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Natural vibrations of thick circular plate

based on the modified Mindlin theory
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Outline of the modified Mindlin theory is presented in which the Mindlin
mathematical model with three differential equations of motion for total deflection
and rotations is decomposed into a single equation for pure bending vibrations with
transverse shear and rotary inertia effects and two differential equations for in-plane
shear vibrations. The governing equations are transformed from orthogonal to polar
coordinate system for the purpose of circular plate vibration analysis. The fourth
order differential equation of flexural vibrations is split further into two second order
equations of Bessel type. Also, the in-plane shear differential equations are trans-
formed to Bessel equation by introducing displacement potential functions. The exact
values of natural frequencies are listed and compared with FEM results.
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1. Introduction

Thick circular plates are extensively used as structural elements in many
engineering structures encountered in mechanical, civil and marine fields. Vibra-
tion analysis is based on the well-known Mindlin theory of rectangular plates,
which incorporates the effects of transverse shear deformation and rotary iner-
tia [1, 2]. This first-order shear deformable plate theory improves the accuracy
of thin plate theory, especially for moderately thick plates [3]. In addition, some
higher-order shear deformable plate theories have been developed [4–6]. A com-
prehensive review of the relevant developments is presented in [7].

In order to increase accuracy of thick plate vibration analysis, three-dimen-
sional theory has been developed and applied for circular plates [8–10]. A short
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review of this research can be found in introduction of [11], where 3D plate theory
is applied for vibration analysis of circular plates by using the Chebyshev–Ritz
method.

Special problem of Mindlin circular plate is axisymmetric vibration, which
can be solved in different ways. For instance, application of the differential
quadrature method is used in [12]. Circular plates with non-uniform thickness
have wide practical use due to saving of material and weight reduction. Many pa-
pers have been published regarding non-linear thickness variation and step-wise
thickness variation [13–17].

The Mindlin plate theory operates with three independent variables, i.e., total
deflection and angles of cross-section rotations [1, 2]. The finite elements devel-
oped based on this general theory manifest shear locking phenomenon. Overcom-
ing of that problem requires additional effort. Since there is no unique solution,
different procedures have been worked out [18].

Recently, the Mindlin theory was modified in such a way that total deflec-
tion and rotations are split into pure bending deflection and shear deflection,
and bending rotations and in-plane shear angles respectively [19, 20]. Since
shear deflection and bending rotations depend on bending deflection, the Mindlin
mathematical model with three DOFs is actually decomposed into a single DOF
bending and double DOF shear model. Shear locking-free finite elements can be
formulated based on the modified Mindlin theory as shown in [21].

In this paper, differential equations of flexural and in-plane shear vibrations
of circular plate, by taking advantage of the modified Mindlin theory, are derived.
Application of the developed procedure is illustrated in case of simply supported,
clamped and free circular plate.

The paper presents some contribution to the specific classical problem of
thick circular plate vibrations. An overview of shear deformation plate and shell
theories is given in [22]. Nowadays, investigation is focused on multilayered,
anisotropic, composite plate and shell theories as static problem, [23]. Carrera’s
unified formulation and generalized unified formulation [24–26], as well as Todd
Wiliams’ global-local models [27, 28], as new techniques for derivation of sophis-
ticated finite elements have been developed.

2. Outline of the modified Mindlin theory

A rectangular plate, with aspect ratio a/b and thickness h, is considered in
Cartesian coordinate system with corresponding displacements, Fig. 1. Total de-
flection w(x, y, t) consists of pure bending deflection wb(x, y, t) and shear deflec-
tion ws(x, y, t), while total cross-section rotation angles ψx(x, y, t) and ψy(x, y, t)
are split into pure bending rotation φx(x, y, t) and φy(x, y, t), and in-plane shear
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Fig. 1. Rectangular plate.

Fig. 2. Displacement components.

angles ϑx(x, y, t) and ϑy(x, y, t) respectively, Fig. 2, [21], i.e.,

(2.1) w = wb + ws, ψx = φx + ϑx, ψy = φy + ϑy.

Shear deflection depends on bending deflection yielding total deflection as

(2.2) w = wb −
D

S
∆wb +

J

S

∂2wb

∂t2
,

where

∆(·) =
∂2(·)
∂x2

+
∂2(·)
∂y2
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is two-dimensional Laplace differential operator. Furthermore,

(2.3) J =
ρh3

12
, D =

Eh3

12(1 − ν2)
, S = kGh,

is mass moment of inertia, bending stiffness and shear stiffness, respectively,
which depend on mass density ρ, Young’s modulus E, shear modulus G, Poisson’s
coefficient ν, and shear coefficient k. Bending rotation angles are function of
bending deflection

(2.4) φx = −∂wb

∂x
, φy = −∂wb

∂y
.

