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A variational analysis of the equilibrium turbulent closure
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A variational principle is proposed to derive the equilibrium expressions of the
turbulent closure models of an isothermal dry granular dense matter in weak turbulent
motions. It is demonstrated that the equilibrium equations and the natural boundary
conditions coincide with those derived by the thermodynamic analysis (Fang and
Wu, in Acta Geotechnica, in press). The current work serves as a supplementary
variational verification of the turbulent closure models proposed in Fang and Wu

(in Acta Geotechnica, in press).
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1. Introduction

When dry granular matter is set in motion, the interactions among the solid
grains result essentially from short-term instantaneous elastic and inelastic col-
lisions, and long-term enduring frictional contact and sliding at different de-
grees [1–6]. These grain-grain interactions cause fluctuations of the macroscopic
quantities such as pressure or velocity about their time-averaged (mean) values
in the context of continuum approach. Such phenomena are characterized as the
turbulent motions, and are distinct from those of conventional Newtonian fluids
by two perspectives: (i) they emerge from two-fold grain-grain interactions, in
contrast to those from incoming flow instability, instability in transition region,
or flow geometry of conventional Newtonian fluids [7–10], and (ii) they emerge
equally at slow speed, in contrast to those of Newtonian fluids which are strongly
velocity-dependent, characterized by the critical Reynolds number.

To account for the influence of the turbulent fluctuations on the mean flow
features and the energy cascade between the turbulent kinetic energy and tur-
bulent dissipation, conventional Reynolds-averaging (filter) process is applied to
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decompose the field quantities into the mean and fluctuating parts, by which
the mean balance equations of the primitive mean fields are obtained, associated
with ergodic turbulent fluctuating quantities. These turbulent fluctuating quan-
tities need be specified as functions of the primitive mean fields, known as the
turbulent closure models, in order to arrive at a mathematically likely well-posed
problem [7–10]. By different prescriptions of the turbulent fluctuating quantities,
turbulent closure models of different orders can be obtained [9, 10].

Most up-to-date turbulent closure models are established for rapid flows, in
which the turbulent fluctuations result essentially from the short-term instanta-
neous inelastic collisions [11–21]. Recently, it has been shown that the concept
of granular coldness can be extended to account for the influence of the tur-
bulent fluctuations generated by the long-term enduring frictional contact and
sliding between the grains for dense flows with weak turbulent intensity [22, 23].
In these works, the thermodynamic analysis, based on the Müller–Liu entropy
principle, has been carried out to derive the equilibrium turbulent closure mod-
els, which satisfy the turbulence realizability conditions [24–26]. For convenience,
the results in [22, 23] are summarized in the following:

• for the turbulent Helmholtz free energy ψT , the turbulent thermodynamic
pressure p̄ and the turbulent configurational pressure β̄:

(1.1) ψT =

{

ψ̂T
I (ν0, ν̄,∇ν̄, γ̄, ϑM , ϑT , Z̄),

ψ̂T
II(ν0, ν̄, γ̄, ϑ

M , ϑT , Z̄),
p̄ = γ̄2ψT

, γ̄ , β̄ = γ̄ν̄ψT
, ν̄ ,

in which ν̄ is the mean volume fraction defined as the ratio of the mean
total solid content volume divided by the volume of a representative vol-
ume element (RVE); ν0 the value of ν̄ in the reference configuration; γ̄ the
mean true mass density of the solid grains1; ϑM the granular material
coldness; ϑT the granular coldness2; and Z̄ the mean internal friction. The
notation ∇ stands for the nabla operator, and the subscripts I and II
denote that the indexed quantities are applied to compressible and in-
compressible solid grains, respectively; quantities without these subscripts
are applied for both cases; this notation rule is used in the forthcoming
expressions;

1For dry granular systems, ρ denotes the overall density, with γ the (true mass) density of the
solid grains. Thus, ρ = γν. Since in turbulent motions all the quantities experience fluctuations,
their mean values, followed by a Reynolds-filter process, are defined and investigated [7–10].

