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1. Introduction

WE INVESTIGATE SOME REGULARIZING PROPERTIES of Cosserat elasto-plastic
models. In general, this model was introduced by Cosserat brothers in [1]. Dif-
ferent cases of such a model were presented in the introduction of [2]. The infini-
tesimal elastic and elasto-plastic Cosserat models were introduced in the further
part of the paper [2]. The purely elastic model can be obtained by dividing the
macroscopic displacement gradient Vu into infinitesimal microrotation and an
infinitesimal non-symmetric micropolar stretch tensor € = Vu — A. The theory
of this model in the elastic case is then obtained from a variational principle.

The elasto-plastic case is obtained as an extension of the elastic model. This
extension is itself non-dissipative. The basic idea of it is dividing the total mi-
cropolar stretch into elastic and plastic part and assuming that microrotational
effects remain purely elastic. For more details see [2].

The Norton—Hoff model is an issue from theory of elasto-plastic deformations.
Some special constitutive equation in this model is studied. Norton described
this constitutive flow in [3]. A mathematical analysis of this model can be found
in [4, 5].

The Norton—Hoff model with isotropic hardening is a Norton—Hoff model with
one additional scalar function, which is called isotropic hardening. This model
is well-posed. It can be shown by using an approximation procedure, which was
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proposed in [6]. Several models in the theory of inelastic deformations are listed
in [7].

In this paper an elasto-plastic Cosserat model connected with the Norton—
Hoff model with isotropic hardening is studied. The main goal of this article is to
show that if the Cosserat effect vanishes, this model approximates Norton—Hoff
model with isotropic hardening. The Prandtl-Reuss model and similar issues are
investigated in [8].

The Cosserat elasto-plastic model is also studied in |9, 10]. The paper [11]
is devoted to the study of dynamic Cosserat models. See also the article [12],
where a poroplasticity model with Cosserat effects is investigated. The linear
elastic Cosserat model is reconsidered in [13-17].

2. Formulation of the problem and the main result

We shall use the notation specified in Sec. 3 in this section. Let us denote
by £2 C R? a bounded open set with smooth boundary 942 and let T > 0. In
order to describe a quasi-static deformation of an inelastic body with microro-
tations and with isotropic hardening we have to find the displacement vector
ute: 2 x [0, T] — R3, the microrotation matrix Atc: 2 x [0, T] — s0(3), the
plastic deformation tensor €),°: £2x [0, T] — Sym(3) and the isotropic hardening
yte: 2 x [0, T] — R such that

(2.1a) divote = —f,
(2.1b) ote = 2u(ele — ehe) + 2uc(skew(Vaul') — Ate) + Arfehe] - 1,
(2.1c) —l.Aaxl(A¥) = p.axl(skew(Vute) — AFe),
(2.1d) ég/c — F<T§C, _lyuc>’ yuc =g (Tgc’ _1yﬂc>,
a a
(2.1e) Ty = 2u(ete —ebe),
(2.1f) utlog = ug, Aflog = A, €4 (0) =gp,  y"e(0) = ¢".

Here, e#¢ = sym(Vu*<) denotes the infinitesimal elastic strain tensor. The num-
bers A\, p are the positive Lame constants, u. is the Cosserat couple modulus
and [, = pL? > 0 is a material parameter, where L. with the units of length
defines an internal length scale. Constants v and « are positive and r > 1.
The functions ug, Agq are given Dirichlet boundary data, 52 and 30 are given
initial values and function f describes external body forces acting on the mate-

rial. Functions F' and g are given by F(A,z) = (|devA| 4+ ax — k), ﬁgzi' and

9(A,x) = a(|devA| + ax — k), for (A, x) € Sym(3) x R. It is easy to see that
(F, g) is a monotone field on Sym(3) x R.
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In this paper we want to investigate what will happen with the solution of
(2.1), when p. — 0. It means that we will study the limit procedure of vanishing
Cosserat effects. We predict then that ute, b, yte converge to the solution of

dive = —f,
o =2ue —gp) + Atrfe] - I,
. devTE
2.2 — (dev T — ~y — ) V2B
(22 £y = (ev T =y = B o

y=a(devlyp —yy—k),,
Tp =2u(e — &p),
U|3Q = Uqg, EP(O) = 527 y(()) = yO’

which is the Norton—Hoff model with isotropic hardening and A*c converges to
the solution of
—l.Aaxl(A) =0,

(2.3)
Alon = Aa,

which is the Laplace equation. The following theorem is a mathematical formu-
lation of the last sentences. This theorem is the main result of this study.

