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For the purpose of design and optimization of functionally graded piezoelec-
tric material (FGPM) transducers, wave propagation in FGPM structures has re-
ceived much attention in the past twenty years. But research focused essentially on
semi-infinite structures and one-dimensional structures, i.e., structures with a finite
dimension in only one direction, such as horizontally infinite flat plates and axially
infinite hollow cylinders. This paper proposes a double orthogonal polynomial series
approach to solve the wave propagation problem in a two-dimensional (2D) FGPM
structure, namely, an FGPM rod with a rectangular cross-section. The dispersion
curves and electric potential distributions are illustrated.
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1. Introduction

Compared to traditional piezoelectric material transducers, function-
ally graded piezoelectric material (FGPM) transducers can avoid the incompat-
ibilities that exist between the piezoelectric element and the host structure. i.e.,
structure under test, such as 1) the residual stress generated during the bonding
process, 2) the interface defects and the possibility of interface crack growth,
3) severe stress jumps across the interface during high speed electrical actuation
or mechanical loading and 4) disbonding resulted from temperature variation.
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The advantages of FGPM have attracted many researchers to develop FGPM
transducers by various methods [1–8].

For the purpose of design and optimization of FGPM transducers, many
computational models were developed to solve the wave propagation in various
FGPM structures in the past thirty years. The most frequently used are the
various layered models. These models divide an FGM structure into a number
of homogeneous or inhomogeneous thin layers, such as finite layer element [9],
linearly inhomogeneous layer elements [10], quadratic inhomogeneous layer ele-
ments [11], finite elements [12], spectral element [13, 14] and versatile transfer
matrix approach [15]. There are also some models that use FGM as continuous
gradient medium, such as Wentzel–Kramer–Brillouin (WKB) method [16, 17],
homotopy analysis method [18] and orthogonal polynomial series method [19, 20]
and analytical solutions for SH waves [21].

So far, investigations on wave propagation in FGPM structures have focused
essentially on semi-infinite structures and one-dimensional structures, i.e., struc-
tures with a finite dimension in only one direction, such as horizontally infinite
flat plates and axially infinite hollow cylinders.

In practical applications, many piezoelectric elements have finite dimensions
in two directions. One-dimensional models are not suitable for these structures.
This paper proposes a double orthogonal polynomial series approach to solve
wave propagation in a 2D FGPM structure: the FGPM rod with rectangular
cross- section. Two cases are considered: the material gradient direction and the
polarization direction, which are identical and orthogonal to each other, respec-
tively. Dispersion curves and electric potential profiles of various rectangular
FGPM rods are presented and discussed. In this paper, traction-free and open-
circuit boundary conditions are assumed.

2. Mathematics and formulation of the problem

We consider an orthotropic piezoelectric rod with rectangular cross-section,
which is infinite in wave propagating direction. Its width is d and its height is h,
as shown in Fig. 1. Its polarizing direction is in the z direction. The origin of
the Cartesian coordinate system is located at a corner of the rectangular cross-
section and the rod lies in the positive y–z-region, where the cross-section is
defined by the region 0 ≤ z ≤ h and 0 ≤ y ≤ d.

For the wave propagation problem considered in this paper, the body forces
and electric charges are assumed to be zero. Thus, the dynamic equations for
the rectangular rod are governed by

(2.1) Tij,j = ρüi, Di,i = 0,
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Fig. 1. Schematic diagram of a rod with rectangular cross-section.

where Tij , ui and Di are the stress, elastic displacement and electric displacement
components, respectively; ρ is the density of the material.

The relationships between the strain and displacement components can be
expressed as

(2.2) εij = 0.5(ui,j + uj,i), Ei = −φ,i,

where εij , Ei and φ are the strain, electric field and electric potential components,
respectively.

We introduce the function I(y, z)

(2.3) I(y, z) = π(y)π(z) =

{

1, 0 ≤ y ≤ d and 0 ≤ z ≤ h,

0, elsewhere,

where π(y) and π(z) are rectangular window functions

π(y) =

{

1, 0 ≤ y ≤ d,

0, elsewhere
and π(z) =

{

1, 0 ≤ z ≤ h,

0, elsewhere.