2For simple materials, the coldness ϑ is defined as the reciprocal of the material empirical
temperature θ [27, 28]. For dry granular matter in turbulent motions, the turbulent kinetic
energy of the solid grains is expressed, following the kinetic theory of gas in identifying the gas
temperature, by the granular temperature θT [14, 29, 30]. In the study, the overall material
empirical temperature θM and granular temperature θT are expressed, respectively by the
material and granular coldnesses ϑM and ϑT for simplicity [14, 22, 23]. However, the simple
relations that ϑi = 1/θi, i = M, T , do not hold in general for dry granular systems.
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• for the turbulent kinetic energy γ̄ν̄k and turbulent dissipation γ̄ν̄ε:

(1.2)
γ̄ν̄k = γ̄ν̄ϑMψT

, ϑT , ε|E = 0,

γ̄ν̄(ϑM − ϑT )ε, ˙̄ν |E + ϑM (p̄− β̄) − γ̄ν̄ϑMψT
, Z̄ · Φ̄, ˙̄ν |E = 0,

where Φ̄ denotes the mean production associated with Z̄, ξ̇ stands for the
material derivative with respect to the mean flow velocity v̄ for any quan-
tity ξ, and the subscript E denotes that the indexed quantity is evaluated
at an thermodynamic equilibrium state;

• for the mean flux h̄ and mean production f̄ associated with ν̄:

(1.3)

{

−αh̄I = γ̄ν̄ϑMψT
I,∇ν̄ ,

h̄II = 0,

{

f̄I |E = 0,

f̄II = 0,

where α is an isotropic scalar function with α = α̂(γ̄, ν̄, ϑM , ϑT )3;
• for the flux K associated with γ̄ν̄k, and the mean production Φ̄:

(1.4) K|E = γ̄ν̄(ϑM − ϑT )ε,∇ϑT |E − γ̄ν̄ψT
, Z̄Φ̄,∇ϑT |E, Φ̄|E = 0;

• and for the mean Cauchy stress t̄ and Reynolds’ stress R:

(1.5)







ϑM t̄I |E + ϑTRI |E
= −ν̄ϑM p̄I + αh̄I ⊗∇ν̄ − γ̄ν̄(ϑM − ϑT )ε, D̄|E + γ̄ν̄ϑMψT

I, Z̄
· Φ̄, D̄|E,

ϑM t̄II |E + ϑTRII |E
= −ν̄ϑM p̄I − γ̄ν̄(ϑM − ϑT )ε, D̄ + γ̄ν̄ϑMψT

II, Z̄
· Φ̄, D̄|E,

where I is the second-rank identity tensor, the notation ⊗ stands for the
dyadic product, and D̄ is the symmetric part of the mean velocity gra-
dient.

Since in laminar motions the Helmholtz free energy ψ at thermodynamic
equilibrium corresponds to the stored energy function φ in static equilibrium [32],
it is possible to derive the equilibrium turbulent closure models by extending the
functional of the stored energy function for turbulent motions, associated with
a properly formulated variational analysis4.

3Vanishing h̄ and f for incompressible grains are obtained due to the consistency between
the mass balance and Wilmański’s model for the time evolution of the volume fraction, see [31].

4One can start with a proposed functional and search for some definite conditions for which
the proposed functional may have extreme values. This is known as the direct problem, result-
ing in the equations of motion and the associated natural boundary conditions. By contrast,
the reverse procedure leads to the inverse problem. However, due to the variational crisis,
this approach may sometimes fail, and various methods have been proposed to overcome this
difficulty [33–39].
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In this paper, a variational principle is proposed for the stored energy function
in turbulent motions to derive the mean balance equations in static equilibrium,
the equilibrium turbulent closure models, and the associated equilibrium natural
boundary conditions for isothermal flows with compressible and incompressible
solid grains. With the above principle, the proposed variational analysis is similar
to the direct problem. However, the existence and the functional dependency of
the stored energy function are a priori assumed, and the principle of virtual
power is extended for the variational analysis in static equilibrium, as will be
shown later. In Section 2, the definition of the variation in the formulation will
be given, which will be applied in Section 3 to derive the equilibrium turbulent
closure models for compressible and incompressible solid grains. This paper will
be summarized and commented in Section 4.