Differential equation of flexural vibrations is related to the bending deflection
as the only variable

(2.5) ∆∆wb −
J

D

(

1 +
mD

JS

)
∂2

∂t2
∆wb +

m

D

∂2

∂t2

(

wb +
J

mS

∂2wb

∂t2

)

= 0.

Sectional forces, i.e., bending moments, torsional moments, shear forces and
effective shearing forces are determined as follows:

(2.6)

Mx = −D
(
∂2wb

∂x2
+ ν

∂2wb

∂y2

)

,

My = −D
(
∂2wb

∂y2
+ ν

∂2wb

∂x2

)

,

Mxy = Myx = −(1 − ν)D
∂2wb

∂x∂y
,

Qx = S
∂ws

∂x
= −D

(
∂3wb

∂x3
+

∂3wb

∂x∂y2

)

+ J
∂3wb

∂x∂t2
,

Qy = S
∂ws

∂y
= −D

(
∂3wb

∂y3
+

∂3wb

∂x2∂y

)

+ J
∂3wb

∂y∂t2
,

Q̄x = Qx +
∂Mxy

∂y
= −D

[
∂3wb

∂x3
+ (2 − ν)

∂3wb

∂x∂y2

]

+ J
∂3wb

∂x∂t2
,

Q̄y = Qy +
∂Myx

∂x
= −D

[
∂3wb

∂y3
+ (2 − ν)

∂3wb

∂x2∂y

]

+ J
∂3wb

∂y∂t2
.

For determination of the in-plane shear angles two differential equations are
extracted from the Mindlin theory [21],

(2.7)
D

[
∂2ϑx

∂x2
+

1

2
(1 − ν)

∂2ϑx

∂y2
+

1

2
(1 + ν)

∂2ϑx

∂x∂y

]

− Sϑx − J
∂2ϑx

∂t2
= 0,

D

[
∂2ϑy

∂y2
+

1

2
(1 − ν)

∂2ϑy

∂x2
+

1

2
(1 + ν)

∂2ϑx

∂x∂y

]

− Sϑy − J
∂2ϑy

∂t2
= 0.
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Fig. 3. Angular elastic support.

Terms in the square brackets and last terms are elastic and inertia forces,
respectively, while the middle terms are reactions of the angular elastic support,
Fig. 3.

The in-plane shear moments are

(2.8)

Msx = D

(
∂ϑx

∂x
+ ν

∂ϑy

∂y

)

,

Msy = D

(
∂ϑy

∂y
+ ν

∂ϑx

∂x

)

,

Msxy = Msyx =
1

2
(1 − ν)D

(
∂ϑx

∂y
+
∂ϑy

∂x

)

.

Actually, the Mindlin system of three differential equations with three general
variables w, ψx and ψy is transformed into two independent systems, i.e., one
single equation with pure bending deflection wb, and another one with in-plane
shear angles ϑx and ϑy.

If a plate is not elastically supported, i.e., S = 0, Eqs. (2.7) became analogical
to those of in-plane stretching (membrane), [29], i.e.,

(2.9)

∂2u

∂x2
+

1

2
(1 − ν)

∂2u

∂y2
+

1

2
(1 + ν)

∂2v

∂x∂y
− (1 − ν2)

ρ

E

∂2u

∂t2
= 0,

∂2v

∂y2
+

1

2
(1 − ν)

∂2v

∂x2
+

1

2
(1 + ν)

∂2u

∂x∂y
− (1 − ν2)

ρ

E

∂2v

∂t2
= 0.

This fact enables to analyze the in-plane shear vibrations indirectly by in-plane
stretching.

3. Flexural vibrations of circular plate

Natural vibrations are harmonic function, i.e., w(x, y, t) = W (x, y) sinωt,
where W (x, y) is vibration amplitude (mode) and ω is natural frequency.
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Harmonic function is expressed in polar coordinate system as w(r, φ, t) =
W (r, φ) sinωt and differential equation (2.5) for natural vibrations of circular
plate takes the form

(3.1) ∆r∆rWb + ω2 J

D

(

1 +
mD

JS

)

∆rWb + ω2m

D

(
ω2J

S
− 1

)

Wb = 0,

where [30]

∆r(·) =
∂2(·)
∂r2

+
1

r

∂(·)
∂r

+
1

r2
∂2(·)
∂φ2

.