By introducing the function I(y, z), the traction-free and open-circuit bound-
ary conditions (Tzz = Txz = Tyz = Dz = 0 at z = 0 and z = h, and
Tyy = Txy = Tyz = Dy = 0 at y = 0 and y = d) are automatically incorpo-
rated in the constitutive relations of the plate [22]

(2.4)
Tij = (Cijklεkl − ekijEk)I(y, z),

Dj = (ejklεkl + ǫjkEk)I(y, z)
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where Cij, eij and ǫij are the elastic, piezoelectric and dielectric coefficients
respectively.

For the FGPM rod of material properties varying in the z-direction (we call
it z-directional FGPM rod, the undermentioned FGPM rods are all z-directional
FGM rods unless otherwise specified), the elastic parameters of the rod are
functions of z, which can be expressed as

(2.5a) Cijkl(z) =
L

∑

l=0

C
(l)
ijkl

(

z

h

)l

.

Similarly, the other material coefficients can be represented by

(2.5b)

ekij(z) =

L
∑

l=0

e
(l)
kij

(

z

h

)l

, ǫjk(z) =

L
∑

l=0

ǫ
(l)
jk

(

z

h

)l

,

ρ(z) =

L
∑

l=0

ρ(l)

(

z

h

)l

, l = 0, 1, . . . , L.

For the FGPM rod with material properties varying in the y-direction (we
call it y-directional FGPM rod), the material parameters of the rod are functions
of y, which can be expressed as

(2.6)

Cijkl(y) =

L
∑

l=0

C
(l)
ijkl

(

y

d

)l

, ekij(y) = e
(l)
kij

(

y

d

)l

,

ǫjk(y) = ǫ
(l)
jk

(

y

d

)l

, ρ(y) = ρ(l)

(

y

d

)l

, l = 0, 1, . . . , L.

For time-harmonic plane wave propagating in the x-direction of a rectangular
rod, we assume that the displacement components have the following form:

ux(x, y, z, t) = exp(ikx − iωt)U(y, z),(2.7a)

uy(x, y, z, t) = exp(ikx − iωt)V (y, z),(2.7b)

uz(x, y, z, t) = exp(ikx − iωt)W (y, z),(2.7c)

φ(x, y, z, t) = exp(ikx − iωt)X(y, z),(2.7d)

where U(y, z), V (y, z) and W (y, z) represent the mechanical displacement am-
plitudes in the x-, y- and z-directions respectively, and X(y, z) represents the
amplitude of electric potential, k is the magnitude of the wave vector in the
propagation direction and ω is the angular frequency.
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Substituting Eqs. (2.2), (2.4), (2.5) or (2.6) and (2.7) into Eq. (2.1), the
governing differential equations in terms of mechanical displacement and elec-
tric potential components can be obtained. Here, the case of identical material
gradient and polarizing directions is given:

(2.8a) (z/h)l[C
(l)
55 U,zz−k2C

(l)
11 U+C

(l)
66 U,yy+ik(C

(l)
12 +C

(l)
66 )V,y+ik(C

(l)
13 +C

(l)
55 )W,z

+ lz−1C
(l)
55 U,z + ik(e

(l)
15 + e

(l)
31)X,z + lz−1C

(l)
55 W + likz−1e

(l)
15X]I(y, z)

+ (z/h)lC
(l)
66 (U,y + ikV )I(y, z),y + (z/h)l[C

(l)
55 (U,z + ikW ) + ike

(l)
15X]I(y, z),z

= −(z/h)lρ(l)ω2U × I(y, z),

(2.8b) (z/h)l[C
(l)
44 V,zz − k2C

(l)
66 V + ik(C

(l)
12 + C

(l)
66 )U,y + (C

(l)
23 + C

(l)
44 )W,yz

+ lz−1C
(l)
44 (V,z + W,y) + C

(l)
22 V,yy + (e

(l)
24 + e

(l)
32)X,yz + lz−1e

(l)
24X,y]I(y, z)

+ (z/h)l(ikC
(l)
12 U + C

(l)
22 V,y + C

(l)
23 W,z + e

(l)
32X,z)I(y, z),y

+ (z/h)l[C
(l)
44 (V,z + W,y) + e

(l)
24X,y]I(y, z),z = −(z/h)lρ(l)ω2V × I(y, z),

(2.8c) (z/h)l[C
(l)
33 W,zz−k2C

(l)
55 W +C

(l)
44 V,yy + lz−1(ikC

(l)
13 U +C

(l)
23 V,y +C

(l)
33 W,z)

