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A coupled map lattice (CML) model was developed to study the evolution of
desert’s geomorphology. The numerical results show that the model presents abundant
spatiotemporal patterns. In spatial behaviors, the model illustrates the mechanism of
both weakly and strongly coupled systems. In temporal behaviors, the model illus-
trates the stochastic effects. The model is able to demonstrate the physically layered
coupling mechanism and shows the initiative and driven coupled systems. The evolu-
tional processes of the model are also analyzed with physical geomorphological laws.
The desert’s geomorphologic forms, such as sand ripples and dunes, result from the
combined actions of deterministic and stochastic effects. Verified by the field data,
this study qualitatively illustrates the geomorphologic evolution of desert. Moreover,
the model is applicable to the evolution of ripples and dunes with loose sand caused
by water currents on fluvial beds, e.g., river beds in the lower reaches of the Yellow
River, China.
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1. Introduction

The geomorphologic evolution of desert is a complicated process [1–13].
The formation of dunes and ripples is still not well-understood. For the earth, the
external energy input is primarily coming from the sun. For a particular region,
the dynamic factors to create the change of surface geomorphology are mainly
climate, hydrology, earth crust movement and human activities, all leading to
various landforms. Due to the intrinsic randomness of the region’s evolution
caused by the nonlinear coupling interactions among affecting factors, it may
be impossible to forecast the future evaluation of a geomorphologic form in
a specific region precisely on the basis of its present state, though the final
evolutional result can be recognized. The desert’s geomorphology results from
various stochastic and deterministic mechanisms, including multi-scale and wind-
blown sand flows, fluid-solid interaction, meteorology and hydrology. In present
work, we will address the evolution of the geomorphology of erodible bedform
submitted to fluid. For convenience, sediments are supposed to be non-cohesive
and uniform with the particle size within 0.5–50 mm herein in this paper.
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In the last decade, there has been much interest in the study of the large
assemblies of chaotic elements that can spontaneously evolve to a state of large-
scale synchronization and form different patterns. In these studies, a convenient
tool of analyzing the characteristics of spatiotemporal system is the coupled map
lattice (CML) model [14], which is applicable to a discrete-space and discrete-
time system of interacting elements with states varying continuously according
to specific functions. For more details of the CML model, see references [15–19].
The early results were comprehensively described by Cross and Hohenberg

[15], while recent representative methods and suggestions for future work about
synchronization phenomena were reviewed by Acebron et al. [16]. Some results
about patterns can be found in [17]. These studies may provide a new way of
describing the geomorphologic evolution submitted to a fluid flow [20–25].

The general form of CML model is expressed as follows:

(1.1) x(n+1)(i) = (1 − ε)f(xn(i)) +
ε

2
[f(xn(i − 1)) + f(xn(i + 1))] + pn(i),

where n = discrete time step, i = discrete lattice with periodical spatial bound-
ary, f(x) = logistic map or other forms of map (here the logistic map and the tent
map), and pn(i) = local or global coupling. Normally, the model is based on the
one-dimensional (1D) diffusion mechanism. To describe diffusion in the frame-
work of CML model, considering the interaction between fluid flow and sediment
[26–30], this paper is to expand the methods used in 1D cases to 2D ones, and
rebuild them as to model the geomorphologic evolution of desert. The model de-
veloped in this paper is able to describe: 1) the interaction among many physical
factors, 2) stochastic effects and 3) strongly and weakly coupled system functions.

The multi-scale description of CML model for formation of the bedform is
proposed. Here, the interior region of a desert is taken as a major application
of the model. Formation of the aeolian ripples is thought to be a result of wind
action on loose sand. Starting from a flat bed, three regimes are identified: ap-
pearance of an initial wavelength, coarsening of the pattern, i.e., a progressive
increase of typical length scale with time and saturation of the ripples. The main
focus is a general picture of the model’s dynamic characteristics in describing
topographies and revealing their formation process. A schematic sketch of the
evolutional process is investigated with numerical results.