Eq. (3.1) can be presented in a condensed form

(3.2) (∆r + λ2)(∆r − χ2)Wb = 0,

where, based on the identity of (3.1) and (3.2), one finds

(3.3) λ2(ω), χ2(ω)

=
1

2

[
√

ω4

(
J

D

)2(

1 +
mD

JS

)2

+ 4ω2
m

D

(

1 − ω2
J

S

)

± ω2 J

D

(

1 +
mD

JS

)]

.

In that way the fourth order Eq. (2.9) is decomposed into two second order
equations, i.e., (∆r + λ2)Wb = 0 and (∆r − χ2)Wb = 0. Their solution can be
assumed in the form Wb(r, φ) = Wb(r) sinnφ that leads to

(3.4) (∆n
r + λ2)Wb = 0, (∆n

r − χ2)Wb = 0,

where

∆n
r (·) =

∂2(·)
∂r2

+
1

r

∂(·)
∂r

− n2

r2
.

By substituting λ = ξ/r and χ = η/r, Eqs. (3.4) are transformed into Bessel’s
differential equation and modified Bessel’s differential equation respectively

(3.5)

d2Wb

dξ2
+

1

ξ

dWb

dξ
+

(

1 − n2

ξ2

)

Wb = 0,

d2Wb

dη2
+

1

η

dWb

dη
−

(

1 +
n2

η2

)

Wb = 0,

with special functions as their solution. The total solution for plate bending
deflection reads

(3.6) Wb = W
(1,2)
b +W

(3,4)
b = C1Jn(ξ) + C2Yn(ξ) + C3In(η) + C4Kn(η),
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where Jn(ξ) is Bessel function of the first kind of order n, Yn(ξ) is Bessel function
of the second kind of order n, In(η) is modified Bessel function of the first kind
of order n and Kn(η) is modified Bessel function of the second kind of order n.

Having a solution of differential equation (3.4), the total deflection function,
according to (2.2), reads (3.6)

W =

(

1 − ω2 J

S

)

Wb −
D

S

(
d2Wb

dr2
+

1

r

dWb

dr
− n2

r2
Wb

)

(3.7)

=

(

1 − ω2 J

S

)

[C1Jn(ξ) + C2Yn(ξ) + C3In(η) + C4Kn(η)]

− C1
D

S
λ2

[
d2Jn(ξ)

dξ2
+

1

ξ

dJn(ξ)

dξ
− n2

ξ2
Jn(ξ)

]

− C2
D

S
λ2

[
d2Yn(ξ)

dξ2
+

1

ξ

dYn(ξ)

dξ
− n2

ξ2
Yn(ξ)

]

− C3
D

S
χ2

[
d2In(η)

dη2
+

1

η

dIn(η)

dη
− n2

η2
In(η)

]

− C4
D

S
χ2

[
d2Kn(η)

dη2
+

1

η

dKn(η)

dη
− n2

η2
Kn(η)

]

.

Radial cross-section rotation angle is then given as

ϕr = −dWb

dr
(3.8)

= −
[

C1λ
dJn(ξ)

dξ
+ C2λ

dY n(ξ)

dξ
+ C3χ

dIn(η)

dη
+ C4χ

dKn(η)

dη

]

.

Cross-sectional forces, necessary for satisfaction of boundary conditions, ac-
cording to (2.6), take the following form:

Mr = −D
[
d2Wb

dr2
+ ν

(
1

r

dWb

dr
− n2

r2
Wb

)]

(3.9)

= −C1Dλ
2

{
d2Jn(ξ)

dξ2
+ ν

(
1

ξ

dJn(ξ)

dξ
− n2

ξ2
Jn(ξ)

)}

− C2Dλ
2

{
d2Yn(ξ)

dξ2
+ ν

(
1

ξ

dYn(ξ)

dξ
− n2

ξ2
Yn(ξ)

)}

− C3Dχ
2

{
d2In(η)

dη2
+ ν

(
1

η

dIn(η)

dη
− n2

η2
In(η)

)}

− C4Dχ
2

{
d2Kn(η)

dη2
+ ν

(
1

η

dKn(η)

dη
− n2

η2
Kn(η)

)}

,
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(3.10) Q̄r =

−D
[
d3Wb

dr3
+

1

r

d2Wb

dr2
− (2 − ν)n2 + 1

r2
dWb

dr
+

(3 − ν)n2

r3
Wb

]

− ω2J
dWb

dr

− C1Dλ
3

[
d3Jn(ξ)

dξ3
+

1

ξ

d2Jn(ξ)

dξ2
− (2 − ν)n2 + 1

ξ2
dJn(ξ)

dξ
+

(3 − ν)n2

ξ3
Jn(ξ)