+ ik(C
(l)
13 + C

(l)
55 )U,z + (C

(l)
23 + C

(l)
44 )W,yz + lz−1e

(l)
33X,z + e

(l)
33X,zz + e

(l)
24X,yy

− k2e
(l)
15x]I(y, z) + (z/h)l(ikC

(l)
13 U + C23V,y + C

(l)
33 W,z + e

(l)
33X,z)I(y, z),z

+ (z/h)l[C
(l)
44 (V,z + W,y) + e

(l)
24X,y]I(y, z),y = −(z/h)lρ(l)ω2W × I(y, z),

(2.8d) (z/h)l[ik(e
(l)
31 +e

(l)
15)U,z +ik(e

(l)
24 +e

(l)
32)V,yz +e

(l)
33W,zz +e

(l)
24W,yy−k2e

(l)
15W

− ǫ
(l)
33X,zz +k2ǫ

(l)
11X − ǫ

(l)
22X,yy + lz−1(e

(l)
31U + e

(l)
32V,y + e

(l)
33W,z + ǫ

(l)
33X,z)]I(y, z)

+ (z/h)l(e
(l)
24V,z + e

(l)
24W,y − ǫ

(l)
22X,y)I(y, z),y

+ (z/h)l(ike
(l)
31U + e

(l)
32V,y + e

(l)
33W,z − ǫ

(l)
33X,z)I(y, z),z = 0,

where subscript comma indicates partial derivative.
To solve the coupled wave equations (2.8), U(y, z), V (y, z), W (y, z) and

X(y, z) are all expanded into products of two Legendre orthogonal polynomial
series:

(2.9)

U(y, z) =
∞
∑

m,j=0

p1
m,jQm(z)Qj(y), V (y, z) =

∞
∑

m,j=0

p2
m,jQm(z)Qj(y),

W (y, z) =

∞
∑

m,j=0

p3
m,jQm(z)Qj(y), X(y, z) =

∞
∑

m,j=0

p4
m,jQm(z)Qj(y),
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where pm,j (i = 1, 2, 3, 4) are the expansion coefficients and

(2.10)

Qm(z) =

√

2m + 1

h
Pm

(

2z − h

h

)

,

Qj(y) =

√

2j + 1

d
Pj

(

2y − d

d

)

with Pm and Pj being the mth and the jth Legendre polynomials. Theoretically,
m and j run from 0 to ∞. However, in practice the summation over the poly-
nomials in Eq. (2.9) can be truncated at some finite values m = M and j = J ,
when the effects of higher order terms become negligible.

Equations (2.8) are multiplied by Qn(z) with n running from 0 to M , and
by Qp(y) with p from 0 to J , respectively. Then integrating over z from 0 to h
and over y from 0 to d gives the following system of linear algebraic equations:

(2.11a) lAn,p,m,j
11 p1

m,j + lAn,p,m,j
12 p2

m,j + lAn,p,m,j
13 p3

m,j + lAn,p,m,j
14 p4

m,j

= −ω2 · lMn,p,m,jp
1
m,j ,

(2.11b) lAn,p,m,j
21 p1

m,j + lAn,p,m,j
22 p2

m,j + lAn,p,m,j
23 p3

m,j + lAn,p,m,j
24 p4

m,j

= −ω2 · lMn,p,m,jp
2
m,j ,

(2.11c) lAn,p,m,j
31 p1

m,j + lAn,p,m,j
32 p2

m,j + lAn,p,m,j
33 p3

m,j + lAn,p,m,j
34 p4

m,j

= −ω2 · lMn,p,m,jp
3
m,j ,

(2.11d) lAn,p,m,j
41 p1

m,j + lAn,p,m,j
42 p2

m,j + lAn,p,m,j
43 p3

m,j + lAn,p,m,j
44 p4

m,j = 0,

where lAj,m
αβ (α, β = 1, 2, 3, 4) and lMm,j are the elements of the nonsymmetric

matrices A and M , which can be obtained by using Eq. (2.8).
Equation (2.11d) can be written as

(2.12) p4
m,j = −(lAn,p,m,j

44 )−1(lAn,p,m,j
41 p1

m,j + lAn,p,m,j
42 p2

m,j + lAn,p,m,j
43 p3

m,j).