2. Geomorphologic system as a dissipative structure

It has been recently realized that the geomorphologic evolution is a dissipa-
tive structure [31–33]. For a specific desert region, the driving dynamic factors
in changing geomorphology are climate, hydrology and human activity, of which
wind is the most active. In spite of the asynchrony occurring occasionally between
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geomorphology and the dynamic factors due to the crust sudden violent move-
ments, the geomorphologic evolution corresponds approximately synchronously
to these dynamic factors on the scale of long time and wide space. An important
aspect of a geographical region is substance cycle and energy flow. With no con-
sideration of chemical reaction, the change of a substance in an approximately
close geographical region can be formulated as

(2.1)
∂ρ

∂t
+ div(ρ~u) = q,

where ρ is the density of the substance, ~u is velocity, q is the increasing rate at
unit’s time and volume. In some systems, variable A may be decomposed as

(2.2) A = constant component + trend component

+ periodic component + random component + mutant component,

where the constant component can be regarded as the average value of A. The
trend component means relatively stable part of A, and the mutant component
means suddenly changing part of A. Obviously, the timescale corresponding to
each component is usually different.

There are two evolutional processes in a region: 1) from order to disorder and
2) from disorder to order. The corresponding energy fluxes are dissipative and
accumulating processes. The entropy fluxes often cause the entropy of a region
to increase or decrease. The governing equations of a regional evolutional process
are the maximum entropy principle corresponding to equilibrium state and the
minimum entropy production rate principle corresponding to non-equilibrium
state [34–37]. The entropy can be calculated as dε = dεi + dεe, where dε is the
entropy for a specific region, dεi is internal entropy production and dεe is the
environmental entropy flux which contains two parts, the local change caused by
unsteady effect and the convective change caused by non-uniform effect.

Movements of both wind-sand and water-sediment are essential interactions
between fluid and sediments [38–45]. Sometimes, the lattice Boltzmann method
is used to study such a problem [46–47]. In this paper, the coupling interaction of
wind and sand is addressed. Wind has an effect on the form of sediment motion,
such as incipience, suspending, saltation and bedload transport. Sediment motion
also has an effect on wind. Hence, the desert’s geomorphology is the function of
the local and temporal properties of sediment and wind.

The governing equation of wind is Navier–Stokes (N-S) equation

(2.3)
∂ui

∂t
+ uj

∂ui

∂xj
= −

∂p

∂xi
+ υ

∂2ui

∂xk∂xk
,

∂ui

∂xi
= 0,

where ui is the velocity in i direction and υ is the kinematic viscous coefficient.
Note that, in the expression above, gravitation is body force and fluid is assumed
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to be incompressible. For convenience, the pressure p absorbs body force and the
repeated subscript means Einstein’s summation convention.

The dynamic processes of wind for forming geomorphologic pattern are
mainly by convective and diffusive mechanisms, and the function of precipitation
erosion is similar to that of wind. These factors originate the change of aggrega-
tion morphology as a function of time. The spatial and temporal distributions
of desert geomorphology exhibit randomness and self-similarity in a statistical
sense at the same time. The desert’s geomorphology shows multiple patterns,
such as plane beds, sand-ripples, longitudinal dunes, movable plane beds and
sand waves. Surely these patterns are the results of long-term accumulation of
interactions among various factors.