]

− C2Dλ
3

[
d3Yn(ξ)

dξ3
+

1

ξ

d2Yn(ξ)

dξ2
− (2 − ν)n2 + 1

ξ2
dYn(ξ)

dξ
+

(3 − ν)n2

ξ3
Yn(ξ)

]

− C3Dχ
3

[
d3In(η)

dη3
+

1

η

d2In(η)

dη2
− (2 − ν)n2 + 1

η2

dIn(η)

dη
+

(3 − ν)n2

η3
In(η)

]

− C4Dχ
3

[
d3Kn(η)

dη3
+

1

η

d2Kn(η)

dη2
− (2 − ν)n2 + 1

η2

dKn(η)

dη
+

(3 − ν)n2

η3
Kn(η)

]

− ω2J

[

C1λ
dJn(ξ)

dξ
+ C2λ

dYn(ξ)

dξ
+ C3χ

dIn(η)

dη
+ C4χ

dKn(η)

dη

]

.

4. In-plane shear vibrations of circular plate

Solution of differential equations (2.7) is rather a complex problem, especially
in the polar coordinate system. Therefore, the Helmholtz decomposition method
is applied [31–33], assuming the rotation angles in a form

(4.1) ϑx =
∂ψ

∂x
+
∂γ

∂y
, ϑy =

∂ψ

∂y
− ∂γ

∂x
,

where ψ(x, y, t) and φ(x, y, t) are displacement potential functions. Substituting
(4.1) into (3.8) and by grouping the terms of the same potential, one arrives at

(4.2)

D

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)

− S
∂ψ

∂x
− J

∂3ψ

∂x∂t2

+GI

(
∂3γ

∂x2∂y
+
∂3γ

∂y3

)

− S
∂γ

∂y
− J

∂3γ

∂y∂t2
= 0,

D

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)

− S
∂ψ

∂y
− J

∂3ψ

∂y∂t2

−GI

(
∂3γ

∂x3
+

∂3γ

∂x∂y2

)

+ S
∂γ

∂x
+ J

∂3γ

∂x∂t2
= 0,

where I = h3
/
12 is moment of inertia of unit breadth cross-section. If Eqs. (4.2)

are derivated once per x and y, respectively, and summed up, and another time
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per y and x, respectively, and subtracted, one arrives at

(4.3)
D∆ψ − Sψ − J

∂2ψ

∂t2
= 0,

GI∆γ − Sγ − J
∂2γ

∂t2
= 0.

In that way coupled equations (2.7) for angles ϑx and ϑy are decomposed into
two independent equations (4.3), with two potential functions ψ and γ. After
solving Eq. (4.3) shear angles are determined by (4.1) and shear moments by
Eqs. (2.8) which take the following form:

(4.4)

Msx = D

[
∂2ψ

∂x2
+

∂2γ

∂x∂y
+ ν

(
∂2ψ

∂y2
− ∂2γ

∂x∂y

)]

,

Msy = D

[
∂2ψ

∂y2
− ∂2γ

∂x∂y
+ ν

(
∂2ψ

∂x2
+

∂2γ

∂x∂y

)]

,

Msxy =
1

2
(1 − ν)D

[

2
∂2ψ

∂x∂y
+
∂2γ

∂y2
− ∂2γ

∂x2

]

.

Equations (4.3), derived in orthogonal coordinate system, can be transformed
into polar coordinate system for in-plane shear vibration analysis of a circular
plate. By taking into account at the same time that natural vibrations are har-
monic, as well as variation of displacements in circular direction, i.e.,

(4.5)
ψ(r, φ, t) = Ψ(r) sinnφ · sinωt,
γ(r, φ, t) = Γ (r) cosnφ · sinωt,

differential equations (4.3) are transformed into Bessel’s equations

(4.6)

d2Ψ

dξ2
+

1

ξ

dΨ

dξ
+

(

1 − n2

ξ2

)

Ψ = 0,

d2Γ

dη2
+

1

η

dΓ

dη
+

(

1 − n2

η2

)

Γ = 0,

where ξ = αr, η = βr and

(4.7)

α =

√

S

D

(

ω2
J

S
− 1

)

=
1

h

√

6(1 − ν)k

[
1

72(1 − ν)k

(
h

R

)4

Ω2 − 1

]

,

β =

√

S

GI

(

ω2
J

S
− 1

)

=
1

h

√

12k

[
1

72(1 − ν)k

(
h

R

)4

Ω2 − 1

]

.
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Solutions of Bessel’s equations (4.6) are expressed with Bessel functions

(4.8)
Ψ = A1Jn(ξ) +A2Yn(ξ),

Γ = B1Jn(η) +B2Yn(η).