Substituting Eq. (2.12) into Eqs. (2.11a)–(2.11c) gives:

(2.13a) [lAn,p,m,j
11 − lAn,p,m,j

14 (lAn,p,m,j
44 )−1 · lAn,p,m,j

41 ]p1
m,j

+ [lAn,p,m,j
12 − lAn,p,m,j

14 (lAn,p,m,j
44 )−1 · lAn,p,m,j

42 ]p2
m,j

+ [lAn,p,m,j
13 − lAn,p,m,j

14 (lAn,p,m,j
44 )−1 · lAn,p,m,j

43 ]p3
m,j

= −ω2lMn,p,m,jp
1
m,j ,
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(2.13b) [lAn,p,m,j
21 − lAn,p,m,j

24 (lAn,p,m,j
44 )−1 · lAn,p,m,j

41 ]p1
m,j

+ [lAn,p,m,j
22 − lAn,p,m,j

24 (lAn,p,m,j
44 )−1 · lAn,p,m,j

42 ]p2
m,j

+ [lAn,p,m,j
23 − lAn,p,m,j

24 (lAn,p,m,j
44 )−1 · lAn,p,m,j

43 ]p3
m,j

= −ω2lMn,p,m,jp
2
m,j ,

(2.13c) [lAn,p,m,j
31 − lAn,p,m,j

34 (lAn,p,m,j
44 )−1 · lAn,p,m,j

41 ]p1
m,j

+ [lAn,p,m,j
32 − lAn,p,m,j

34 (lAn,p,m,j
44 )−1 · lAn,p,m,j

42 ]p2
m,j

+ [lAn,p,m,j
33 − lAn,p,m,j

34 (lAn,p,m,j
44 )−1 · lAn,p,m,j

43 ]p3
m,j

= −ω2lMn,p,m,jp
3
m,j .

Then, Eqs. (2.11) can be rewritten as

(2.14)







lĀn,p,m,j
11

lĀn,p,m,j
12

lĀn,p,m,j
13

lĀn,p,m,j
21

lĀn,p,m,j
22

lĀn,p,m,j
22

lĀn,p,m,j
31

lĀn,p,m,j
32

lĀn,p,m,j
33

















p1
m,j

p2
m,j

p3
m,j











= −ω2lMn,p,m,j







1 0 0

0 1 0

0 0 1

















p1
m,j

p2
m,j

p3
m,j











.

Thus, Eq. (2.14) forms the eigenvalue problem to be solved. The eigenvalue
ω2 is the angular frequency of the guided wave, and the eigenvectors pi

m,j

(i = 1, 2, 3, 4) are the mechanical displacement components to be calculated.
In terms of Eq. (2.12), p4

m,j can be obtained, which determines the electric po-
tential distribution. According to the equation V ph = ω/k, the phase velocity
can be obtained. In the computing progress, the obtained eigenvalues are com-
plex, but their imaginary parts are all very small compared to their correspond-
ing real parts. For one eigenvalue, its imaginary part is less than one-millionth
of its real part. So, we just assume that the real parts are solutions of the
system.

3. Numerical results and discussions

The Voigt-type model is used in this study to calculate the effective param-
eters of the FGM rod, which can be expressed as

C(z) = C1V1(z) + C2V2(z), for z-directional FGM rectangular rod,(3.1a)

C(y) = C1V1(y) + C2V2(y), for y-directional FGM rectangular rod,(3.1b)

where Vi(z) and Ci denote the volume fraction of the ith material and the cor-
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responding physical property of the ith material, respectively, and
∑

Vi(z) = 1.
Thus, the properties of the FGM can be expressed as

C(z) = C2 + (C1 − C2)V1(z), for z-directional FGM rectangular rod,(3.2a)

C(y) = C2 + (C1 − C2)V1(y), for y-directional FGM rectangular rod,(3.2b)

According to Eqs. (2.5) and (2.6), the gradient profile of the material volume
fraction can be expressed as a power series expansion. The coefficients of the
power series can be determined using the Mathematica function ‘Fit’.

3.1. Comparison with the available solution from the semi-analytical finite element
method

Because no reference results for the guided waves in rectangular FGPM rods
can be found in literature, we consider a square homogeneous steel rod with
CL = 5.85 km/s, CT = 3.23 km/s and h = d = 5.08 mm to make a comparison
with known results from the semi-analytical finite element method [23]. Here,
CL and CT are respectively the longitudinal and transversal wave velocities.
Figure 2 shows the corresponding dispersion curves, where dotted lines are from
Hayashi et al. [23], and solid red lines are obtained from the present extended
polynomial approach. As can be seen, the results from the extended polynomial
approach agree well with the reference data, which supports the correctness and
the accuracy of the present method.

