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Surface instability of a semi-infinite isotropic laminated plate
under surface van der Waals forces
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BY MEANS OF COMPLEX VARIABLE METHOD, the present work demonstrates that the
surface of a semi-infinite isotropic laminated plate that is being attracted to a rigid
contactor through van der Waals forces is always unstable. Two distinct surface insta-
bility modes are identified, and their wavenumbers and wavelengths are presented in
concise and simple expressions. Furthermore, the two wavenumbers and wavelengths
are completely determined by three elastic parameters of the laminated plate, three
parameters related to the interactions between the surface and the contactor, and
three parameters related to surface energy.
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1. Introduction

WHEN A RIGID CONTACTOR is in close proximity to a compliant solid, the van
der Waals forces come into play. It has been demonstrated both experimentally
and theoretically that the surface of an elastic film will become unstable when
it is subject to van der Waals forces [1-11]. In particular, the wavelength of
the surface instability is nearly independent of the nature and magnitude of the
external force (or the interaction) but proportional to the film thickness [4, 5.
Apparently, the results for thin films are not directly applicable to a semi-infinite
elastic body because an infinite wavelength will be predicted if the film thickness
approaches infinity.

By using the complex variable technique, RU [12]| analyzed the surface in-
stability of a semi-infinite elastic body under plane strain condition in which
the thickness in the z3-direction approaches infinity. By using a similar method,
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WANG et al. [13] investigated the surface instability of a semi-infinite harmonic
solid under finite plane strain deformation. By using the Stroh method,
WANG [14] analyzed the surface instability of a semi-infinite anisotropic elastic
body under two-dimensional deformation (or the generalized plane strain con-
dition). These studies have demonstrated that the surface of the semi-infinite
elastic body attracted by van der Waals forces is always unstable, and a unique
surface instability mode exists. FRIED and TODRES [15] investigated the com-
bined effects of surface prestress, curvature dependence of the surface free-energy
density and interactions between the surface and rigid contactor on the wrin-
kling instability of an incompressible half-space. Their results showed that the
combined effects will lead to an increased number of linearly stable wrinkled
configurations.

The present work aims to analyze the surface instability of a semi-infinite
isotropic laminated thin plate under stretching and bending deformations due
to van der Waals attraction. The surface instability studied in this work is quite
different from other known wrinkling patterns in thin elastic sheets due to small
compressive stress [16] or significant stretching [17-19].

2. Basic formulation

Consider an undeformed plate of uniform thickness h, to which a Cartesian
coordinate system {z;} (i = 1,2,3) is attached and of which the main plane
is located at x3 = 0. The plate is composed of an isotropic, linearly elastic
material that can be inhomogeneous and laminated in the thickness direction.
In this work, Greek subscripts take the values 1, 2. Summation over repeated
subscripts is understood. The coordinate system is chosen in such a way that
the two in-plane displacements u, and the out-of-plane deflection w on the main
plane are decoupled in the equilibrium equations [20]. We denote by hg the
distance between the main plane and the lower surface of the plate [20]| and
introduce the integral operator

h—hgo

Q)= [ (o,

—ho

Consequently, the membrane stress resultants and bending moments defined by
Nop = Qoag, Mag = Qr3o.s with 0,5 being the in-plane stress components,
transverse shearing forces Rg = M3, in-plane displacements, deflection and
slopes ¥, = —w  on the main plane of the plate, and the four stress functions
©a and 7, can be concisely expressed in terms of four complex potentials ¢(z),
Y(z), ¢(z) and ¥(z) of the complex variable z = x; + izg [20-22]:
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Ni1 + Nop = 4Re {¢/(2) + BP'(2) },
Nog — N11 + 2iN19o =2 [E(Z)”(Z) + ¢'(z) + BE@”(Z) + BLD/(Z)] ,
M1 + My = 4D(1 + vP)Re {#'(2)}

KA —
AU Re o),

(2.1)
Moy — Myq + 2iM15 = — 2D(1 — l/D) [2@”(2) + W/(Z)}
-2 [0 + ()],

Ry — iRy = 4D®"(z) +

%KU1+¢Uﬂ==RA¢(@-:f§?§5—@MZ%

U1 + 102 = @(2) + 29/ (2) + ¥(2),
w= —Re{zd(z) + x(2)},

(22)  pi+ipe=i[8(2) +20/() + B(2)| +1B |0(2) + 20 () + U(3))

ny+m2:ipa.—yD)%Déw)—ziiglif@ﬂ

+ig [40() - 7T - 9
where ¥(z) = x/(2), and

1 Ao Do
= (A, — A B=B D=D Al Db
M 2( 11 12)7 125 11, V An’ v Dna

A:3A11—A12:3—VA HD:3D11+D12:3+VD
A+ A 1+0v47 Dy — Dy 1—vP’