Displacement functions according to (4.1) read

(4.9) ϑr =
∂ψ

∂r
+

∂γ

r∂φ
, ϑφ =

∂ψ

r∂φ
− ∂γ

∂r
.

Their amplitudes are

(4.10)
Θr =

dΨ

dr
−n
r
Γ = A1α

dJn(ξ)

dξ
+A2α

dY n(ξ)

dξ
−B1

n

r
Jn(η)−B2

n

r
Yn(η),

Θφ =
n

r
Ψ−dΓ

dr
= A1

n

r
Jn(ξ)+A2

n

r
Yn(ξ)−B1β

dJn(η)

dη
−B2β

dY n(η)

dη
.

Amplitude of shear moments (4.4) can be also expressed with potentials Ψ and Γ
– Eqs. (4.8).

5. Numerical examples

5.1. Flexural vibrations

Natural flexural vibrations of a circular plate are considered for three cases of
boundary conditions, i.e., simply supported (W (R) = 0, Mr(R) = 0), clamped
(W (R) = 0, Φr(R) = 0) and free (Mr(R) = 0, Q̄r(R) = 0). Displacement and
forces terms with constants C1 and C3 are relevant, while C2 = C4 = 0 since
Bessel functions Yn(0) = Kn(0) = ∞ in the center of the plate. Hence, by using
Eqs. (3.7)–(3.10) for boundary conditions, the eigenvalue problem in each of
three cases takes the following form:

(5.1) [A(Ω)]{C}

=

[
a11(Ω,λR(Ω), ξR(Ω)) a12(Ω,χR(Ω), ηR(Ω))

a21(Ω,λR(Ω), ξR(Ω)) a22(Ω,χR(Ω), ηR(Ω))

] {
C1

C3

}

=

{
0
0

}

,

where

(5.2) Ω = ωR2

√
m

D

is a frequency parameter (nondimensional frequency). Parameters of Bessel func-
tions Eq. (3.2), can be expressed with the frequency parameter Ω Eq. (5.2). By
employing Eq. (1.3) one obtains
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(5.3) λ2(Ω), χ2(Ω)

=
1

2R2

[
√

Ω4
1

144

(
h

R

)2[

1 − 2

(1−ν)k

]2

+ 4Ω2 ±Ω2 1

12

(
h

R

)2[

1 +
2

(1−ν)k

]]

.

Values of Ω are determined from the condition Det[A(Ω)] = 0.

Table 1. Frequency parameter Ω = ωR2
p

ρh/D, simply supported circular plate,
k = 5/6.

h/R i/n 0 1 2 3 4 5

0.001

1
4.935 13.898 25.613 39.957 56.841 76.202

(4.931)* (13.880) (25.535) (39.748) (56.410) (75.435)

2
29.720 48.478 70.116 94.547 121.699 151.514

(29.678) (48.341) (69.743) (93.744) (120.133) (149.125)

3
74.155 102.772 134.294 168.669 205.843 245.767

(73.953) (102.305) (133.297) (166.832) (202.865) (241.234)

4
138.315 176.795 218.194 262.472 309.590 359.508

(137.652) (175.702) (216.248) (259.133) (304.509) (359.508)

5
222.206 270.552 321.822 375.986 433.014 492.874

(220.784) (268.414) (318.228)

0.1

1
4.894 13.567 24.518 37.388 51.863 67.672

(4.902) (13.576) (24.492) (37.312) (51.726) (67.454)

2
28.253 44.766 62.767 81.943 102.037 122.841

(28.513) (45.283) (63.507) (82.815) (102.903) (123.511)

3
66.011 88.146 110.961 134.273 157.942 181.853

(67.154) (89.796) (112.911) (136.240) (159.601) (182.769)

4
113.761 139.567 165.783 191.438 217.380 243.264

(116.207) (142.498) (168.418) (193.786) (218.606)

5
167.902 195.996 223.856 251.479 278.865 306.015

(171.397) (199.419) (226.355)

0.2

1
4.778 12.723 22.023 32.173 42.841 53.814

(4.817) (12.849) (22.245) (32.509) (43.278) (54.293)

2
25.031 37.671 50.444 63.219 75.921 88.514

(25.703) (38.782) (51.831) (64.678) (77.240) (89.471)

3
52.649 67.189 81.363 95.216 108.781 122.090

(54.384) (69.188) (83.296) (96.772) (109.671) (122.017)

4
83.050 98.275 112.998 127.310 141.277 154.953

(85.248) (100.259) (114.386) (127.722) (140.373)