Sediment transport and bed deformation caused by fluid flowing, as for single
sediment particle [48, 49], can be summarized as follows: incipient starting →

rolling (occasionally sliding) → occasionally rolling and occasionally saltating →

continuous saltating → occasionally saltating and occasionally suspending →

suspending. The sediment particle often begins to suspend from saltating, which
is its basic rising form. The moving forms of large-amount sediment particles
can be considered as bed load and suspended load, and both of them can trans-
form into each other because of different magnitude of velocity. The sediment
transport connects closely with turbulent coherent structure. The following ran-
dom factors influence the sediment transport: 1) velocity fluctuation exerting
on sediment, 2) irregular shapes of sediment, 3) contingency of location and
arrangement of sediments on the bed, 4) inhomogeneity of sediment compound-
ing, 5) transient and uncertain locations between the coarse and fine sediments,
6) complexity of interaction among fine sediment particles and 7) unsteady sup-
ply of sediment, etc. Furthermore, in unsteady and non-uniform flow, there is
a hysteresis of sediment movement to respond to velocity change. The hysteresis
is connected with sediment composition and obviously shows intermittent and
paroxysmal properties. The essence to investigate the evolutional processes of
the sand ripples and dunes is to study the properties of the feedback of many
coupled factors, such as sediment transport, characters of fluid flowing, sedi-
ment supply and initial and boundary conditions, varying with time and space.
If sediment concentration is high enough, for aquatic sediment laden flow, it will
become hyper-concentrated flow; thus, not only is there a hysteresis of interac-
tions between sediment and flowing, but also the fluid flow belongs to Bingham
fluid instead of Newtonian fluid. In 2D case, its constitutive equation reads

τ = τb + η
du

dy
,

where τ is shear stress, τb is Bingham yield stress, η is rigidity coefficient and
sometimes it is also called viscous coefficient, du/dy is velocity gradient. The ex-
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perimental results show that the Bingham yield stress and the rigidity coefficient
are functions of sediment concentration and sediment properties respectively. For
low sediment-laden flow and hyper-concentrated flow, sediment transport is influ-
enced by local flowing structure. Existence of sediments has influence on flowing
structure to make it different from that of clear flowing case. However, the fact
that the coherent structure is made up of turbulent spots remains unchangeable.
From the viewpoint of phenomenological mechanism, the incipient motion of
sediment particles is ultimately dominated by the turbulent bursting processes,
and the sediment transport is influenced by turbulent coherent structure, both of
which show chaotic properties in space and time. It is known that, in relatively
wide range of Reynolds number, there is a one-to-one correspondence between
the sediment transport and the flowing intensity [39].

It is well known that the aeolian ripples are the result of the reptation move-
ment, caused by the collisions of falling particles. On the other hand, the aeolian
dunes, many times greater in size than the aeolian ripples, are instabilities formed
by the direct action of the wind. When the fluid is water, collisions are dumped
and reptation is absent, thus there is no equivalent to the “aeolian ripples” un-
der water. The bed instability under water is influenced directly by the water
stream, so that they correspond to the dunes of the aeolian case. However, these
forms under water are many times smaller than the aeolian dunes. Although
the aeolian ripples generally have the same length-scale as the aquatic ripples,
their dynamic properties are different from the aquatic ripples. There are some
differences between aeolian bed-load and aquatic bed-load.

Despite this, from the viewpoint of phenomenological process, the field mea-
sured geomorphology of aeolian dunes and river bedforms, such as the aquatic
ripples and dunes, connects closely with fluid flow’s properties. As for their con-
crete growing mechanism, though there are few theories developed to apply them,
there is no accepted mathematical model based on any of these theories to pre-
dict the growing processes. On the assumed conditions of the study, as for both
the geomorphology of desert, such as aeolian dunes, and the subaquatic geo-
morphology of a river, such as aquatic dunes, the common properties of them
are as follows: 1) the size, volume and pattern are the results of direct or indi-
rect actions of the fluid flow, the characters of the geomorphology are connected
closely with the fluid flow’s properties, 2) the evolutional processes of geomor-
phology are the results of combined actions of many stochastic factors without
being precisely measured, and they are weaved by the intrinsic deterministic and
stochastic factors to show chaotic characters, 3) the driving factors to cause in-
teractions between the fluid–sediment and sediment–sediment can be described
in types as the convective mechanism, diffusive mechanism, periodic force and
random force, 4) if we neglect the interacting details and only consider the in-



370 Z.-C. Liu, W.-J. Fan

put, output and the final results, then, some concrete developing processes of
geomorphology of aeolian and aquatic ripples and dunes can be circumambu-
lated. Although there are differences in growing mechanism, however, common
properties still exist between the input and the output. Thus, it is possible to
model them in a unified approach.

