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Application of fractional order theory of thermoelasticity

to a 1D problem for a cylindrical cavity
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In this work, we apply the fractional order theory of thermoelasticity to
a 1D problem of an infinitely long cylindrical cavity. Laplace transform techniques are
used to solve the problem. Numerical results are computed and represented graphi-
cally for the temperature, displacement and stress distributions.
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1. Introduction

Biot [1] formulated the theory of coupled thermoelasticity to elim-
inate the paradox inherent in the classical uncoupled theory that elastic changes
have no effect on the temperature. Lord and Shulman [2] introduced the theory
of generalized thermoelasticity with one relaxation time by using the Maxwell–
Cattaneo law of heat conduction instead of the conventional Fourier law. The
heat equation associated with this theory is hyperbolic and hence eliminates the
paradox of infinite speeds of propagation inherent in both the uncoupled and
the coupled theories of thermoelasticity. Sherief and El-Maghraby solved
some crack problems for this theory [3, 4]. Sherief and Hamza have obtained
the solution of axisymmetric problems in spherical regions in [5] and in cylindri-
cal regions in [6]. Sherief and Ezzat have obtained the solution in the form
of series in [7]. Sherief et al., in addition, extended this theory to deal with
micropolar materials in [8]. This theory was extended to deal with viscoelastic ef-
fects in [9]. Recently, Sherief and Hussein developed the theory of generalized
poro-thermoelasticity [10].

Fractional calculus has been used successfully to modify many existing mod-
els of physical processes [11]–[13]. One can state that the whole theory of frac-
tional derivatives and integrals was established in the second half of the nine-
teenth century. Caputo and Mainardi [14, 15] and Caputo [16] obtained
good agreement with experimental results when using fractional derivatives for
description of viscoelastic materials and established the connection between frac-
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tional derivatives and the theory of linear viscoelasticity. Adolfsson et al. [17]
constructed a new fractional order model of viscoelasticity.

Povstenko [18] proposed a review of thermoelasticity that uses fractional
heat conduction equation. He also proposed and investigated new models that
use fractional derivative [19]–[22]. Recently, the fractional order theory of ther-
moelasticity was derived by Sherief et al. [23]. It is a generalization of both
the coupled and the generalized theories of thermoelasticity. Other works in the
subject are [24, 25].

The main reason behind the introduction of the fractional theory is that it
predicts retarded response to physical stimuli, as is found in nature, as opposed to
instantaneous response predicted by the generalized theory of thermoelasticity.

2. Formulation of the problem

In this work, we consider a 1D problem for an infinite medium with a cylin-
drical cavity of radius a, using the fractional theory of thermoelasticity. The
surface of the cavity is taken to be traction-free and is subjected to a thermal
shock that is a function of time.

The governing equations are given by [23]

(λ+ 2µ)
1

r

∂

∂r

(

r
∂e

∂r

)

− γ
1

r

∂

∂r

(

r
∂T

∂r

)

= ρ
∂2e

∂t2
,(2.1)

k∇2T =
∂

∂t

(

1 + τ0
∂α

∂tα

)

(ρcET + γT0e) ,(2.2)

σij = 2µeij + λeδij − γ (T − T0) δij ,(2.3)

where T is the absolute temperature, ρ is the density, the constants λ and µ
are Lamé’s constants and γ = αt(3λ + 2µ)where αt is the coefficient of lin-
ear thermal expansion. T0 is a reference temperature assumed to be such that
|(T − T0)/T0| ≪ 1 and α, τ0 are constants such that τ0 > 0, 0 ≤ α ≤ 1, cE is the
specific heat per unit mass in the absence of deformation and k is the thermal
conductivity, e is the cubical dilatation. σij and eijare the components of the
stress and strain tensors, respectively.

We shall use the following non-dimensional variables:
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The governing equation, in the absence of body forces, in non-dimensional
form is given by
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where ε = T0γ
2/(λ+ 2µ)kη, β2 = (λ+ 2µ)/µ.

In the above equation, the time fractional derivative of order α used is taken
to be in the sense of Caputo’s fractional derivative.

We assume that the boundary conditions have the form

θ = f(t) at r = a,(2.7)

σrr = 0 at r = a.(2.8)

We assume that the initial conditions are quiescent.

3. Solution in the Laplace transform domain

Applying the Laplace transform with parameter s defined by the relation

f(x, s) =

∞
∫

0

e−stf(x, t)dt

to both sides of equations (2.4)–(2.6), we get the following equations:
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Eliminating θ between equations (3.1) and (3.2), we get

{
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The above equation can be written as
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where k2
1 and k2

2 are the roots with positive real parts of the characteristic equa-
tion

k4 − k2[s2 + (1 + ε)s(1 + τ0s
α)] + s3(1 + τ0s

α) = 0.

The solution of equation (3.4) has the form

e = e1 + e2,

where, ei is the solution of the following equation:

(∇2 − k2
i )ei = 0.

The above equation can be written as

(3.5) r2
∂2ei
∂r2

+ r
∂ei

∂r
− k2

i r
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The solution of equation (3.5) has the general form:

ei = MiI0(kir) +AiK0(kir),

where Ai and Mi, i = 1, 2 are parameters to be determined from the boundary
conditions and I0(z), K0(z) are the modified Bessel functions of the first and
second kinds of order 0, respectively.