Detailed definitions of the five elastic constants A1, A2, Bia, D11 and Dyo
can be found in BEOM and EARMME [20]. Moreover, the membrane stress re-
sultants, bending moments, transverse shearing forces, and modified Kirchhoff
transverse shearing forces V1 = R1+ M2 and Vo = Ry + My 1, that exclusively
apply to free edges, can be expressed in terms of the four stress functions ¢,
and 7, [21]:

(2.3)

Naﬁ = —€BuwPa,w

1
(2.4) Ma,@ = —€Buwlla,w — §€aﬁ77w,u.)a
1
Ry =—- €ap Nw,wss Vo = —Cawlw,ww,

“T 9

where €, are the components of the two-dimensional permutation tensor.
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In addition, the explicit expressions of the 4 x 4 real matrices H, L and S and
the 4 x 4 impedance matrix M introduced in [21] for an isotropic laminated plate
have been obtained in [23]. H, L and S can be considered as the counterparts
of Barnett—Lothe tensors in the Stroh sextic formalism for generalized plane
strain elasticity [24]. In particular, H and L are positive definite real symmetric
matrices and M is a positive definite Hermitian matrix [25].

3. Surface instability

Now we consider a semi-infinite isotropic laminated plate (z2 > 0 and —hy <
x3 < h — hg) attracted to a rigid contactor through van der Waals forces, as
illustrated in Fig. 1.

Semi-infinite isotropic
laminated plate

\

! ! [ 1 1
Surface van der Waals forces
1 1 1 1 1

Fia. 1. A semi-infinite isotropic laminated plate (x2 > 0 and —ho < 3 < h — ho) interacting
with a rigid contactor through van der Waals-like forces.

The original surface conditions for the perturbed semi-infinite elastic body
are given by [12]

o920 = — [y — Yyu,11 = —B(uz + x302) — Y(ug11 + x392.11),

(3.1) 12 =0, x9 :O+, —hg < x3 < h — hy,
where 099 and o019 are the perturbed surface normal and shear stresses, s is the
perturbed surface normal displacement, 3 (> 0) is the interaction coefficient [12],
v (> 0) is the surface energy of the semi-infinite plate [12]. Here, it is assumed
that § and 7 can be inhomogeneous in the plate thickness direction (i.e., 5 and
v are functions of x3) to reflect the realistic scenario that the van der Waals
interaction energy and the surface energy are material dependent.

Through integrating the stresses in Eq. (3.1), the surface conditions for the
perturbed semi-infinite laminated plate take the following form:
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N22 = —/Bll’u,g — /812192 — Y11U2,11 — 71202117

(3.2) Mao = —[1aug — (2202 — Y12u2,11 — Y2292,11,
Ny =V =0, x9 =0T,
where
(3.3) Biu=QB>0,  Pia=Qu3B,  frn=Qu3>0,

Y1 =Qy>0, m2=Qz3y, 2= Qzjy>0.

The Schwarz integral inequality gives rise to 811022 > ﬂ%Q and y117y22 > 7%2.

It is stressed that the surface conditions in Eq. (3.2) are perturbed ones. It is
enough to assume that there is a homogeneous deformation with flat surface due
to remote tension and bending Noo = Ng5 and Moy = M55, and then examine
if there exists a perturbed solution which can satisfy Eq. (3.2). The solution to
the homogeneous deformation is simply given below:

¢(z) =x1z,  »(z) =x22,  D(2) =mz,  ¥(2) =z,

where the four real coefficients x1, x2, 71 and 79 are

~ uD(+ vP)N5§ — BuMss _ 4ApM — B(k* — 1)N5§
M= DA+ 00— B2(rA—1)" ™7 16uD(1 + v0) — 4B%(kA — 1)’
uD(1 — vPYNSS + BuMgs 2uMss + BNsS
X2 = ) 2 =

ouD(1 — vD) — B2 ~4puD(1 —vD) —2B%

In view of Eq. (2.4), the condition of N12 = V5 = 0 on the surface 9 = 0 is
equivalent to ¢1 =73 = 0 on x9 = 0. By using Eq. (2.2), this condition can be
expressed in terms of the four complex potentials ¢(z), @(z), O(z) = z¢'(z)+(2)
and 2(z) = 29 (2) + ¥(z) as
¢t (2)-O01(2)—d (2)+O0 7 (2)+B [¢+(z)—Q+(z)—§13_(z)+(_2_(z)} =0,
QuD(l—yD) [KD@+(Z)+Q+(Z)—/1DQ3_(z)—Q_ (z)]

(3.4) _ _
+B [HA¢+(Z)+@+(Z)—HA¢_(Z)—@_ (z)] =0,

Im{z} =0.

It can be conveniently derived from the above expressions that ©(z) and
(2(z) can be given in terms of ¢(z) and P(z) as

[2uD(1 — vP) + B2%:4] ¢(2) + 8BuD®(z)
2uD(1 —vP) — B2 ’
—B(kA +1)¢(2) — [2uD(3 + vP) + B?] &(z)
2uD(1 —vP) — B2 '

O(z) =

(3.5)
2(z) =
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Consequently, 2, 12, u1, ug, ¥1 and ¥ on the surface xo = 0 can be expressed
in terms of ¢(z) and &(z) as

pa = ¢(2) + BO(2) + ¢(2) + BP(z),
BrA BrA

M2 = = 6(2) + DB +r7)P(z) + 7 (=) + DB+ 7)),
= [uD(1 —vP) (kA — 1) — B2k4] ¢(2) — 4BuDP(z)
b 42D(1 — D)
N (uD(1 — vP) (kA — 1) — B2k ¢(z) — 4BuDd(z)
4p2D(1 — P) ’
PO vP) (kA 4 1)¢(2) + 4BD®(2)
2 ApD(1 — D)
(36) .D(1 —vP) (kA +1)¢(2) + 4BDP(2)
+1 =~ ~ )
4uD(1 — D)
o — B(k* +1)¢(2) + 2 [2uD(1 + vP) + B?] &(2)
b 4uD(1 — D)
B(k* + 1)¢(2) + 2 [2uD(1 + vP) + B?] &(z)
4uD(1 — D) ’
P B(n +1)¢p(2) +8uDd(z) . B(k?+1)p(2 )—i—8,uDdi( )
2 = +1 ~ )
4uD(1 — D) 4uD(1 — D)
Im{z} =0,

where 7 and D are defined by [20]

. D1y = = A1 B,
(3.7) I/D:~—, D=Dy =Dy — —5——75,
D1y A} - A%,

A1 By,

blg = Do+ —5""5-.
A3 — AR,

Thus, the first two conditions in Eq. (3.2) can be expressed in terms of ¢(z)
and &(z) as

s -] [50]

N [ (k" +1) [BuD(1 — vP) + p12B]  4D(B11B + 2B124) ] [¢(z) } ’
p(kd +1) [B12D(1 — vP) + BoB]  AuD(BraB + 2Baap) | | D(2)

[ (k2 +1) [yuD(1 —vP) +712B]  4D(y11B + 271201) ] [ /(2)]
(A + 1) [y12D(1 = vP) +v22B]  AuD(v12B + 27920p) | | ¥ (
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= —2iuD(1 — 7P [B,iA 2MD(2311 VD)} [giiﬂ _

[ (k2 +1) [BuD(1 —vP) + B12B]  4D(B11B + 2B124) ] [‘?(@]
p(s® +1) [B12D(1 — vP) + B22B]  4uD(B12B + 2020p) | | P

¢

o

|: (liA +1) [’yllD(l — I/D) + ’}/123] 4D (y11 B + 27y1210) :| |:
p(et +1) [y12D(1 = vP) +492B]  4uD(712B + 272211

Im{z} =0.