THEOREM 2.1. Let us assume that
F e W2([0,T], L2X(2,R%)), wug € W([0,T], H2(002,R?)),
Ag € WH([0,T], H?(02,50(3))), €9 € L*(2,Sym(3)), 3 € L3 (%),

and let uke, e, yke, Abe be the solutions of (2.1), F(2u(e(ut<(0)) — D), —24°)

€ L*(£2,Sym(3)) and g(2u(e(ut<(0)) — €9),—2Ly) € L*(R2), and that sequcénce
(F(Th(0), —2y®), g(Th(0), —2y%)) is bounded in L*(£2, Sym(3)) x L*(£2), then

with pre — 07

w'e Sy in WHR((0,T), H (2,R?)),
Are ZA i WE((0,T), HY(£2,50(3))),
epe ey in WH((0,T), L*(£2, Sym(3))),
y'e =y in WH((0,T), L*(£2)),

where u,y,ep are solutions of (2.2), and A is a solution of (2.3).

It is easy to see that model (2.1) is coercive (similar issue is studied in [2]). We
lose coerciveness, when Cosserat effects vanish. In [8] the authors investigate the
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limit procedure p. — 0 in conjunction with Cosserat model and Prandtl-Reuss
model. They show that when p. vanishes, then (ute,e,®) converges in a mea-
sure sense to the solutions of the Prandtl-Reuss model. It can be shown that,
if one does use a Cosserat model together with the Norton-Hoff model, then
(ete,eh) does converge in the weak-* sense in W1°((0,T), LP(£2,Sym(3))),
when p. — 07, where p # 2. Our motivation to study Norton—Hoff with
isotropic hardening model together with Cosserat model was to keep (e#<,eh*)

in W1o°((0,T), L?(£2,Sym(3))) during the limit procedure.

3. Preliminaries and notations

In this section we shall recall some basic facts, which are used in this paper
and make some remarks about the notation.

We denote by R3*3 the set of real 3 x 3 matrices. The sets Sym(3) and so(3)
are defined as follows:

Sym(3) = {A € R¥3: AT = A} and  s0(3) = {A € R¥3: AT = —A}.
For A € R3*3 we define the symmetric part of a matrix as
1 T
sym(4) = 3(4+ A7),
and the skew-symmetric part of a matrix as
1 T
skew(A) = §<A —A").

Now, it is easy to see that A = sym(A) + skew(A), sym(A) € Sym(3) and
skew(A) € s0(3). Let B € s0(3), then there exist real numbers a, b, ¢ such that

0 a b
B=|-a 0 ¢
-b —c 0

We define axl(B) = (—c,b, —a). Let A € Sym(3). We define the deviator of A as
1
devA=A-— 3 tr[A]L
where tr[A] is the trace of A and it is defined by tr[A] = Z?Zl A(i,i), I is the

identity matrix. It is easy to see that dev A is a projection of A onto symmetric
matrices with trace equal zero.
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Now, let £2 C R3 be an open set. Let us introduce the space L3, (£2):
L3, (92) = {u € L*(f;R?): divu € L*(2)},
where div means weak divergence. In this space the norm is defined as follows:

[l

2 (@) = lullz2() + I divaull 2 ()

The subsequent fact holds:

THEOREM 3.1. Let £2 C R? be an open, bounded set with baundary of C-
class. Then, there exists bounded linear operator v: L, (2) — H~ (8(2) such
that

(i) 903 oy < Cluliz (@) foru€ Lo,

(ii) yu=u-nlgn foru € C(£2),

where n denotes the exterior unit normal vector on 0f2.
Moreover, if w € H'(£2), such that w|go = ¢ (in the sense of traces, see [18]),
then for uw € L3 (£2) the following equality is satisfied:

(3.1) (yu, @) = /u -Vwdx + /divuwd:):.

2 0

The condition (ii) from Theorem 3.1 and (3.1) justify the notation ~yu for
u € L3 (2) as u-n and (yu, ) for ¢ € H%((?Q) as fagu -n¢dS. The details

and proof of Theorem 3.1 are given in [19].
Basic results of functional analysis are used there and can be found in [20]
and [21].