Similarly, we can show that

θi = NiI0(kir) + BiK0(kir).

Note that I0(z) is not bounded as z → ∞, since the medium extends to infinity,
we must set Ni and Mi equal to zero. We thus obtain
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The cubical dilatation e is given by
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By integrating both sides of the above equation, we get
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Substituting from equation (3.10) into equation (2.6), and using the following
relation of the modified Bessel functions [26]:
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Applying the boundary conditions (2.7) and (2.8), we get the two equations
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4. Inversion of the Laplace transform

We shall now outline the numerical inversion method used to find the solution
in the physical domain. Let f(s) be the Laplace transform of a function f(t).
The inversion formula for Laplace transform can be written as [27]

f(t) =
1

2πi

c+i∞
∫

c−i∞

estf(s)ds,

where c is an arbitrary real number greater than all the real parts of the singu-
larities of f(s). Taking s = c+ iy, the above integral takes the form

f(t) =
ect

2π

∞
∫

−∞

eiytf(c+ iy)dy.

Expanding the function h(t) = exp(−ct)f(t) in a Fourier series in the interval
[0, 2T ], we obtain the approximate formula [27]

f(t) = f∞(t) +ED,

where

(4.1) f∞(t) =
c0
2

+

∞
∑

k=1

ck, 0 ≤ t ≤ 2T,

and

(4.2) ck =
ect

T
Re[eikπt/T f(c+ ikπ/T )].

The discretization error ED can be made arbitrarily small by choosing c large
enough [27]. As the infinite series in (4.1) can only be summed up to a finite
number N of terms, the approximate value of f(t) becomes

(4.3) fN (t) =
c0
2

+

N
∑

k=1

ck, 0 ≤ t ≤ 2T.

Using above formula to evaluate f(t), we introduce a truncation error ET that
must be added to the discretization error to produce the total approximation
error.

Two methods are used to reduce the total error. First, the “Korrecktur”
method is used to reduce the discretization error. Next, the ε-algorithm is used
to reduce the truncation error and therefore to accelerate convergence.
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The “Korrecktur”-method uses the following formula to evaluate the func-
tion f(t):

f(t) = f∞(t) − e−2cTf∞(2T + t) + E′
D,

where the discretization errors |E′
D| ≪ |ED| [27]. Thus, the approximate value

of f(t) becomes

(4.4) fNK(t) = fN (t) − e−2cT fN ′(2T + t),

N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm that is used to accelerate the conver-

gence of the series in (4.1). Let N be an odd natural number and let

sm =
m

∑

k=1

ck,

be the sequence of partial sums of (4.1). We define the ε-sequence by

ε0,m = 0, ε1,m = sm, m = 1, 2, 3, . . . ,

and
εn+1,m = εn−1,m+1 + 1/(εn,m+1 − εn,m), n,m = 1, 2, 3, . . . .

It can be shown that [27] the sequence ε1,1, ε3,1, . . . , εN,1 converges to
f(t) +ED − c0/2 faster than the sequence of partial sums sm, m = 1, 2, 3, . . . .

The actual procedure used to invert the Laplace transform consists of using
equation (4.3) together with the ε-algorithm. The values of c and T are chosen
according to the criteria outlined in [27].

5. Numerical results and discussion

The copper material was chosen for purposes of numerical evaluations. The
constants of the problem are shown in Table 1.

Table 1.

k = 386 W/(m · K) αt = 1.78 · 10−5 K−1 cE = 381 J/(kg · K) η = 8886.73

µ = 3.86 · 1010 kg/(m · s2) λ = 7.76 · 1010 kg/(m · s2) ρ = 8954 kg/m3 T0 = 293 K

ε = 0.0168 τ0 = 0.025 s

The computations were carried out for a function f(t) given by

f(t) = H(t),

which gives f(s) = 1/s.
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Fig. 1. Temperature distrubution for t = 0.05.

Fig. 2. Displacement distrubution for t = 0.05.

Fig. 3. Stress distrubution for t = 0.05.
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Fig. 4. Temperature distrubution for α = 0.99.

Fig. 5. Displacement distrubution for α = 0.99.

Fig. 6. Stress distrubution for α = 0.99.
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The computations were carried out for one value of time, namely t = 0.05
and two values of α, namely α = 0.5 and α = 1. The temperature displacement
and stress distributions are obtained and plotted, as shown in Figs. 1, 2 and 3,
respectively.

Next, the computations were carried out for one value of α, namely for
α = 0.99, and two values of time, namely t = 0.05 and t = 0.1. The tempera-
ture, displacement and stress distributions are obtained and plotted as shown in
Figs. 4, 5 and 6, respectively..

For the pervious steps, the FORTRAN programming language was used on
a personal computer. The accuracy maintained was five digits for the numerical
program.

The computations show that:
For α = 0.5 the solution behaves like the coupled theory of thermoelasticity

where the velocity of the wave is infinite, but for α = 1 the solution becomes
that of the generalized theory of thermoelasticity.

For α = 0.99 it is difficult to say whether the solution has a jump at the
wave front or it is continuous with very fast changes. This aspect needs further
investigation [20].
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