϕ/ϕ0

It is seen that when the material properties are designated at the upper and
lower surfaces, the distribution of mechanical and electrical entities are affected
by the value of the gradient index a. The a influences the in-plane stress greatly.
With the increase of the value a, the in-plane stress at the top of the graded plate
increases. In case of a = 10, the maximal absolute value of the in-plane stress is
as 2.80 times large as that of a = 1, and as 9.54 times larger than that of a = 0.

Table 7. Results for the sensory FGP plate with material properties varying in
a power-law distribution under sinusoidal mechanical force.

a

0 1 10

u1(0, h) × 1013 −2.169 −2.395 −2.624

u3(0.5L, h) × 1013 7.862 8.948 9.612

σ11(0.5L, h) 15.458 16.765 17.511

σ13(0, 0.5h) 2.378 2.377 2.354

ϕ(0.5L, 0.5h) × 105 3.955 3.353 3.135

Sensor case. In this case, the FGP plate is subjected to the action of the
sinusoidal mechanical force σ33(x1, h) = p0 sinπx1/L. The numerical results for
displacements u1 and u3, stresses σ11, σ33 and σ13, transverse electric displace-
ment D3, and electric potential ϕ are presented in Table 7 and depicted in Fig. 9.
The stress and displacement components, the induced electric potential and the
electric displacement vector components are normalized as below:

σ̄ij = σij/p0, ϕ̄ = ϕ/p0, D̄i = Di/p0, ϕ̄ = ϕ/p0.

From Fig. 9, it can be observed that the gradient index a will influence the
distribution of stresses, transverse electric displacement, displacements and elec-
tric potential in different degrees. The value of a has little influence on the
distribution of stress and displacement components; however, it influences the
distribution of the induced electric potential and transverse electric displacement
effectively. For a = 0, the maximal absolute value of ϕ is 26% larger than that
of a = 10.

5. Conclusion

Cylindrical bending of FGP laminated plates is investigated based on the
three-dimensional theory of piezoelasticity in the state space setting. For the
first time, the exact solution introduced in the present paper is valid for FGP
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laminated plates with arbitrary compositional gradient along the thickness di-
rection. However, the proposed state-space solution is very simple, concise and
convenient in operation. The present solution is also in excellent agreements
with the other exact solutions available in the literature. The obtained numer-
ical results of the present study give a comprehensive insight about the static
electro-mechanical behavior of the FGP plates. Moreover, the presented numer-
ical results can play as a benchmark result for validating different FGP plate
theories.
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