Frisch [50] gave a poor man’s N-S equation, i.e., vt+1 = 1 − (vt)
2 (t =

1, 2, . . .), Eq. (3.2) in his book, as a CML model to describe the properties of fully
developed turbulence. Some scholars [51–53] thought that, in one-dimensional
cases, KdV-Burgers equation,

∂u

∂t
+ u

∂u

∂x
− γ

∂2u

∂x2
+ β

∂3u

∂x3
= 0,

is a control equation of turbulence. To consider the above results comprehen-
sively, and from the practical viewpoint as a primary approximation, we deem
that the proper form of CML model, which contains nonlinear, convective and
diffusive mechanisms, can be used to model the evolutional mechanism of sand
ripples and dunes submitted to fluid flow. The following CML model developed
in this paper was based on such an assumption.

3. CML models

If we consider the discrete form

un+1
i − un

i

∆t
= γ

un
i+1 − 2un

i + un
i−1

∆x2

of the PDE,
∂u

∂t
− γ

∂2u

∂x2
= 0,

which describes diffusion phenomenon. Let

ε

2
=

γ∆t

∆x2
,

then
un+1

i = (1 − ε)un
i +

ε

2
(un

i+1 + un
i−1),

and the method used by Kaneko [14] is adopted, the following model can be
developed:

(3.1) xn+1(i) = (1 − ε)f(xn(i)) +
ε

2
[f(xn(i + 1)) + f(xn(i − 1))].
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If other factors such as open system and feedback are considered, the above model
can accommodate another term pn(i), thus reducing to model (1.1), which has
been widely used, where f(x) is logistic map or other form of map. If

pn(i) = (ε − ε1)f(xn(i)) +
ε1

N

N
∑

i=1

f(xn(i)),

then it becomes the model adopted by Pineda and Cosenza [54]. If pn(i) =0,
then in 2D cases, it becomes the model adopted by Francisco and Muru-

ganandam [55]. Model (3.1) may reflect more physical meanings if other com-
ponents are added in terms of physical interactions and coupling ways.

The N-S equations have the following form:

(3.2)
∂ϕ

∂t
+ ux

∂ϕ

∂x
+ uy

∂ϕ

∂y
= fx + υ

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2

)

.

By a upwind scheme,

(3.3)
ϕn+1

i,j − ϕn
i,j

∆t
+ un

xi,j

CIEϕn+1
i+1,j + CIPϕn+1

i,j − CIWϕn+1
i−1,j

∆x

+ un
yi,j

CJEϕn+1
i,j+1 + CJPϕn+1

i,j − CJWϕn+1
i,j−1

∆y

= fxi,j + υ

(

ϕn+1
i+1,j − 2ϕn+1

i,j + ϕn+1
i−1,j

(∆x)2
+

ϕn+1
i,j+1 − 2ϕn+1

i,j + ϕn+1
i,j−1

(∆y)2

)

Let
βx

2
=

∆t

∆x
,

βy

2
=

∆t

∆y
,

εx

2
=

υ∆t

(∆x)2
,

εy

2
=

υ∆t

(∆y)2
,

then we can obtain the following schemes:
when i = 1,

{

1 + fx(ϕn
i,j) ×

βx

2
× CIP + fy(ϕ

n
i,j) ×

βy

2
× CJP + εx + εy

}

ϕn+1
i,j

+

[

fx(ϕn
i,j) ×

βx

2
× CIE −

εx

2

]

ϕn+1
i+1,j +

[

fy(ϕ
n
i,j) ×

βy

2
× CJE −

εy

2

]