Fig. 2. Phase velocity dispersion curves for the steel square rod; dotted lines: results from
the semi-analytical finite element method [23], solid red lines: the authors’ results.
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3.2. Dispersion curves in rectangular FGPM rods

In this section, we take the rectangular PZT-4-BSN FGPM rod as an exam-
ple to discuss the wave characteristics. The FGPM rod is composed of PZT-4
(bottom surface) and BSN and the corresponding material parameters are given
in Table 1. Firstly, we consider three square FGPM rods. Their respective gradi-
ent functions are linear, quadratic and cubic functions, i.e., V1(z) = zn (n = 1, 2
and 3). Their velocity dispersion curves are shown in Fig. 3. It can be observed
that the first four wave modes have no cut-off frequencies. This feature is differ-
ent from that for an infinite FGPM flat plate, in which the first three modes have
no cut-off frequencies. Furthermore, different gradient varieties result in different
dispersive characteristics. The wave speed of linearly graded rod is higher than
that of quadratically and cubically graded rods. This is attributable to the fact
that the volume fraction of PZT-4 in linearly graded rod is lower than that in
other two graded rods and the bulk wave speed of PZT-4 is lower than that
of BSN.

Table 1. Physical parameters of the two piezoelectric materials.

Property C11 C12 C13 C22 C23 C33 C44 C55 C66

PZT-4 13.9 7.4 7.4 13.9 7.4 11.5 2.56 2.56 3.05

BSN 23.9 10.4 5 24.7 5.2 13.5 6.5 6.6 7.6

e15 e24 e31 e32 e33 ε11 ε22 ε33 ρ

PZT-4 12.7 12.7 −5.2 −5.2 15.1 650 650 560 7.5

BSN 2.8 3.4 −0.4 −0.3 4.3 196 201 28 5.3

Units: Cij (1010 N/m2), εij (10−11 F/m), eij (C/m2), ρ (103 kg/m3).

20 1 1.50.5
f d [kHz·m]

Vph [km/s]

2

4

6

Fig. 3. Phase velocity dispersion curves for FGPM square rods; black lines: linearly graded
rod, red lines: quadratically graded rod, blue lines: cubically graded rod.
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8

2

4

6

20 1 3

Vph [km/s]

f d [kHz·m]

Fig. 4. Phase velocity dispersion curve for sinusoidally FGPM rectangular rods; black lines:
with d/h = 1, red lines: with d/h = 2.

The gradient fields of above two FGPM rods are monotonic. Next, two si-
nusoidally FGPM rods (V1(z) = sin(πz)) with different width to height ratio
d/h = 1 and d/h = 2 are considered. The corresponding phase velocity disper-
sion curves are shown in Fig. 4. It can be seen that the width to height ratio has a
significant influence on the dispersion curves. For the sinusoidally FGPM square
rod, its geometric shape and material distribution are both symmetric with re-
spect to both z- and y-axis. The first two modes are almost overlapped and the
third mode is almost not dispersive. For the sinusoidally FGPM rectangular rod,
its geometric shape is not symmetric with respect to z- and y-axis. The first
two modes are not overlapped and the third mode is obviously dispersive. But
it has the same material distribution like the square FGPM rod, which results
in phase velocities similar to the ones of the square rod; as the width increases,
the frequency of each mode becomes higher.

3.3. Mechanical displacement and electric potential distributions

Firstly, the distributions of the first four modes for sinusoidally FGPM square
rod are shown in Figs. 5–8 at kd = 3. Because this structure is symmetric with
respect to the geometry and the material distribution, its mechanical displace-
ment and electric potential are all symmetric or anti-symmetric with respect to
both y and z variables. For the first mode, Fig. 5, the distribution of the me-
chanical displacement component u is symmetric with respect to the z variable
but antisymmetric with respect to the y variable. The other two mechanical dis-
placement components v and w are respectively symmetric and antisymmetric
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Fig. 5. Displacement and electric potential profiles of the first mode for the sinusoidally
FGPM square rod at kd = 3.
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Fig. 6. Displacement and electric potential profiles of the second mode for the sinusoidally
FGPM square rod at kd = 3.
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Fig. 7. Displacement and electric potential profiles of the third mode for the sinusoidally
FGPM square rod at kd = 3.
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Fig. 8. Displacement and electric potential profiles of the forth mode for the sinusoidally
FGPM square rod at kd = 3.
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with respect to both z- and y-axis. The mechanical displacement distribution of
the second mode, Fig. 6, is the reverse of that of the first mode. Its mechanical
displacement u is antisymmetric with respect to the z variable but symmetric
with respect to the y variable. The mechanical displacement components v and
w are respectively antisymmetric and symmetric with respect to both z and y
variables. Furthermore, the mechanical displacement amplitudes of the first two
modes are very similar: the amplitudes of displacement u are almost equal and
the amplitudes of displacements v and w for the first mode are very close to
those of v and w for the second mode. Similar comments can be made for the
mechanical displacement components of the third mode, Fig. 7, and the fourth
mode, Fig. 8. The electric potential of all modes has the same symmetry as the
corresponding mechanical displacement w.