4. Energy and existence in each approximation step

Let us see that initial values of ¢, y are explicit given by (2.1f), but initial
values of u*c and of A*¢ seem to be unknown. However, let us introduce ¢t = 0
o (2.1a), (2.1b), (2.1c) and to (2.1f):

divo#<(0) = — £(0),
044(0) = 2pu(£P*(0) — £2) + 2pe(skew (Vb (0)) — 4 (0))
(4.1) + Atr[ef(0)] - I
—l.Aaxl(A*<(0)) = pe axl(skeW(Vu“C (0)) — A#<(0)),
u(0) = uq(0),  A(0) = Aq(0).

The equation above has unique solutions «(0) and A(0), which follow from the
Lax—Milgram Theorem.
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Next, we will present an existence and uniqueness result for the system (2.1).
A proof of this result is quite similar to the one, which is presented in [2], where a
result without isotropic hardening is obtained. The well-posedness of the model
with hardening is commented in [§].

THEOREM 4.1 (Existence and uniqueness result). Let us assume that
f e w2([0,T), L*(2,R?)), ug € W3[0, T], H2 (992, R?)),
Ag € WH=([0,T], H2(02,50(3))), €9 € L*(2,Sym(3)),5° € L*(12),

F(2u(e(u(0)) —ep), —23°) € L*(£2,8ym(3)) and g(2p(e(ut(0)) —&p), —2y) €

L%(£2), where u*<(0) and A*<(0) are defined by the system (4.1), then there exists
unique weak solution of (2.1) such that

ute € Wh([0, T, H' (2, R?)), Ate € Wh((0,T], H?(£2,50(3)))

st e Wh([0,T), LA(2,Sym(3))),  y* € Wh([0,T], LA(92)).

We will use the physical structure of the problem (2.2) in this paper, since it
turns out to be very useful in the proof of weak convergence. The energy of the
system (2.1) is given by
Ele(u, e,ep, A, y)(t)

1 1
= /N’f — el + 5/\tr[6]2 + pre|skew(Vu) — A|? + 21|V axl(A)|* + 5gy2 dx.
9]

We need one more formula for the energy to complete the proof of our main
theorem, which will be essential in a proof of strong convergence of stresses. The
sum of energies of problems (2.2) and (2.3) without Cosserat effects is defined by

1 1
(4.2)  E(u,e,ep, A, y)(t):/ma — &l + §Atr[€]2 + 21|V ax1(A)|? + 5%3/2 dz.
2

Note that it does not depend on p.

5. The proof of Theorem 2.1
We prove Theorem 2.1 in this section. The proof is based on three lemmas.

5.1. Sequence of initial values

We see that u#c(0) and A#<(0) are given by (4.1). We shall also notice that
they possibly do depend on p., so the first step in the analysis of our problem
is to study how they depend on ..
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LEMMA 5.1. Let us assume that the assumptions of Theorem 2.1 are satisfied
for data and for initial values, then
ult(0) —ul2(0) — 0 in H'(2,R?),
AR (0) — AP2(0) — 0 in H(£2,50(3)),
when pict, pre2 — 07

Proof. First of all we shall prove some auxiliary inequality for A*<(0)
and ut<(0).

Let us put t = 0 in (2.1a), (2.1b) and (2.1c). We can multiply equation (2.1a)

by u<(0) and multiply (2.1c) by axl(A#<(0)) and by number 4, and then add
them each other and integrate:

/ div a#<(0) - ut<(0) — 21, AA*<(0) - A¥<(0)
(9}
— 2uc(skew (V(ute(0))) — AF<(0)) - A*<(0) dxz = /f(O) ~uke(0) da.
02
When integrating by parts, we get

/ £(0) - (0) do = / ot (0) - Ve (0)dz — / (0 (0) - 1) - ug(0) dS
2

2 o052

+ [ 20|V A (0)[2dx — 21, | (VA"(0) - n) - Ag(0) dS
/ /

— [ 2nelskew(T(a(0))) = A% (0)) - 4% (0) do
2

=11 — b+ Is—2l.14 + I5.