The left-hand side of Eq. (3.8) is analytic in the upper half-plane including
the point at infinity, whilst its right-hand side is analytic in the lower half-plane
including the point at infinity. By using Liouville’s theorem, we arrive at the
following set of coupled second-order differential equations:

o ) 2 2B ¢'(2)
(3.9 2D -")| o4 2uD(3 + uD)} [@’(2)}

[ (K 4+ 1) [BuD(1 = vP) + B12B]  AD(B11B + 2B1211) ] [¢(2) ]
p(k? + 1) [Br2D(1 — vP) + B2 B] 4uD(Br2B + 2B22p) | | P(2)

[ (HA + 1) [’yllD(l — I/D) + ’YlgB] 4D(’y113 + 2712#) :| |:¢”(Z):| _ |:0:|
p(kA +1) [y12D(1 = vP) + 492 B] 4puD(712B + 27y0211) | | 9" (2) 0"

To solve the above set of equations, the unknown ¢(z) and @(z) are assumed
to take the following forms:

d(z) = 01 exp(irz),

3.10
(3.10) &(z) = dg exp(irz),

where A is a wavenumber. The real part of A should be positive in order to ensure
that ¢(z) and &(z) are bounded as x9 — +00.

Substitution of Eq. (3.10) into Eq. (3.9) yields the following eigenvalue
problem:

a2 2B 5
(3.11) 2auD(1 —o7) BrA 2uD(3—|—1/D)] [52

N [ (k4 +1) [BuD@1 —vP )+612B] 4D(B11B + 2P1241) ] [51}
m

K%+ 1) [/31217(1 — vP) + B2oB] 4uD(Br12B + 2B24) | | 62

(w4
32 |: ( ’yllD(l -V )—l—’}/mB] 4D (y11 B + 27121) :| [(51:| _ |:0:|
(s + 1 ) [112D(1 = vP) + 722 B] 4puD(v12B 4 2y2211) | | 62 0]’
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which leads to a quartic equation in A given by

(3.12) (11722 — Yi2)A + (711 L33 + Yo2 L1t — 2712L13)\?
+ [L11Lss — Lis — (Bazmi1 + Bi1v22 — 2B12712)] A°
— (B11L33 + BaaL11 — 2612 L13)\ + P11 022 — (9 = 0,

where L1, L33 and Lq3 are defined as

B2
Ly = p(1+v4) —

2D’
1 — D D 2(9 A
(3.13) L33:D( vO)B+v”) B *3-v )7
2 4u
BWwP + 4
Y

It is noted that L1, L33 and Li3 are elements of the following 4 x 4 positive
definite real symmetric matrix L [23]

Ly 0 L3 0
0 Ly 0 Lis

Lis 0 L3 0
0 Lis 0 Ls3

(3.14) L=

The wavenumber A can also be determined by solving the following eigenvalue
problem:

(3.15) (P —\M — \?’Q)v =0,
where v is the eigenvector associated with the eigenvalue A, and
4 2. _ A -
1 2ip(l — vt 0 B
3—vA 3—vA
2ip(1 — v4) 4y ,
3.16) M = —iB 0 )
(3.16) 3—vA 3—vA '
0 iB 2D iD(1 + vP)
| -iB 0 —iD(1 + vP) 2D
[0 0 0 0 0 0 0 O
10 B 0 B2 10 v 0 2
(3.17) P = 0O 0 0 O ’ Q= 0 0 0 O
| 0 B2 0 B 0 m2 0 722

It is deduced from Eq. (3.15) that for a nontrivial solution of v,

(3.18) [P —AM — \’Q| =0,
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which is a sextic equation in A. There are six roots of A in Eq. (3.18): two are
zero, and the rest four nonzero eigenvalues are determined by Eq. (3.12).

The 4 x 4 Hermitian matrix M (or the so called edge-impedance matrix) is
positive definite [25] and the 4 x 4 real symmetric matrices P and Q are both
positive semi-definite in view of the fact that 817 > 0, Ba2 > 0, 1122 > (35 and
Y11 > 0, y22 > 0, y117722 > 7%2. If v is an eigenvector associated with a nonzero
eigenvalue \ of Eq. (3.15), we will have vTPv > 0, ¥'Qv > 0 and ¥TMv > 0
(if v'Pv = 0, we then have ¥TQv = 0, as a result A\ = 0, which violates the
assumption that \ is nonzero). Pre-multiplying Eq. (3.15) by ¥*, we obtain