2. Variation definition

By extending the definition of the variation used in laminar motions [40], the
definition of variation for turbulent motions is given in the following:

Definition. Associated with the material point X let there exist a spatial posi-
tion x(X), a mean volume fraction ν̄(X), a granular coldness ϑT (X) and a mean
internal friction Z̄(X). Define equilibrium states, x(X), ν̄(X), ϑT (X) and Z̄(X),
and the comparison states, x(X, λ), ν̄(X, λ), ϑT (X, λ) and Z̄(X, λ), parameter-
ized by the scalar λ. Denote by the symbol δ the variation performed on these
state variables by holding the particle X fixed. The variations of the equilibrium
spatial position δx, of the equilibrium mean volume fraction δν̄, of the equilib-
rium granular coldness δϑT and of the equilibrium mean internal friction δZ̄ on
X are defined as

(2.1)

δx ≡ dx

dλ

∣
∣
∣
∣
λ = 0,X

, δν̄ ≡ dν̄

dλ

∣
∣
∣
∣
λ = 0,X

,

δϑT ≡ dϑT

dλ

∣
∣
∣
∣
λ = 0,X

, δZ̄ ≡ dZ̄

dλ

∣
∣
∣
∣
λ = 0,X

,

with (2.1)2−4 recast in the forms

(2.2) δα =
∂α

∂λ

∣
∣
∣
∣
λ = 0,x

+
∂α

∂x

∂x

∂λ

∣
∣
∣
∣
λ=0

, α ∈ {ν̄, ϑT , Z̄},

when the functional dependencies of ν̄, ϑT and Z̄ are represented by ν̄(x, t),
ϑT (x, t) and Z̄(x, t), rather than ν(X, t) ϑT (X, t) and Z̄(X, t), respectively.
A variation of α performed by holding the spatial position x of the particle
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fixed rather than the particle itself is denoted by ∆α and defined as

(2.3) ∆α =
∂α

∂λ

∣
∣
∣
∣
λ = 0,x

, α ∈ {ν̄, ϑT , Z̄}.

In view of the definitions (2.1)–(2.3), it follows that

(2.4) δα = ∆α+ α, iδxi, δ(α, i) = (δα), i − (α, j)(δxj), i, α ∈ {ν̄, ϑT , Z̄},

hold. The total mass M of a granular body B and its variation are given by

(2.5)

M ≡
∫

B

γ̄ν̄dv,

0 = δM = δ

∫

B

γ̄ν̄dv =

∫

B

δ(γ̄ν̄dv) =

∫

B

{δ(γ̄ν̄) + γ̄ν̄∇ · (δx)}dv,

due to the conservation of mass. Equation (2.5)2 can be violated unless

(2.6) 0 = δ(γ̄ν̄) + γ̄ν̄∇ · (δx) −→ δγ̄ = − γ̄
ν̄
δν̄ − γ̄(δxi), i,

is satisfied. Equation (2.6)2 applies essentially for compressible grains; for in-
compressible grains δγ̄ vanishes, and the equation (2.6) reduces to

(2.7) δν̄ = −ν̄(δxi), i.

3. The variational analysis: the principle of virtual power

3.1. Case of compressible grains

Let φT be the stored energy function in turbulent motions whose functional
dependency in static equilibrium is given by φT = φ̂T (γ̄, ν̄,∇ν̄, ϑT , Z̄,∇Z̄) for
isothermal flows. We require that φT satisfies, for all variations of x, ν̄ and Z̄,
the following identity:

(3.1) δ

∫

B

γ̄ν̄φTdv =

∫

∂B

{
σiδxi +HpqδZ̄pq + SδϑT +Hδν̄)