5
114.340 129.769 144.693 159.234 170.289

(115.949) (130.531) (144.192)

(·)∗ – FEM
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Numerical calculation is performed for ratio of plate thickness and radius
h/R = 0.001, 0.1 and 0.2, and the shear coefficient k = 5/6. The obtained values
of frequency parameter Ω are listed in Tables 1–3 for simply supported, clamped
and free plate, respectively. Indices i and n indicate radial and circular mode
number. Generally, value of Ω is decreasing with increasing plate thickness due
to higher stiffness. For simply supported and clamped plate Ω is monotonically

Table 2. Frequency parameter Ω = ωR2
p

ρh/D, clamped circular plate, k = 5/6.

h/R i/n 0 1 2 3 4 5

0.001

1
10.216 21.260 34.877 51.029 69.665 90.737

(10.201)* (21.209) (34.720) (50.675) (69.004) (89.646)

2
39.771 60.828 84.581 111.019 140.104 171.797

(39.685) (60.603) (84.058) (109.987) (138.323) (168.996)

3
89.102 120.076 153.810 190.296 229.507 271.413

(88.784) (119.436) (152.543) (188.067) (226.068) (266.401)

4
158.179 199.045 242.708 289.162 338.388 390.358

(157.249) (197.575) (240.284) (285.285) (332.828)

5
246.994 297.742 351.311 407.696 466.881 528.846

(245.097) (295.081) (347.065)

0.1

1
9.944 20.185 32.212 45.764 60.594 76.792

(9.956) (20.258) (32.389) (46.088) (61.098) (77.179)

2
36.511 53.903 72.291 91.496 111.361 131.757

(36.810) (54.489) (73.170) (92.611) (112.595) (132.934)

3
75.780 98.044 120.653 143.536 166.630 189.883

(76.898) (99.609) (122.484) (145.385) (168.228) (190.843)

4
123.581 149.019 174.383 199.678 224.902 250.052

(125.735) (151.515) (176.819) (201.536) (225.707)

5
176.880 204.360 231.526 258.421 285.075 311.512

(179.728) (207.023) (233.249)

0.2

1
9.250 17.770 26.965 36.645 46.687 57.004

(9.312) (18.028) (27.540) (37.613) (48.044) (58.667)

2
30.283 42.467 54.529 66.538 78.522 90.484

(30.902) (43.499) (55.956) (68.246) (80.328) (92.158)

3
56.870 70.685 84.121 97.294 110.269 123.085

(58.330) (72.431) (85.969) (99.003) (111.564) (123.648)

4
85.906 100.498 114.624 128.393 141.883

(87.793) (102.286) (116.037) (125.486) (141.533)

5
116.059 130.994 145.406 159.371 172.970

(117.525) (131.789) (145.226)

(·)∗ – FEM
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increasing with (i, n), while for free plate the monotony is related only to i
(Tables 1–3).

In order to evaluate the results obtained by the modified Mindlin theory,
a comparison with those determined by direct application of the Mindlin theory
[12] is performed. The first four natural frequency parameters of axisymmetric
modes, and h/R = 0.001 and 0.25 for all boundary conditions are considered,
Table 4. Almost the same results are obtained.

Table 3. Frequency parameter Ω = ωR2
p

ρh/D, free circular plate, k = 5/6.

h/R i/n 0 1 2 3 4 5

0.001

1
9.003 20.474 5.358 12.439 21.835 33.495

(8.976)* (20.366) (5.349) (12.393) (21.713) (33.246)

2
38.443 59.811 35.260 53.007 73.542 96.754

(38.156) (59.170) (34.956) (52.344) (72.321) (94.739)

3
87.749 118.955 84.365 111.943 142.427 175.730

(86.653) (117.049) (83.108) (109.731) (138.864) (170.358)

4
156.814 197.865 153.302 190.685 231.021 274.239

(153.947) (193.610) (150.117) (185.679) (223.668) (264.004)

5
245.622 296.524 242.025 289.222 339.391 392.477

(239.877) (235.720)

0.1

1
8.869 19.771 5.318 12.227 21.188 31.994

(8.909) (19.880) (5.295) (12.127) (20.960) (31.586)

2
36.059 54.360 33.277 48.770 65.839 84.168

(36.530) (55.185) (33.413) (48.876) (65.831) (83.922)

3
76.758 100.129 74.189 95.173 117.030 139.547

(78.349) (102.275) (75.265) (96.3031) (117.942) (139.898)

4
126.482 153.097 124.196 148.753 173.650 198.774

(129.451) (156.449) (126.546) (150.863) (175.074) (198.946)