ϕn+1
i,j+1

−

[

fy(ϕ
n
i,j) ×

βy

2
× CJW +

εy

2

]

ϕn+1
i,j−1

= fxi,j × ∆t + ϕn
i,j +

[

fx(ϕn
i,j) ×

βx

2
× CIW +

εx

2

]

f(ϕn
NI,j);
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when j = 1,
{

1 + fx(ϕn
i,j) ×

βx

2
× CIP + fy(ϕ

n
i,j) ×

βy

2
× CJP + εx + εy

}

ϕn+1
i,j

+

[

fx(ϕn
i,j) ×

βx

2
× CIE −

εx

2

]

ϕn+1
i+1,j −

[

fx(ϕn
i,j) ×

βx

2
× CIW +

εx

2

]

ϕn+1
i−1,j

+

[

fy(ϕ
n
i,j) ×

βy

2
× CJE −

εy

2

]

ϕn+1
i,j+1

= fxi,j × ∆t + ϕn
i,j +

[

fy(ϕ
n
i,j) ×

βy

2
× CJW +

εy

2

]

f(ϕn
i,NJ);

when i = NI,

(3.4)

{

1 + fx(ϕn
i,j) ×

βx

2
× CIP + fy(ϕ

n
i,j) ×

βy

2
× CJP + εx + εy

}

ϕn+1
i,j

−

[

fx(ϕn
i,j) ×

βx

2
× CIW +

εx

2

]

ϕn+1
i−1,j + [fy(ϕ

n
i,j) ×

βy

2
× CJE −

εy

2
]ϕn+1

i,j+1

−

[

fy(ϕ
n
i,j) ×

βy

2
× CJW +

εy

2

]

ϕn+1
i,j−1

= fxi,j × ∆t + ϕn
i,j −

[

fx(ϕn
i,j) ×

βx

2
× CIE −

εx

2

]

f(ϕn
1,j);

when j = NJ ,
{

1 + fx(ϕn
i,j) ×

βx

2
× CIP + fy(ϕ

n
i,j) ×

βy

2
× CJP + εx + εy

}

ϕn+1
i,j

+

[

fx(ϕn
i,j) ×

βx

2
× CIE −

εx

2

]

ϕn+1
i+1,j −

[

fx(ϕn
i,j) ×

βx

2
× CIW +

εx

2

]

ϕn+1
i−1,j

−

[

fy(ϕ
n
i,j) ×

βy

2
× CJW +

εy

2

]

ϕn+1
i,j−1

= fxi,j × ∆t + ϕn
i,j −

[

fy(ϕ
n
i,j) ×

βy

2
× CJE −

εy

2

]

f(ϕn
i,1);

when 1 < i < NI, 1 < j < NJ ,
{

1 + fx(ϕn
i,j) ×

βx

2
× CIP + fy(ϕ

n
i,j) ×

βy

2
× CJP + εx + εy

}

ϕn+1
i,j

+

[

fx(ϕn
i,j) ×

βx

2
× CIE −

εx

2

]

ϕn+1
i+1,j −

[

fx(ϕn
i,j) ×

βx

2
× CIW +

εx

2

]

ϕn+1
i−1,j

+

[

fy(ϕ
n
i,j) ×

βy

2
× CJE −

εy

2

]

ϕn+1
i,j+1 −

[

fy(ϕ
n
i,j) ×

βy

2
× CJW +

εy

2

]

ϕn+1
i,j−1
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= f

(

1

NI × NJ

NI
∑

i=1

NJ
∑

j=1

ϕn
i,j

)

+ ϕn
i,j

+
1

4

{

∑

−1≤ij,ji≤1

ξ(n)f(ϕn
i,j − ϕn

i−ij,j−ji) ∗ cos(ϕn
i,j − ϕn

i−ij,j−ji)