We estimate

L= /2/1,‘2’5“6(0)2 + A(div(ut<(0)))? dz

(0]
+ / 2pte(skew(Vul (0)) — APe(0)) - Vu (0) dar — 2 / ehe(0) - <9 da
(0] k0]
> [ 2ulet(0)* + [ 2pe(skew(Vute(0)) — A*<(0)) - Vut<(0) dx
[t ]

- 2u/5“c(0) : 52 dx.
Q
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The first equality in the above inequality follows from Eq. (2.1b). Furthermore,
we have

(5.1) I < C([lo"(0)l| 2(e) + Idiv o< (0)[| 2 (2) ) [ua(O)]]

= C([loe"(0)ll (o) + (£ (0) ]| L2(2) )| ua(0)]

We can estimate ||o#<(0)[ 20y as follows:

H? (00)

|H%(arz'

(52)  [lo"(0)]lL2() < Ol ()l L2() + lepllzee)
+ el VUt (0) | L2 () + pell A7 (0) || L2(22) )-
We insert (5.2) into (5.1) to finally get
Iy <O £ O)lz2¢) + le"(0) | L2y + H€2HL2(Q) + pel|[Vute (0)[| L2 ()
+ el A*<(0) | L2 (2))ua(O)] 1

092)
Next, we estimate the fourth integral
14 2 VA" (0) 122 + [ 447 (0) 20| 4a(O)] 3
(2.1¢)
< CUVAO0)llz2() + pell skew(Vur(0) — A% (0)]| L2()) [ Aa(O)] ;3 -

Combining all these estimates, we obtain
24| (0) |72 () + 2l VA (0) |72 + 2l skew(Vute(0)) — A< (0) |72

o / ehe(0) - 9 d — C(|F(0) 2y + €7 (0) 2y
(P4

1 €2ll2(0) + el T (0) 202 + pell 47 (0) 200 [0aO) 13

= CUIVA*(O)lz2(2) + pell skew(Vue(0)) — A% (0) | 2(2) 1 Aa(O)l 3

< [ 10y w0y aa.

0
Consequently,

20| (0)|[72(q) + 2Lel[VA* (0) |2y

< /f(O) -ute(0)dx + 2u/5“¢(0) : 82 dx
2 2
+ C([le"(0) | L2(2) + H&?gHB(Q) + || Vute(0)[| L2 ()
+ pel| A% 0) || L2y + IVA*<(0) [ 12(2) + 1)
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By virtue of Young’s inequality we have

e 0) 371 g2y + 147 (0) 1771,
< O+ 1+ pe)([[u(0) |1 (2) + A7 (0) [ 11(2)))

and
(5.9 0 (O) sy + 147 (0) s gy < O1+ 1)

Now, we can prove our thesis. From (2.1), for ¢ = 0, we obtain the following
equation:

/2u|€“cl (0) — ete2 (0)|*dx + / A(div(uter (0)—ute2(0)))? dz
(0] (0]
[ 2 (shew( T 0) = 47(0) — gy (shew (Va2 (0)) — A4%2(0)
(0]
- (Vuter (0) — Vute2(0))dz

+ / 20|V A1 (0) — T A< (0) 2 d

2( e, (skew (Va1 (0)) — A#1(0)) — pie, (skew(Vure2 (0)) — AF<2(0)))

b\b

- (A¥e1(0) — APz (0)) dz = 0.

Thus, we get

/ 2uleher (0) — etez (0) P + / Aldiv (e (0) — ube2 0)))? da
Q Q
+ [ 2 (sew(Tu1(0)) = 451(0)) = s (skew(Vu (0)) — 452 (0))
0
- (skew(Vu1(0)) — skew(Vut'e2(0)) — (A¥e1(0) — AF2(0))) dz
+ /2lC|VA“Cl (0) — VA#2 (0)|> dx = 0.
2
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Korn and Poincaré’s inequality provides the bound
s (0) — w2 (0) 3y g + 4741 (0) — A2 %1

<-c / 2ty (skew (Vs (0)) — 4741 (0))) — pey (skew(Var2 (0)) — A2 (0)))
(0]

- (skew (Va1 (0) — Vaukez (0)) — (AHe1(0) — Abe2(0))) da

< (fey + ey / (skew(Vu1 (0)) — A1 (0)) - (skew(Vube (0)) — A2 (0))de.
2

Applying (5.3) to the last inequality, we finish the proof of the lemma. O

5.2. Energy estimates
The next step in the proof of approximation is to get estimates for the time
derivatives of the approximate sequence.