5
181.862 210.460 179.852 206.663 233.467 260.223

(171.243) (182.971)

0.2

1
8.508 18.087 5.203 11.671 19.635 28.719

(8.716) (18.686) (5.195) (11.605) (19.469) (28.387)

2
31.156 44.610 29.079 40.835 53.017 65.432

(32.676) (46.881) (30.052) (42.061) (54.293) (66.493)

3
59.794 74.625 58.197 71.786 85.316 98.765

(63.031) (78.364) (60.918) (74.593) (87.824) (100.584)

4
90.360 105.486 89.115 103.294 117.203 130.887

(94.603) (109.792) (92.918) (106.751) (119.940) (132.509)

5
121.047 135.763 120.050 134.078 147.597 160.642

(125.484) (124.082)

(·)∗ – FEM
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Table 4. Comparison of frequency parameter Ω = ωR2
p

ρh/D, for circular plate,
k = π2/12, n = 0.

Boundary Mode h/R = 0.001 h/R = 0.25

condition number i Ref. [8] PS Ref. [8] PS

SS

1 4.935 4.935 4.696 4.696

2 29.720 29.720 23.254 23.254

3 74.156 74.155 46.775 46.775

4 138.318 138.314 71.603 71.603

C

1 10.216 10.216 8.807 8.807

2 39.771 39.771 27.253 27.253

3 89.104 89.102 49.420 49.420

4 158.184 158.179 73.054 73.054

F

1 9.003 9.003 8.267 8.267

2 38.443 38.443 28.605 28.605

3 87.750 87.748 52.584 52.584

4 156.818 156.813 76.936 76.936

PS – present solution

Vibrations of circular plate are also analyzed by the finite element method by
employing NASTRAN [34]. The obtained results for simply supported, clamped

Fig. 4. The first five natural modes of simply supported (SS), clamped (C) and free (F)
circular plate.
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and free plate are listed in Tables 1–3 in brackets, respectively. Differences be-
tween analytical and numerical solutions are quite small and acceptable from
engineering point of view. The first five natural modes of flexural vibrations for
simply supported, clamped and free plate are shown in Fig. 4. It can be noted
that for free plate mode (1, 0) has higher frequency than mode (1, 2), as well as
mode (1, 1) than mode (1, 3).

5.2. In-plane shear vibrations

Let us consider in-plane shear vibrations of circular plate without central
hole, fixed at the boundary. Boundary conditions Θr(R) = 0 and Θφ(R) = 0
lead to the following system of algebraic equations at r = R:

(5.4)







α
dJn(ξ)

dξ
−n
r
Jn(η)

n

r
Jn(ξ) −βdJn(η)

dη







{
A1

B1

}

=

{
0
0

}

,

since A2 = B2 = 0 due to Yn(ξ = 0) = Yn(η = 0) = ∞. The frequency equation
reads

(5.5) αβ
dJn(ξ)

dξ

dJn(η)

dη
−

(
n

r

)2

Jn(ξ)Jn(η) = 0,

where α and β are specified by Eq. (4.7). Such form of the frequency equation
is obtained in [33] for in-plane stretching vibrations of circular plate.

Problem of in-plane shear can be solved indirectly based on the analogy with
in-plane stretching (membrane), Eqs. (2.7) and (2.9). In that case, by neglecting
the stiffness of elastic support parameters, Eqs. (4.7) take the values

(5.6) αm =
1

h
√

12

(
h

R

)2

Ωm, βm =
1

√

6(1 − ν)

1

h

(
h

R

)2

Ωm.

A relation between natural frequencies of in-plane shear Ω and in-plane stretch-
ing Ωm yields from (4.7)

(5.7) Ω =

√

72(1 − ν)k

(
R

h

)4

+Ω2
m.

Numerical calculation of fixed circular plate vibrations is performed for
h/R = 0.2. The obtained results are shown in Table 5 for both in-plane stretching
and in-plane shear. They are compared with those obtained by the finite element
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Fig. 5. The first 10 natural modes of the fixed circular membrane.

Table 5. Frequency parameter Ω = ωR2
p

ρh/D for fixed circular plate, h/R = 0.2.