}

,

where ξ(n) is a random number uniformly distributed within (0, 1), fx(x) and
fy(y) take the logistic and tent map forms, respectively,

CIE = [[sgn(−fx(ϕn
i,j), 0]],

CIP = sgn(fx(ϕn
i,j)),

CIW = [[sgn(fx(ϕn
i,j)), 0]],

CJE = [[sgn(−fy(ϕ
n
i,j)), 0]],

CJP = sgn(fy(ϕ
n
i,j)),

CJW = [[sgn(fy(ϕ
n
i,j)), 0]],

and [[a, b]] means to take the larger value of a and b. The logistic map is

(3.5) f(x) = 1 − ax2, a ∈ [0, 2], x ∈ [−1, 1], f(x) ∈ [−1, 1].

The tent map is

(3.6) f(x) =











−2 − 2x, x ∈ [−1,−0.5),

2x, x ∈ [−0.5, 0.5),

2 − 2x, x ∈ [0.5, 1].

f(x) ∈ [−1, 1].

Let

(3.7) P (n) =
1

(NI × NJ)

NI
∑

i=1

NJ
∑

j=1

(ϕn
i,j),

where i and j mean step distances in x and y directions, respectively. With the
final value ϕi,j0, the following transformation procedure applies:

(3.8) ϕi,j = ϕi,j0 + ϕi,js,

where ϕi,js is a Gaussian normal random variable. Hence, the expected value
and standard deviation are written as follows:

E(ϕi,js) = λex

(

1

NI × NJ

NI
∑

i=1

NJ
∑

j0=1

ϕi,j0

)

,(3.9)
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D(ϕi,js) = λdx

√

√

√

√

1

NI × NJ − 1

NI
∑

i=1

NJ
∑

j0=1

(ϕi,j0(k) − E(ϕi,j0))2.(3.10)

Here, let λex = 0.7, and λdx = 0.1. The value of entropy can be calculated as

(3.11) Sp = −
∑

i,j

Q(i, j) lg Q(i, j),

where Q(i, j) is the probability of spatial point ϕi,j falling into the range (i0, j0).
The boundary condition will be periodic, and the initialization takes random
values. The modelling results are presented in the following section.

4. Numerical results

Many sets of numerical experiment show that all experimental results follow
the same law, and part of results is herein presented. In the numerical experi-
ments, (βx, βy, εx, εy) = (0.23, 0.22, 3.1, 3.1), NI = 238 and NJ = 223. Here NI

and NJ are system sizes in x and y directions, respectively. Numerical results
show that if NI and NJ take other values, such as (120, 130) or (345, 457), the
essential evolutional laws are identical. Part of the initial 1000 steps is ignored,
because numerical results show that, after certain steps, the essential evolutional
laws are identical. Figure 1 shows U -I-J at the final step, Fig. 2 does U -I at the
final 100 steps with J = 50 and without the transformation by Eq. (3.8), Fig. 3
does U −J at the final step with I = 50 without transformation, and Fig. 4 does
P (n − 1)-P (n) at final 100 iterative steps.

Fig. 1. U -I-J diagram. Fig. 2. U − I curve.

Figures 5–8 show the results for (βx, βy, εx, εy) = (0.25, 0.31, 3.1, 3.1).
Figures 9–12 show the results for (βx, βy, εx, εy) = (0.95, 0.71, 0.04, 0.03).
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Fig. 3. U -J curve. Fig. 4. P (n − 1)-P (n) curve.

Fig. 5. Relation of U -I-J . Fig. 6. Relation of U -I.

Fig. 7. Relation of U -J . Fig. 8. Relation of P (n − 1)-P (n).
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Fig. 9. Variation of U with I and J. Fig. 10. Variation of U with I.

Fig. 11. Variation of U with J. Fig. 12. Variation of P (n − 1) with P (n).

The values of entropy are provided in Table 1. However if the final calculated
results are transformed with Eq. (3.8), SP will become 0.0.