LEMMA 5.2 (Energy estimate for time derivatives). Let us suppose that the
requirements of Theorem 2.1 are given, then there exists a constant C, such that
the following inequality holds:

Ehe (ulte gite_ehle Abe yiie)(t) < C forall 0<t< T

for all pe > 0.

P roof For h>0let us denote by (ute(t), e’ (t), b, (), Alen(t), yHep(t))
the shifted functions (utc(t+h),ete(t+h), epc(t+h), Afe(t+h)) and calculate the
energy evaluated on the differences (utep, —ute, ete, —ete g, —eh®, Atej, — Abe),
By calculating the time derivative of the energy, we get

(5.4) gﬂc(u#ch — yHe ghe, — 5#0’550]1 — %;;c’ Abe — Abe ghe, — yhe)(t)

= [ (et — et — (el — ) (el — e — (e, — ) d
Q
+ /Q,uc(skew(Vu"ch — Vute) — (Afe, — A¥e))
2
- (skew (Vuite), — Vuite) — (Ake), — Abe)) da:

+ /4lcV axl(A“Ch — AMC) . Vax](A:uch — A,uc) dr
2

of

9}

Q1=

(ylen = y") - (yitep, — yhe) + Atrfehe), — e]trfefiey, — efie] da
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= /(ng Th) - (bt — b)) + %(y“ch —y") - (ylep, — yhe) da
17
+ /(Uﬁc — ote) - (Vauley, — Vuie) dz
o

+ /4lCV aXI(AMCh — A'U‘C) . Vaxl(A:uch — A,uc) dx
2

— /4uc axl(skew (Vute), — Vute) — (Atey, — AFe)) - (A'uch _ Ahc) dz,
(9}

where T4 (t) = Th°(t + h) and o}°(t) = ot(t + h). By the monotonicity of
(F,g) the first term on the right-hand side of (5.4) is non-positive. Integrating
the second and the fourth term by parts, and applying equations (2.1a) and
(2.1c) we shall get

gﬂc (uﬂch _ u#c7 8/Jch _ gﬂc’ 6,“‘(3 e/ic Aﬂch _ A,Ufc yﬂch _ y,“c)(t)

P h
02 P
+ / 20(Agp, — Ag) - (VAFe), — VAF) - ndS,
o

where fr(t) = f(t + h), ugn(t) = uq(t + h) and Agp(t) = Aq(t + h). Now,
integrating the inequality above with respect to ¢ we get:

(55) (C/'Mc(ullch _ uﬂc’ é—ﬂch _ Eﬂc 65ch _ Eﬂc’ Aﬂch _ ANC’ yﬂch _ yﬂc)(t)
S EFe(ulen —ute ey — el epe, —epe, Ao — Ayl —yH)(0)

+/t/(ﬂdh—ﬁd)'(0h—0)'”d5d7

0 901
t

+//fh— u“ch—u“C)dxdT

0

+ / / Ue(Agp, — Ag) - (VAHe), — VAHF<) . n dS dr.
0 00

At this point, our plan is to shift, in the integral terms, the shift operator onto
given data. We calculate this with details for the first integral only
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(5.6) / / (n— ) - (bey, — i) de dr
0 N

t

/(fh—f)'ui‘chdxdT—//fh_ ) - e dz dr
2

0
h

t

/f f- h ““cdxdT_O/!(fh—f)-u“CdxdT

h t

/fh uﬂcdadejLo/(Z(fo—hfh)-uf‘Cda:dT

2
h
O/Z(fh—f)-u“CdavdT.

In the same manner we transform the first and the third integral in (5.6). Next,
we insert (5.6) and the results for the other terms into (5.5), divide by h? and
pass to the limit h — 0. Hence, we conclude with the following inequality:

¥ ?\i 2t

~

(5.7)  EFe(ubte, el ehie | Abe, yitc)(t)

< E”C(ui‘asf'%,egc,A'“C,y*'%)(()) +/f(t) - ubte (t) dx — /f(O) - uke(0) da

2 Q
- //fu“f dx dr + /(a“c(t) -n) - 02ug(t) dS
0 2 o
— [ (6"(0) - n) - DPuq(0)dS — (ot -n) - PugdS
/ [/
+ 4. / (V axl(AHe)(t) - n) - 92 Aq4(t) dS
a12

— 4, / (V axl(AFe)(t) - n) - 92 Aq(t) dS

— 4, / / (V axl(AHe)(t) - n) - O Ay dS dr.