}
da+

∫

B

γ̄ν̄biδxidv,

where σi is the surface traction (surface force on the boundary), bi the specific
body force, ∂B the surface of B; H the self-equilibrated stress system which
can be shown to be a center of dilatation/compression [41]. The quantity S
denotes the surface energy flux induced by the variations of the granular cold-
ness ϑT , a measure of the turbulent kinetic energy; and Hpq is a surface strain
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induced by the mean internal friction Z̄, which is frequently employed in higher-
order microcontinuum/micropolar theory and statistical mechanics [32, 42–44].
Equation (3.1) is similar to the classical principle of virtual power, except that
additional (postulating) contributions of the powers of working done by the sur-
face terms S, H and Hpq are taken into account. This is done so, because the
variations of ϑT , ν̄ and Z̄ are assumed to be independent of the motion of the
body. On the other hand, since ϑT , ν̄ and Z̄ are introduced as internal variables
without external supplies, no additional powers of working are included in the
volume integral on the right-hand side of (3.1).

In view of φT = φ̂T (γ̄, ν̄,∇ν̄, ϑT , Z̄,∇Z̄), the left-hand side of (3.1) reduces
to

δ

∫

B

γ̄ν̄φTdv =

∫

B

γ̄ν̄δφTdv,

δφT =
∂φT

∂γ̄
δγ̄ +

∂φT

∂ν̄
δν̄ +

∂φT

∂(ν̄, i)
δ(ν̄, i)(3.2)

+
∂φT

∂ϑT
δϑT +

∂φT

∂Z̄pq
δZ̄pq +

∂φT

∂Z̄pq, i
δ(Z̄pq, i).

Substituting (2.4)2 and (2.6)2 into (3.2)2 results in

γ̄ν̄δφT = (−p̄+ β̄)δν̄ + γ̄ν̄kδϑT + h̄i(δν̄), i(3.3)

+ ĀpqδZ̄pq + B̄pqi(δZ̄pq), i + t̄ij(δxj), i,

with the abbreviations,

(3.4)

p̄ = γ̄2∂φ
T

∂γ̄
, β̄ = γ̄ν̄

∂φT

∂ν̄
, h̄i = γ̄ν̄

∂φT

∂(ν̄, i)
,

γ̄ν̄k = γ̄ν̄
∂φT

∂ϑT
, Āpq = γ̄ν̄

∂φT

∂Z̄pq
, B̄pqi = γ̄ν̄

∂φT

∂(Z̄pq, i)
,

t̄ij = −ν̄p̄δij − h̄i(ν̄, j) − B̄pqi(Z̄pq, j),

where δij is the Kronecker delta. With (3.4), the equation (3.2)1 is recast in the
form

δ

∫

B

γ̄ν̄φTdv(3.5)

=

∫

B

{
(−p̄+ β̄ − h̄i, i)δν̄ + γ̄ν̄kδϑT + (Āpq − B̄pqi, i)δZ̄pq − t̄ij, iδxj

}
dv

+

∫

∂B

{
h̄iniδν̄ + B̄pqiniδZ̄pq + t̄ijniδxj

}
da,
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where ni is the unit outward normal of da on ∂B. In deriving equation (3.5),
Gauss’ divergence theorem has been used. Incorporating (3.5) into Eq. (3.1) leads
to

(3.6)
∫

B

{
(p̄−β̄+h̄i, i)δν̄−γ̄ν̄kδϑT +(B̄pqi, i−Āpq)δZ̄pq+(t̄ij, j+γ̄ν̄bi)δxi

}
dv

+

∫

∂B

{
(H−h̄ini)δν̄+SδϑT +(Hpq−B̄pqini)δZ̄pq+(σi−t̄ijnj)δxi

}
da = 0.

Since B and ∂B of the material body are arbitrarily chosen, we can choose it to
be infinitesimal with vanishing volume but finite surface, a “pillbox”. For such
a volume, Eq. (3.6) reduces to

(3.7)
∫

∂B

{
(H − h̄ini)δν̄ + SδϑT + (Hpq − B̄pqini)δZ̄pq + (σi − t̄ijnj)δxi

}
da = 0.