Table 1. Relationship between SP and (βx, βy, εx, εy).

Set Set 1 Set 2 Set 3

Value 0.23, 0.22, 3.1, 3.1 0.25, 0.31, 3.1, 3.1 0.95, 0.71, 0.04, 0.03

SP 4.8397 4.8316 4.5774

5. Structure of the model and characteristics

of desert’s geomorphology

The numerical results have shown that increases of βx and βy make the
patterns chaotic, and increases of εx and εy make the patterns ordered. Here,
the order means that the value of entropy SP becomes small.



Evolution of the geomorphology of erodible bedform. . . 377

Relations between the whole properties of the model and the local coupling
forms are that the whole properties of the model connect more closely (whether
the local coupling form is being non-linear or not) than their concrete forms. The
local properties of the model connect closely with the non-linear coupled map’s
concrete form. The local pattern and the whole pattern of the system show the
phenomenon of hologram in a relatively large specific zone, as a phenomenon of
pattern on tiger furs.

For an isolated system, all the components of the system can spontaneously
tend to be uniform and finally become an equilibrium state, and then the en-
tropy of the system becomes maximum. However, in the real world, it is ob-
vious that the regional physiognomy shows various landforms. As the diversity
of desert geomorphology in different regions is caused by different evolutional
driving forces, the diversity of desert geomorphology in a region results from the
non-linear evolutional mechanism. For a natural physiognomy evolution system,
it is the evolutional non-equilibrium to produce the diversity of landforms to en-
hance the system stability. The self-organization evolutional mechanism makes
the system show some self-repairing ability, i.e., the function of the system to re-
cover its original state after being slightly disturbed. The evolutional mechanism
and process of co-existence of order and disorder, determinability and random-
ness, maintain the geographical region in a relatively stable evolutional state.
Results of the numerical simulation illustrate that the patterns of the desert
geomorphology are the deterministic evolutional results of the stochastic evolu-
tional processes and the interactions between the deterministic and stochastic
movements. If the evolutional timescale is long enough, and only if the exte-
rior natural conditions are similar, the final evolutional landform features of
a desert region are also similar in the case of being disturbed suddenly. In other
words, in the geological timescale, the desert landform features are independent
of its initial conditions. Under the conditions of the same geographical environ-
ments, the evolutional patterns of the identical region in different periods can
have the similar statistical results as those from different regions under the same
period. The final evolutional landform of a region shows self-resemble to some
extent anytime and anywhere. This may be the physical basis for the appli-
cation of fractal theory to the landform study [10–11], [20–25], [56]. The field
snapshots of the desert landform features taken by man-made satellites also
support this fact. To improve the model so that it provides a quantitative com-
parison between the modelling result and the field survey is the next issue to
address.

Based on the former discussion and considering the comparison relations be-
tween evolution of the geomorphology submitted to water and air, we could
conclude that the evolutional process of the bed morphology made up of unco-
hesive sand particles under the water surface of fluvial rivers [57–58], e.g., the
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bed morphology in some places of the middle and the lower reaches of the Yellow
River, has similar properties as described above.

6. Evolutional processes of dunes and ripples

It has long been recognized that the formation and growth of aeolian bed-
form is related to the phase lag between sediment transport and bed elevation.
If the evolution of a flat sand bed is dominated by a turbulent shear flow, the
sediment transport saturation length, which is the length needed for the sand
flux to adapt to a change in wind strength, controls a dune developing process.
The different modes of sediment transport by the fluid in different situations
can lead to different bedform instabilities. For small enough aeolian dunes, the
slip face instability is washed out by the saturation transients. The experiments
show that the formation of dunes follows the mechanism of a nonlinear pattern
coarsening. Thus, the dunes cannot be formed by a linear, but nonlinear insta-
bility mechanism. The numerical results of the CML model lead one to conclude
once again that both aeolian and subaqueous dunes result from the nonlinear
instability of a flat bed, instead of the linear instability mentioned before.