0 010
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To obtain the initial energy for time derivatives we observe that

0= F (120, 15)

(%

and
. . ’)/
yhe(0) = g <T§ (0), —ayo),

so by assumption they are bounded in L?(£2,Sym(3)) and L?(£2), respectively.
Initial values Ate(0) and ui<(0) are solutions of the system

div gite = — £(0),
e = 2 <lwg) = P (200 (0) = ).~ Lo ) )
+ 2p1c(skew(Vuite (0)) — Ake(0)) 4 A tre(ui(0))] - I,
—l.Aaxl(Are(0)) = pe axl(skew(Vuite (0)) — Are(0)),
ule(0)|on = ua(0),  Ake(0)lag = A4(0).

Consequently, the initial energy for the time derivatives is bounded.
Now, let & € H'(§2) be such that @|po = g. By Korn’s inequality we have

Jule || 20y < [Jute — @l 20y + Al 20y < Clle(ule — @)l 120y + ||l 2.0
< Clletel|za(e) + C (1) < Clllep Iz + 1T |2 + C(¢ >
Since The¢ = 2u(gite — 8]’;6) we can see from (2.1d) that |5pc| = alyi|; thus,
e 20y < C(llehe | 2oy + T8 12 + C(2)
= Clallyley + 1T Noaay) + €
< CEHen (yite gite glle | Ate _yite))(t) + C(t).
We can estimate the first term on the right side of (5.7),

/f(t) cuite (t) dx < || f ()] 2 () i ()] 22
2

67 .
< CllfOllL2e 5“°2(U“C elte, ehe, Abe,yite) (1) + O(t),

The second and the third terms can be estimated similarly. We shall analyze the
fourth integral term of (5.7)

/(G“C(t)-n)'afw(t) dS < C(lo" |l r2(a) + || div o[ g2 () 107 uall 69)

of?

1 X X i , X
< C(EeH (b, e, ehe, A1, ) + | f 2 0Bl g
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The estimation of the seventh term of (5.7) yields

/ (V axl(A#)(t) - n) - 9} A4(t) dS

on
< C([[AA¥|| 2oy + ||VAMC||L2(Q))||8t2AdHH%(a_Q)
(2.1¢)
< CSMC%(UNC,5MC,Egc,AMC,y“c)(t)”atQAdHH%(a_Q)'

The other terms on the right-hand side of (5.7) can be calculated in the same
fashion. Finally, we arrive at the following inequality:

guc(uhcjgﬂ%&_gc’Aﬁc’y[ic)(t> S ENC(uch76;‘075507A:1Lc7yhc)(0)

+ C()EH3 (uhe, ehe, ehe, Ale yhe) (1)

t
+/D(t)€“c% (ute, ghe, E’ZC, Abe yte)(T)dT+ E(t).
0

Using Young’s inequality we get
¢
E“C(uﬁasﬂc,egc,Aﬁc,yi‘c)(t) < /S”C(u“e,s“c,e]‘;%A“C,y“C)(T) dr + C(t).
0
Finally ; Gronwall’s lemma completes the proof. O

The energy estimate proved in the last theorem yields boundedness of Ak in
the space L>®((0,T), H'(£2,50(3))) and of yie in the space L>((0,T),L?(£2)).
Moreover, using the fact that ]51',6| = alyie|, we obtain that 51;6 is bounded
in the space L>®((0,T), L?(£2,Sym(3)). We can see that &< controls The, so

consequently wie is bounded in L°°((0,T),R3). From the equalities

t t
w@—/wm+w, Awwiﬁwm+ww%
0 0
t t
ute(t) = /uﬂCdT + uf<(0), ehe(t) = /z-:gch + eg,
0 0

we deduce the boundedness of (ute, Ate et yHe) in

Whee((0,T), H' (2,R3)) x Wh*°((0,T), H' (2, 50(3)))
x W ((0,T), L*(£2,Sym(3))) x Wh*((0,T), L*(12)).
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Hence, we have subsequences (still denoted by superscript p.) that
ulte Sy in WHR((0,T), H (2, R?)),
Ate S A in WHe((0,T), HY(12,50(3))),
ehe Dy in WH((0,T), L2(£2, Sym(3))),
y'e =y in WH((0,T), L (92)).
Now, with standard procedure we see that the limit functions u, €, satisfy
dive = —f,
o =2u(e —ep) + Atrfe] - I,
ulon = Ud,
and A satisfies
—l.Aaxl(A) =0,
Algn = Ag.