(3.19) N9TQv + AWMy — v'Pv =0,
from which we arrive at

—v'Mv £ /(FTMv)2 + 4(3TPv)(¥TQv)
2vTQv

(3.20) A= .
The above expression together with Eq. (3.12) clearly indicates that the
nonzero A is always real, and the four real-valued nonzero A contain both positive
and negative numbers. It is further observed from Eq. (3.12) that two eigenvalues
are positive, and the remaining two are negative because the product of the four
eigenvalues (811822 — 3%) /(711722 — 725 is positive. This fact implies that there
always exist two distinct surface instability modes whenever 3 > 0 and v > 0.
In addition, it is observed from Eq. (3.12) that the two wavenumbers A1, Ag,
(A1 > A2 > 0) or the two wavelengths 2w /A1, 27 /Ay are completely determined
by nine parameters: (511, f22, 812), (711,722, 712) and (L11, L33, L13).
Meanwhile, it is obtained from Eq. (3.11) that §; and d2 should satisfy the
following restriction:
o1
(3.21) 5
ANBuD(1—0P)—4D (811 B+2B1541) +4X2D (711 B+271211)
(kA41) [B11D(1—vP) 4312 Bl —4AuD(1—P) = X2(kA+1) [y11 D(1—vP) 419 B]’

with (A = A1, Ag).

The stretching and bending deformations of the laminated semi-infinite plate
cannot be uniquely determined because §; or §5 can still be arbitrary even though
the ratio 01 /d2 is uniquely determined from Eq. (3.21) for a given wavenumber.
The decay rate of surface perturbation in the xzo-direction is determined by

(322) min {)\1,/\2} = )\2.

In the following, we present five special cases to demonstrate the obtained
solution.
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Case I. When the plate is relatively stiff such that A\QM™! — 0, Eq. (3.15)
reduces to

(3.23) (P—-AM)v =0,
which is independent of the surface energy. In this case, Eq. (3.12) becomes
(3.24) (L11Lss — L35)A* — (Bi1Lss + BaaL11 — 2B12L13)A + Br1Ba2 — Bt = 0.
The two wavenumbers A; and A2 can then be determined from Eq. (3.24) as
A1 =

B11Lss+B22L11—2B12 L1s++/ (B11 Lsz—B22L11)2+4(B11 L1s—Br2L11) (B22 L1s— P12 Las)
2(L11Ls3—L3,) ’

(3.25)
9 =
Br1Lss+B22L11—2B12L13—+/ (B11 Lsz—B22L11)2+4(B11 L1s—Br2L11) (B22 L1s— P12 Las)
2(L11L33—L%3) :

If v is an eigenvector associated with a nonzero eigenvalue A of Eq. (3.23),
then T
A= 2BV o
viMv
Consequently the two nonzero wavenumbers given by Eq. (3.24) are indeed pos-
itive. Considering the fact that

(3.26) (B11L33 — BaaL11)? + 4(B11L13 — Br2Ll11)(Baaliz — Bralsz)
= (B11Lss + Ba2L11 — 2B12L13)* — 4(B11Ba2 — Bia)(L11Lss — L),

the following inequalities can then be established from Egs. (3.25) and (3.26):

(3.27)  Br1Llss + PoaLlir — 2B12L13 > 2\/(ﬁ11ﬁ22 — B%,)(L11Lss — L33) > 0.

In addition, the two wavenumbers given by Eq. (3.25) are completely deter-
mined by six parameters: (511, 522, 812) and (L11, Lss, L13). The wavelengths of
the two instability modes are given by

2

)\—1 fr
7T[311L33+522L11*2512L13*\/(511L33*522L11)2+4(ﬁ11L137512L11)(522L13*ﬁ12L33)]
B11822—0B%, ’

(3:28)

)\—2 =
™ [ﬂu L33+pB22L11 —2512L13+\/(511 L33—B22L11)2+4(B811 L1s—B12L11)(B22L13— P12 Lss)]
B11B822— 8%, ’
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When B = 0 for a homogeneous plate, 810 = L1z = 0. In this case, it is
deduced from Eq. (3.25) that

_ B _ Pu(r?+1)
L1y dp

_ P2 _ 2092

(3.29) A1 T Lz D(1-vD)(3+ D)

) )\2

In Eq. (3.29), A; is just the one derived by Ru [12| when the surface energy ~
is ignored. Equation (3.29) implies that there exist two distinct instability modes
even when the thin plate is homogeneous in the thickness direction. The ratio of
the two wavenumbers in Eq. (3.29) is

A1 3+v

)\_2_1—1—1/

where v is the Poisson’s ratio of the homogeneous plate. For example, if v=1/3,
this ratio gives A\; /Ay = 2.5.