Aeolian ripples are generated by a screening instability: the upwind face
(windward or stoss slope) of ripples receives more impacts of saltating grains
than the downwind face (the lee slope). After the linear stage during which the
ripples emerge, they exhibit a pattern coarsening by progressive merging of bed-
forms. As the ripples grow, nonlinear effects become important, ripples become
asymmetric, with the downwind slope slightly steeper than the upwind slope,
merging processes take place and the ripple wavelength increases. The ripple pat-
tern initially develops dislocations (which are sometimes called “terminations”
and “antiterminations” which move laterally along the ripple crests). In well-
developed ripple fields, the crests display bifurcation and defects (Y junctions),
which show the formation of ripples by a linear instability and due to merging
events. The numerical results of the CML model show that the aeolian ripples
and aeolian dunes connect with two different linear instabilities, so do the aquatic
ripples and aquatic dunes. For the heterogeneous situation, the cases remain the
same besides that the forming evolutional processes become complicated.

Moreover, the analysis of the numerical results of the CML model leads us
to argue that:

1) The reason that there is a scaling law for aeolian dunes on Mars, Venus,
Earth, and for subaqueous ripples [59–61] results from a common interacting
mechanism between the particles and the fluid. For in an unsteady, non-uniform,
non-equilibrium and instable state, there should exist some hierarchical scaling
laws, although their forms may be changeable and complicated. However, in any
time, their statistic average forms are definite.
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2) The existing solitary phenomena in mutual actions among the aeolian sand
dunes results from the nonlinear mechanism, its physical mechanism is essentially
same as that of interactions among isolated water waves, first founded by John
Scott Russell in 1834, as both of them are caused by fluid flow.

3) The aeolian ripples and aquatic ripples are mainly controlled by the small
vortexes, but aeolian dunes and aquatic dunes are ruled by the coherent struc-
ture. The profile between aeolian ripple and aeolian dune, and that between
aquatic ripple and the aquatic dune, shares some features of the coherent struc-
ture of turbulent flow between the boundary layer and the outer flowing region.

Based on the numerical results of the CML model, to our knowledge, we
made some new predictions as follows to be verified by the experiments: 1) in
the specific conditions, the solitary phenomena can also exist in aquatic dunes. In
the field of the fully developed aeolian dune, there exist some hierarchical scaling
laws of the wave length; 2) although the aeolian ripples are formed by linear
instability from the viewpoint of phenomenological analysis, we think that the
nonlinear mechanism plays an important role in the actual physical mechanism of
the aeolian ripple evolutional processes, just like the case of sub-layer structures
in boundary layer of fluid flow.

7. Concluding remarks

Based on a CML model for 1D diffusive process, a CML model for 2D diffusive
and convective processes has been developed. Complex spatiotemporal behaviors,
including chaos, coherence and patterns, have been addressed. The numerical
results show that, in spatial behaviors, the CML model can simulate stochastic
interactions not only in weakly but also in strongly coupled cases.

The geomorphologic process has been studied with the CML model to demon-
strate that the evolution of sand ripples and dunes on the sand-underlying
surface subjected to fluid flow is a combined interaction of the deterministic
factors and the stochastic ones. The principle of the geomorphologic change
of sand ripples and dunes can be described with the maximal entropy corre-
sponding to equilibrium state and the minimal entropy production rate corre-
sponding to non-equilibrium state. In the numerical examples, the CML model
demonstrated the evolution of desert geomorphology, and illustrated the forma-
tion of aeolian sand dune. The numerical results are qualitatively in agreement
with the field observations in the Sahara Desert, Arabian Desert and Namib
Desert, etc.

This study also presents a new approach to predict the evolution of dunes
and ripples, explains the solitary phenomena, and especially demonstrates that
the nonlinear effect plays an important role in the actual evolution of aeolian
ripple.
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