Mode i, n
In-plane stretching In-plane shear

PS FEM PS FEM

1 1, 1 33.898 33.890 165.527 165.525

2 1, 0 39.264 39.204 166.708 166.694

3 1, 2 52.782 52.675 170.399 170.366

4 2, 1 55.053 54.878 171.116 171.060

5 2, 0 66.367 66.233 175.084 175.034

6 1, 3 68.642 68.345 175.959 175.843

7 2, 2 70.770 70.381 176.800 176.645

8 3, 0 71.888 71.513 177.251 177.099

9 1, 4 82.736 82.100 181.921 181.633

10 3, 1 86.740 86.107 183.776 183.478

method, NASTRAN [34]. Quite small differences can be noticed. The first 10 nat-
ural modes of in-plane stretching, valid for plate layers of in-plane shear, are
shown in Fig. 5.

Problem of in-plane shear for free circular plate can be also solved analytically
for relevant boundary conditions Msr(R) = 0 and Msrφ(R) = 0 and Eqs. (4.4)
expressed in polar coordinates. However, the expressions are rather complex, and
therefore the problem is solved only numerically. The results of FEM analysis of
in-plane stretching and their transform to in-plane shear by (5.7) are listed in
Table 6. The corresponding natural modes are shown in Fig. 6.
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Fig. 6. The first 10 natural modes of the free circular membrane.

Table 6. Frequency parameter Ω = ωR2
p

ρh/D for free circular plate, h/R = 0.2,
FEM.

Mode i, n In-plane stretching In-plane shear

1 1, 2 24.030 163.791

2 1, 1 27.975 164.416

3 1, 0 35.485 165.859

4 1, 3 36.831 166.152

5 2, 2 43.359 167.720

6 1, 4 47.829 168.931

7 2, 0 52.486 170.308

8 1, 5 58.072 172.111

9 2, 3 59.504 172.560

10 2, 1 61.041 173.136

5.3. Discussion

Comparison of the analytically determined natural flexural frequencies by the
modified Mindlin theory and those obtained by the original Mindlin theory, Table
4, shows that both theories give the same results. This confirms that the former
theory is a modification and not simplification of the latter one. Numerically
determined natural frequencies manifest some discrepancies with respect to the
analytical solutions. Discrepancies are larger in case of flexural vibrations than
in case of in-plane shear vibrations. Maximum value of 5.4% is found for the free
circular plate, Table 3, h/R = 0.2, (the third axially symmetric natural mode
(3, 0)), and −0.8% for circular membrane (mode (1, 4)), Table 5. Reason is that
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thick finite element for flexural vibrations is more complex than one for in-plane
vibrations. Accuracy of the former finite element is reduced due to shear-locking
problem, which arises in transition from thick to thin plate since it is not possible
to capture pure bending modes and zero shear strain constraints. There are few
procedures for solving shear-locking problem, as for instance reduced integration
for shear terms [35, 36], mixed formulation for hybrid finite element [37, 38],
assumed natural strain [39] and discrete shear gap [40].

If the development of a thick plate finite element for flexural vibrations is
based on the modified Mindlin theory, shear-locking problem is avoided. Such
a four node rectangular finite element derived in [21] is used for vibration anal-
ysis of a simply supported square plate. Values of natural frequency parameter
are listed in Table 7 and compared with those obtained by NASTRAN. The
obtained results bound the analytically determined ones and accuracy of both
FEM analyses is of the same order of magnitude.

Table 7. Frequency parameter Ω = ωa2
p

ρh/D of simply supported plate,
k = 0.86667, h/a = 0.2.

Mode (m, n) (11) (12)(21) (22) (13)(31) (23)(32)

Analytical,

[21, 41]
17.506 38.385 55.586 65.719 79.476

FEM-MMT* 17.795 1.65% 39.718 3.47% 57.512 3.46% 69.795 6.20% 83.561 5.14%

FEM-NASTRAN 16.604 −5.15% 37.414 −2.53% 51.803 −6.80% 63.932 −2.72% 72.406 −8.89%

∗Modified Mindlin theory

6. Conclusion

The Mindlin thick plate theory with three differential equations of motion,
related to total deflection and rotation angles, specified in Cartesian coordinate
system, is used in literature as starting point for development of analytical and
numerical methods for vibration analysis of rectangular and circular plates with
different boundary conditions. Here, the modified Mindlin theory with decom-
posed flexural and in-plane shear vibrations is used for vibration analysis of
circular plates, due to reason of simplicity. The fourth order differential equa-
tion of flexural vibrations is split into two second order differential equations
of Bessel type. By introducing displacement potentials, in-plane shear vibration
problem is also described by two Bessel differential equations. The exact vibra-
tion solutions of illustrated examples may be used as a benchmark to check the
validity and accuracy of numerical methods for vibration analysis of isotropic
plates as for instance it is done in this paper for FEM results. As a next step
the theory can be extended to vibration problems of orthotropic and composite
plates which are a subject of investigation nowadays.
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