Since da can be arbitrarily chosen and δν̄, δϑT , δZ̄pq and δxi are independent of
one another, Eq. (3.7) can be violated unless

(3.8) σi = t̄ijnj , H = h̄ini, Hpq = B̄pqini, S = 0, on ∂B,

hold. Substituting (3.8) into Eq. (3.6) results in

(3.9)
∫

B

{
(p̄−β̄+h̄i, i)δν̄−γ̄ν̄kδϑT +(B̄pqi, i−Āpq)δZ̄pq+(t̄ij, j+γ̄ν̄bi)δxi

}
dv = 0.

Again, since dv can be arbitrarily chosen and δν̄, δϑT , δZ̄pq and δxi are inde-
pendent of one another, Eq. (3.9) might be violated unless

(3.10) t̄ij, j + γ̄ν̄bi = 0, p̄−β̄+h̄i, i = 0, B̄pqi, i−Āpq = 0, γ̄ν̄k = 0, in B,

hold. Whereas (3.10)1 is the conventional mean balance of linear momentum in
static equilibrium associated with its natural boundary condition given in (3.8)1,
Eq. (3.10)2 emerges as an equilibrium statement for the flux associated with the
time evolution of the mean volume fraction with a similar “traction” boundary
condition given in (3.8)2. Equation (3.10)3 indicates the restrictions of the func-
tional of the stored energy that should be satisfied, associated with the natural
boundary condition given in (3.8)3. No further information can be gained unless
a specific form of φT is prescribed. In view of (3.4)6 and (3.8)3, Hpq is similar
to the concept of surface strain in higher-order micropolar theory and statistical
mechanics, as mentioned previously. Although in the context of the proposed
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variational approach the definition of the turbulent kinetic energy can be iden-
tified (see (3.4)4), a vanishing turbulent kinetic energy and its vanishing natural
boundary condition are obtained, as indicated by (3.8)4 and (3.10)4, respectively.
This is due to the static equilibrium, in which all fluctuating quantities cease,
yielding a vanishing turbulent kinetic energy. The results coincide with those by
the thermodynamic analysis given in (1.2)–(1.5).

Of particular interest is the derived mean Cauchy stress at static equilibrium.
In view of (3.4)6,7, the mean Cauchy stress can be recast in the form

(3.11) t̄ij = −ν̄p̄δij − h̄i(ν̄, j) − γ̄ν̄
∂φT

∂Z̄mn

(
∂Z̄mn

∂Z̄pq, i
Z̄pq, j

)

︸ ︷︷ ︸

ℵ

,

in which ℵ is a fourth-rank tensor. It describes the evolution of the internal
friction inside a granular microcontinuum and needs be prescribed for further
identifications of the mean Cauchy stress (its prescription is accomplished by use
of the hypoplastic model in the thermodynamic analysis [22, 23]). However, in
view of ℵ, Eq. (3.11) coincides formally with (1.5) derived by the thermodynamic
analysis5.

3.2. Case of incompressible grains

For incompressible grains, the stored energy φT depends no longer on the
mean true mass density of the solid grains γ̄, thus Eq. (3.3) reduces to

γ̄ν̄δφT(3.12)

= γ̄ν̄

{
∂φT

∂ν̄
δν̄ +

∂φT

∂(ν̄, i)
δ(ν̄, i) +

∂φT

∂ϑT
δϑT +

∂φT

∂Z̄pq
δZ̄pq +

∂φT

∂Z̄pq, i
δ(Z̄pq, i)

}

= t̄ij(δxj), i + γ̄ν̄kδϑT + h̄i(δν̄), i + ĀpqδZ̄pq + B̄pqi(δZ̄pq), i

with the revised mean Cauchy stress t̄ij given by

(3.13) t̄ij = −ν̄β̄δij − h̄i(ν̄, j) − B̄pqi(Z̄pqi, j).