Case II. If the plate is extremely compliant such that A\QM™! — oo,
Eq. (3.15) reduces to

(3.30) (P - \Q)v =0,

which is independent of the elastic properties of the plate. In this case, Eq. (3.12)
becomes

(3.31) (1722 — Yi)A* — (Ba2y11 + Biiyez — 2B12712) A2 + P11 — 59 = 0.

The two wavenumbers A; and Ay are then determined from Eq. (3.31) as

\ =
5117224’522711*2512712+\/(511722*ﬁ22’711)2+4(ﬁ11’712*ﬂlQ’Yll)(ﬁQQ'YlZ*ﬁ12’Y22)
(3.32) 2(v11722 =)
2 =
2
511’722+522’Y11—2512712—\/(511’722—ﬁ22’y11)2+4(ﬁ11’712—ﬁ12711)(522’712—512722)
2(711722 =)

> 0,

> 0.

The positive values on the right-hand side of Eq. (3.32) are due to the fact

that both
Bi1 B2 Y11 Y12
d
[512 B22 an Y12 Y22

are positive definite. The two wavenumbers given by Eq. (3.32) are completely
determined by six parameters: (11, 522, $12) and (711, ¥22,712). In addition, the
following inequality can be easily established from Eq. (3.32):

(3.33) Ba2711 + Br1722 — 2B12712 = 2\/(511522 — B%,) (711722 — 735) > 0.
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Case III. If v, and £3,,, satisfy the following restriction:

(3.34) Tz 0% g,

Bll B ﬂ12 B 522

the two wavenumbers (denoted as A1 and :\2) can be simply obtained from A;
and A2 given by Eq. (3.25) in the absence of the surface energy as follows:

- BTV TS VR
) ~ 2
Ay = —— )\2 <)\27

1+ /14 4k)\3

which indicates that the surface energy will lower the values of the wavenumbers.

Case IV. If the plate is homogeneous in the thickness direction, we have

D(1 —uvPY 3+ P
Bi2 =12 = L13 =0, Lyy = p(1 4 v, L33 = ( 2>( )-

In this case, Eq. (3.12) becomes

(3.36) 11722 + (Y11 L33 4+ y22L11) A% 4 (L11 L33 — Baayin — Br1yaz) A2
— (B11L33 + Ba2L11) A + B11P22 = 0,

or equivalently

(3.37) (V1122 + Lt — B11)(722A% + LazA — Ba2) = 0.

The two wavenumbers can be determined as

A = —Li1 + /L3 + 481171

2711

Ay = —L33 + /L35 + 45322722

2722

It is easily checked that A\ in Eq. (3.38) is just the one derived by Ru [12]. In
the presence of surface energy, there are two instability modes for a homogeneous
plate given by Eq. (3.38): one is the in-plane mode observed in [12], the other
one is the out-of-plane mode.

(3.38)

Case V. In the final example, we assume that the plate is made of two
homogeneous layers of equal thickness. In addition, the Young’s modulus of
the top layer is just double that of the bottom layer, and the two layers have
a constant Poisson’s ratio v = 0.25. Both 8 and ~ are constant in the thickness
direction. In this example, it is calculated that hg = 7h/12, and that
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Yi1Y22 — Vg = il
11722 — Vi2 TR
13%x 71,
y11 L33 + ye2L11 — 2y12L13 = 16 x 64h vChi,
(3.39) 5 45 x 429 h' By
L11L33 — L -2 —h C - —
11133 13 — (Ba2y11 + Briyze — 2P12712) = 64 %512 5
13 x 71
— (B11L33 + PaaLl1y — 2B12L13) = ————— h*BC,
16 64
62h4
B11Ba2 — By = ST

where C1; = E/(1 — v?) with E being the Young’s modulus of the bottom layer.

The two wavenumbers can then be determined from Eq. (3.12). The depen-
dence of the two wavelengths on both § and ~ is shown in Fig. 2 for two values of
B =101, 2 x 10! J/m* with E = 0.5 Mpa. First, it is clearly demonstrated in
Fig. 2 that our theoretical prediction of the existence of two instability modes is
numerically verified in this example. In addition, the two wavelengths of surface
wrinkling are very sensitive to the interaction coefficient # but not to the surface
energy . An increase in the interaction coefficient 5 will lower the values of
the two wavelengths of surface wrinkling. This trend is in agreement with that
observed by Ru [12].