Then, Figs. 9 and 10 show the mechanical displacement and electric potential
distributions of the first two modes for the linearly FGPM square rod at kd = 3.
This rod is symmetric only with respect to the geometry but not to the material
distribution. Its mechanical displacement components and electric potential are
always symmetric or antisymmetric with respect to the y variable but not to the
z one.

Next, the case of large wavenumber is discussed. Figures 11–14 are the dis-
placement and electric potential distributions of the first and third modes for the
sinusoidally and linearly FGPM square rods at kd = 60. It can be observed that
the mechanical displacement and electric potential always distribute near the
four boundaries. Furthermore, they mostly distribute in the dominantly PZT-4
regions (the wave speed of PZT-4 is lower than that of BSN). For example, in
the sinusoidally FGPM rod, they mostly distribute near z = 0 and z = 1 and in
the linearly FGPM rod near z = 0.

3.4. The case of y-directional FGPM rod

This section considers a linearly y-directional FGPM square rod. Its phase
velocity dispersion curves are shown in Fig. 15. Comparing them with those of
Fig. 3a, it can be seen that although the geometric dimensions, material volume
fractions and material gradient pattern are all the same, the different gradient
direction results in different dispersion characteristics. In fact, the only constant
factor is the polarization direction. This constant polarization direction and the
changed gradient direction result in the difference of the two FGPM rods. Fig-
ure 16 presents the mechanical displacement components and electric potential
distributions of the third mode at kd = 60. We can see again that the mechani-
cal displacement and electric potential are always distributed dominantly in the
PZT-4 region.



226 J. G. Yu et al.

0

0.25

0.5

0.75

1

z

0

0.25

0.5

0.75

1

y

-0.5

0

0.5

U

0

0.25

0.5

0.75z

0

0.25

0.5

0.75

1

z

0

0.25

0.5

0.75

1

y

0.5

1

1.5
V

0

0.25

0.5

0.75z

0

0.25

0.5

0.75

1

z

0

0.25

0.5

0.75

1

y

-1
-0.5

0
0.5
1

W

0

0.25

0.5

0.75z

0

0.25

0.5

0.75

1

z

0

0.25

0.5

0.75

1

y

-5

0

5

0

0.25

0.5

0.75z

z

z

z

z

y

y y

y

U V

W

Fig. 9. Displacement and electric potential profiles of the first mode for the linearly FGPM
square rod at kd = 3.
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Fig. 11. Displacement and electric potential profiles of the first mode for the sinusoidally
FGPM square rod at kd = 60.
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Fig. 12. Displacement and electric potential profiles of the third mode for the sinusoidally
FGPM square rod at kd = 60.
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Fig. 13. Displacement and electric potential profiles of the first mode for the linearly FGPM
square rod at kd = 60.
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Fig. 14. Displacement and electric potential profiles of the third mode for the sinusoidally
FGPM square rod at kd = 60.
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Fig. 15. Phase velocity dispersion curves for the linearly FGPM square rod; red lines:
y-directional FGPM rod, black lines: z-directional FGPM rod.
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Fig. 16. Displacement and electric potential profiles of the third mode for the linearly
y-directional FGPM square rod at kd = 60.

4. Conclusions

In this paper, a double orthogonal polynomial approach is proposed to solve
the wave propagation in a rectangular 2D FGPM rod. The dispersion curves
and mechanical displacement components andelectric potential distributions of
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various rectangular FGPM rods are presented and discussed. According to the
numerical results, we can draw the following conclusions:

a) Numerical comparison of the dispersion curves with reference solutions
shows that the extended orthogonal polynomial method is appropriate to solve
the guided wave propagation problem in 2D FGPM structures.

b) Both the width to height ratio and the gradient function have significant
influences on the guided wave charateristics.

c) High frequency waves propagate predominantly around the side with the
material having the lower wave speed.
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