In deriving (3.12), Eqs. (2.4)2, (2.7) and (3.4)2−6 have been used. Substituting
(3.12) into (3.1) together with the Gauss divergence theorem results in

(3.14)
∫

B

{
h̄i, iδν̄ − γ̄ν̄kδϑT + (B̄pqi, i − Āpq)δZ̄pq + (t̄ij, j + γ̄ν̄bi)δxi

}
dv

+

∫

∂B

{
(H − h̄ini)δν̄ + SδϑT + (Hpq − B̄pqini)δZ̄pq + (σi − t̄ijnj)δxi

}
da = 0.

5In static equilibrium both R and γ̄ν̄ε vanish.
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Applying the “pillbox” analysis to equation (3.14) leads to

(3.15)
σi = t̄ijnj , H = h̄ini, Hpq = B̄pqini, S = 0 on ∂B,
t̄ij, j + γ̄ν̄bi = 0, h̄i, i = 0, B̄pqi, i − Āpq = 0, γ̄ν̄k = 0 in B.

While the interpretations of equations (3.15)1−4,5,7−8 are the same as those given
previously, Eq. (3.15)6 states that the mean flux h̄ should vanish for incompress-
ible grains. This result coincides to that derived by the thermodynamic analysis
given in (1.3). If we consider the circumstance of incompressible grains as a spe-
cial case of compressible grains, it follows from (3.10)2 that p̄ = β̄ holds for
incompressible grains. Such a fact is also demonstrated by the replacement of p̄
by β̄ in the expression (3.13) in comparison with (3.4)7 or (3.11).

With the vanishing h̄, Eq. (3.13) reduces to

(3.16) t̄ij = −ν̄β̄δij − B̄pqi(Z̄pqi, j).

This expression coincides with the result derived by the thermodynamic analysis,
and also asserts the conclusion derived in the previous work that the internal fric-
tion needs be taken into account to generate a non-spherical Cauchy stress when
a kinematic equation is used for the time evolution of the volume fraction [31].

4. Concluding remarks

In the present study, a variational principle was proposed for isothermal dry
granular dense flows with weak turbulent intensity. It was applied to derive the
equilibrium equations associated with the natural boundary conditions, and the
equilibrium turbulent closure models for both compressible and incompressible
grains. It was demonstrated that the results coincide with those of the ther-
modynamic approach. However, the equilibrium closure models of the turbulent
dissipation, the Reynolds stress, the flux associated with the turbulent kinetic
energy, and the mean production associated with the mean volume fraction were
not present. This was due to the postulated stored energy function in static equi-
librium, in which all fluctuating quantities cease, resulting in vanishing turbulent
kinetic energy.

Nevertheless, the conclusions that the derived results from the variational ap-
proach coincide with those from the thermodynamic approach should be taken
with caution, and some provisions need to be formulated. The two approaches are
in fact not equivalent: the variational approach only yields equilibrium properties
and cannot be used for thermodynamic process, whereas the thermodynamic ap-
proach allows construction of a dynamic model with dissipative properties. This
difference is visible in the differences of the state space. In the present study, the
stored energy function φT is only dependent upon a subset of the state space used
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in [22, 23]. The case when the variables which vanish in thermodynamic equilib-
rium and the material temperature are omitted from the state space of φT , is the
expression of the fact that the variational formulation only furnishes equilibrium
properties.

Despite these imperfections the two-fold derivation is helpful, because iden-
tical equations for equilibrium processes deduced with two different methods
assign greater credibility to them. In addition, the variational approach provides
a better insight into the natural boundary conditions that are associated with
the internal friction. However, the evaluations of the flux terms, e.g., h̄ and Hpq

on the boundaries cause some difficulties, since this involves prescriptions of the
values of ν̄ and the gradient of Z̄ on those locations, respectively. Thus, com-
parison between the variational and thermodynamic approaches only provides
a reassurance that the formulations are mutually consistent in their basic pos-
tulates. In view of these, the present study serves as a variational verification of
the turbulent closure models proposed in [22, 23].
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