400

3501

300 p=10" Jm* |

250 -
B=2x10" J/m*

2001

210\ (Hm)

1501

p=10" Jm*
100 1

501

0 ) ) ) p=2x10" Jym*
0 20 40 60 80 100
Y (0.1 J/m?)

Fic. 2. The dependence of the two wavelengths of surface wrinkling on the interaction
coefficient 8 and the surface energy + for two values of 8 = 10!, 2 x 10"* J/m* with
E = 0.5 Mpa.

4. Further discussions

In Section 3, the results are obtained in the Cartesian coordinate system that
is chosen such that x3 = 0 is on the main plane. Next, the surface instability
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problem will be discussed by choosing a new coordinate system {z;} (i = 1,2, 3)
in which Z3 = 0 is at an arbitrary distance of hy above the lower surface of the
plate and Z, = z,.
In the new coordinate system, the surface conditions for the perturbed semi-
infinite laminated plate take the following form:
Nag = —f1ig — B1202 — Y1121 — W121§2,117
(4.1) May = — oty — Bagda — Y1221 — ’?22192,11,
Nip =V5 =0, zg =07,
where the symbol " indicates the quantities in the new coordinate system, and
2 Bu=QB8>0,  fo=Qf  fo=Q#HF>0,
11 = Q7 >0, Y12 = Q237, a2 = Q37 > 0,

A h—h .
with Q(--+) = —hll(”')dx?"
It can be conveniently proved that

Bn = B11, 312 = P12 + ibﬁn, 322 = 22 + 25512 + iLQﬁn,

(4.3) . N .
M1 = 711, Y12 = Y12 + hyit, Ao = Y2 + 2h12 + B,

where h = hi1 — hg. R
In addition, 4, and 9, are related to u, and 94, ¢ and 7, are related to
Yo and 7, through the following relationships:

Uy ) uy b1 ®1

g | [T —hI] | u Ga| [T OF|¢e 1o
S ) _[0 1 } ol | a _[hI o T 01

U 0P 72 72

Thus, the impedance matrix M = H ! +iH 'S and its inverse M~ =
Lt — igi_l in the new coordinate system can be obtained from M =
H-! +iH"'S and its inverse M~! = L™! —iSL™! in the original coordinate
system as follows:

. I 0 I Al ~ 1 [T —hI],, [ I O
A, M= |/ M ML= M ” .
(4.5) {hI I} {0 1}’ [0 I } {—hl I]

Therefore, the three real matrices H, L and S in the new coordinate system
{&;} can be obtained from H, L and S in the original coordinate system {z;} as
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. [1 —hI I 0 R I 0 I Al
L R S T
(4.6) 0 I —hI 1 M 1 01

I—iLISIﬁI
0 I 01|

[0 ]}
Il

As a result, H, L and S can be derived as

[Hiy 0 Hyz 0 Liu 0 Lz O
o | 0 Hu 0 I | 0 Lu 0 Ly
His 0 Hss 0 ’ Liz 0 Ls3 0 |’
0 My 0 Hss 0 Lig 0 Ls
(4.7) - ) .
§_| S 0 —5u 0
0 S 0 Sy’
| —S3 0 =Sy 0
where
Hyy = Hyy + h*Hss, Hyz = —hHss, Hsz = Hag,
(48) Ly =Ly, Li3=Lis+hLy, Lss=Lss+2hLiz+ h*Ly,

Sy = So1 + hS32, Sia = Si4 — h(Sa1 + S34) — h2S32,
Szo = S33, S34 = S34 + hSas.
In Eq. (4.8), L11, Lss and L3 have been defined in Eq. (3.13), and

3—v4 1
Hyy = ——, H33=——,
(49) A7 2D
. g 1A g ~ B@B-vY G B g 1407
21 — 2 ) 14 — 4/,L ; 32_2D7 34 — 2

It is observed from Eq. (4.8) that Hs3, L1; and Ssy are invariants. Moreover,
it is also found that the following quantities are invariants:

BiiH + BooHss + 2B12Hy3 = B Hit + BazHss,

Bi1Lss + BaaLiy — 2B12L13 = BuiLas + BazLuy — 2B12Las,

B11814 + Br2(Sa1 + S34) — Bo2S32 = Br11S14 + Bi2(Sa1 + S34) — Bo2Ssa,
HyyLyy + HazLas + 2H13L13 = Hyy Ly + HssLas,

H11S35 — Hs3S14 + Hi3(S21 + Ss4) = Hi1S32 — Has S,

L3832 — L11S14 + L13(Sa1 + S34) = L33 S32 — L11S1a + L13(Sa1 + Saa),
Li1Ls3 — L33 = L Lsy — L5, HyHss — Hig = Hyi Hs,

S21534 + S32514 = 21534 + S32514,  B11P22 — By = 11522 — Bia,

(4.10)
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(4.11) Br1daz + Bazin1 — 2612912 = Bi1v22 + Baoyi1 — 2812712

More invariants can be obtained if 3 is replaced by « in Eq. (4.10). Conse-
quently Eq. (3.12) can also be expressed in terms of (11, (22, (12, Y11, Y22, Y12
and Lq1, L33, L13 in the new coordinate system as

(4.12) (11922 — A1) A" + (J11Lss + A22L11 — 2412L13) N3
+ |Li1Las — L35 — (Bo211 + Burdez — 2B12912) | A2
— (Bi1Lss + BaaLa1 — 2B12Lig) A + B11faz — By = 0.
In the following we confine our attention to Case I discussed in Section 3.

The two wavenumbers given by Eq. (3.25) can now be expressed in terms of BH,
ﬂzg, 512 and LH, L33, L13 in the new coordinate system as

A1 =
B11Laz+Baoln— 2512L13+\/(ﬁ11L33 522L11) +4(B11L13—Br2L11)(Baaliz— 512L33)
2(L11Ls3—L3,)
(4.13) Ao =

Bu1 Las+Boz a1 —2812L13—/ (Bi1 Laz—Bo211)24+4(Bi1 Lz —Prz b ) (Baz Las— ﬁ12L33)
2(L11Laz—L3,)

If the coordinate system is chosen such that L13 = 0, h; can then be deter-
mined as
Liy  BD@WP +uv4)
L~ 2uD(1+vA) - B

In this special coordinate system, the two wavenumbers can be more concisely
given by

(4.14) h=hi—hy=—

Bllf/33 + Bzzf/u + \/(an/?,:a - 322[:11)2 + 45%2f/11f/33
1 prnd ~ ~ 9

2L11L
(4.15) R
Br1L33 + Baali1 — \/(511L33 — BoaL11)? + 4%, L11 L33
2= — .
2041 L33
Furthermore, the following inequalities are established from the above expression:
(4.16) A1 > max fu ?22 > min ?11 By > M.
Ly L Lii Ly

The two equalities in Eq. (4.16) are valid only when Blg = 0 in this special
coordinate system, or more specifically when

B2 Lis

(4.17) E — L—ll-
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5. Conclusions

This work considers the surface instability of a semi-infinite isotropic lami-
nated plate under surface van der Waals forces. The analytical results demon-
strate that the surface of the semi-infinite isotropic laminated plate is always
unstable whenever the van der Waals interaction coefficient 8 > 0. Furthermore,
two distinct surface instability modes characterized by two positive wavenumbers
A1 and A2 (or two wavelengths 27/A; and 27 /)\2) are identified.

In general, the two wavenumbers are completely determined by (811, 822, B12),
(v11,722,v12) and (L11, L33, L13). Interestingly, the two wavenumbers are com-
pletely determined by (011, f22, 512) and (Li1, L33, L13) when the plate is rela-
tively stiff (in this case, the contribution from surface energy is ignored); and
they are completely determined by (511, 22, S12) and (711, 22, 712) if the plate is
extremely compliant (in this case, the contribution from the elastic properties of
the plate is ignored). The observation of two instability modes is quite different
from the uniqueness of the surface instability mode observed for a semi-infinite
elastic body under plane strain or generalized plane strain conditions [12-14]. It
is pointed out that the observations of two surface instability modes by Ru [6]
and YOON et al. [8] are conditional: either when the thickness ratio exceeds a
critical value for two mutually attracting films [6] or when the top layer is more
compliant and much thinner than the bottom layer for a bilayer film interacting
with another rigid contactor [8].

It is expected that these theoretical results can find application in the study
of elastic behaviors of membranes [26].
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