Thus, to complete the proof of approximation we need to prove that the limit
functions satisfy the evolution equation from (2.2). We would prove it, if we
improved the weak convergence of the sequence {y*<} and {T%°}.

LEMMA 5.3 (Strong convergence of stresses). Under the assumptions of Theo-
rem 2.1, we have

g(uﬂzcl _ UNCQ , 611/01 _ 8“62 , Eg‘cl _ 85‘62 , Aﬂcl _ AM(;Q,y,ucl _ yNCQ (t) N O7

uniformly for 0 <t < T, when pic,, pea — 0.

P r oo f. Calculating the time derivative of the energy (4.2) evaluated on
the differences of two solutions of (2.1) we obtain

(58) (c/"(u,ucl — qMe2 , gher _ gheg , 8501 _ 6502 , Aber — AMe2 , ch1 — yﬂc2)(t)

= [ autere —eter = (e —ef) (e - g - (6 - )

0]
+/>\tr[e“cl — ghez] gr[eher — elez] dx
2
i, / (V axl(AP) — V axl(AP<2)) - (V axl(APe1 ) — V axl(APe2)) da

]

b [ e =y = ) da
2
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(TR = TP (G = &) & S =) (0 — i) do

Il
D —

+ [ (oter — ghe2) - (Vara — Vaute)dx

2('“01 (SkGW(VU“Cl) — A‘ucl) — ey (skew(vuﬂq) — Ahea ))

b\ b\

-skew (Ve — Vaktez)dx

+ 4l /(V axl(Ate1) — Vaxl(AH<2)) - (Vaxl(AFr) — V axl(AH<2)) du.
]

The first integral on the right-hand side of (5.8) is non-positive. The second and
the fourth term we integrate by parts. Since the boundary values for both solu-
tions are the same, all boundary integrals are equal zero. Next, using equations
(2.1a) and (2.1¢), we conclude that

5(u“51 _ uﬂcg , Eﬂcl _ E,UCQ , E‘;Cl _ EZCQ , A'ucl _ AMCQ , yu’cl _ y/’LCQ )(t)

< / —2(j1cy (skew(Vurer) — APer) — pu (skew (Vurez) — Az))
2
- ((skew(Viaker) — Ater) — (skew(Viakez) — Afez) da.

Now, by Theorem 5.2 we have
g(uucl — yHe2 gher 76,11’02’6561 755°2,A“01 — Ater yher —yhea) (1) < C(ptey + fhey )-
Next, we integrate with respect to time and finally have
E(uter — ybez gher — Euc2’5561 _ EZCQ,AMCI — Abez gHer _ yhea)(t)
< E(uMer —yber gher —ghes 5561 _5562 , Aber — Atz yher —len)(0) 4O pey + ey )-
Using Theorem 5.1, we conclude that

E(uter — ybez gher — 5“62,5561 _ 6502’14#61 — Abes yher — yie2)(0) — 0,

when e, , fte, — 07. It completes the proof. O
So by Theorem 5.3 we have

(5.9) yhe =y in L>®((0,T), L*(£2)),
Th — Tr  in L*°((0,T), L*(£2,Sym(3))).
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Moreover, by Theorem 5.2 we have (eventually going to a subsequence)

e = oo (Tp =Ty ) Sy in (0.0, L@ Sym(3)

yhe = ghe (Tgc’_zyuc> Ay in LOO((O,T),LQ(Q)).
o

Combining these results with the fact that the graph of a monotone field is
weakly-strongly closed (see [22]) gives us that

. Y . g
Ep:F<TE7_ay)7 y:g(TEa_ay>

Finally, we have proved Theorem 2.1.
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