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In this study, the vibration and stability analysis of a single-walled carbon
nanotube (SWCNT) coveying nanoflow embedded in biological soft tissue are per-
formed. The effects of nano-size of both fluid flow and nanotube are considered, simul-
taneously. Nonlocal beam model is used to investigate flow-induced vibration of the
SWCNT while the small-size effects on the flow field are formulated through a Knud-
sen number (Kn), as a discriminant parameter. Pursuant to the viscoelastic behavior
of biological soft tissues, the SWCNT is assumed to be embedded in a Kelvin–Voigt
foundation. Hamilton’s principle is applied to the energy expressions to obtain
the higher-order governing differential equations of motion and the corresponding
higher-order boundary conditions. The differential transformation method (DTM) is
employed to solve the differential equations of motion. The effects of main parameters
including Kn, nonlocal parameter and mechanical behaviors of the surrounding
biological medium on the vibrational properties of the SWCNT are examined.
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1. Introduction

Discovered by Iijima [1], carbon nanotubes (CNTs) are effectively slen-
der cylinders of graphite. CNTs have unique electronic, mechanical, thermal,
fluid-transport and gas storage properties [2–5]. These exceptional properties
have made CNTs to play an essential role in the wide range of applications in
all areas of nanotechnology, such as nanofluidics and nanomedicine. In the field
of nanofluidics, CNTs can be used as nanopipes for conveying fluid as well as
nanocontainers for gas storage [6]. In the field of nanomedicine, CNTs can be
used as matrices for compounds simulating neural growth, as pharmaceutical
excipients for creating versatile drug delivery systems [7] and as biological sen-
sors [8]. In drug delivery systems, single-walled carbon nanotubes (SWCNTs)
are used to act as nanochannels for delivering drug into target cells [9], provided
that SWCNTs should be embedded in biological soft tissue of the body. Mechan-
ically, soft tissues are generally modeled by viscoelastic mediums [10]. Amongst
several viscoelastic models, the Kelvin-Voigt model, a simple mechanical model
composed of parallel spring and dashpot, is usually employed to simulate vis-
coelastic behavior [11].

Improvement in efficiency of these nanofluidics and nanobiological devices is
dependent on a thorough understanding of their mechanical behaviors [12, 13].
The significance of this has transformed the dynamic analysis of CNTs with
internal flowing to be an active subject of researches in past years.

As one of the first studies in this field, Yoon et al. [14] studied the effect of
flow velocity on the vibrational behaviors of CNTs conveying fluid. They showed
that this effect becomes more prominent especially for suspended, longer and
larger inner-most radius CNTs at higher-flow velocity. They also revealed that
the existence of an elastic medium can reduce the influence of internal flow on
the resonant frequencies. They employed the classical beam theory to model and
analyze the vibrational characteristics of CNTs conveying fluid. In addition, there
has been an extensive research on the dynamic analysis of nanotubes conveying
fluid by taking advantage of the classical beam theory, e.g., the researches done
by Khosravian et al. [15], Reddy et al. [16], Wang et al. [17], Chang and
Lee [18] and Natsuki et al. [19].

As the size of CNTs is remarkably small, the material microstructure, i.e.,
the small size effects, becomes more significant so that they cannot be ignored
anymore [20, 21]. At small length scales, utilizing the classical continuum beam
model for analysis of nanostructures may cause unwanted errors; therefore, the
usage of non-classical continuum theories, including internal material length scale
parameter is inevitable [13]. Understanding the importance of employing non-
local elasticity theory for small scale structures, a number of researchers have
reported on static, dynamic and stability analyses of nanostructures [22–28].



Vibration analysis of single-walled carbon nanotubes. . . 219

Nonlocal elasticity theory was implemented to investigate the small-size effect
on thermal vibration response of an embedded carbon nanotube based on Tim-
oshenko’s beam theory by Amirian et al. [22]. Study on the effect of nonlocal
scale on the dynamics of fluid conveying nanotubes was initiated by Lee and
Chang [23] and have been improved by other studies, e.g., [24, 25]. They con-
cluded that the critical flow velocity and nanostructure stiffness of nanotubes
with supported ends can be decreased by the increase in the value of nonlo-
cal parameter. In all of the studies discussed so far, the governing equations of
motion constructed for nanotube conveying fluid were presented to be of the
fourth-order. Recently, however, it has been proved that these earlier studies
were based on the partial nonlocal elasticity theory [26] and, as discussed by
Lim et al. [27], under these circumstances the consequent governing equations of
motion are not in equilibrium state. Taking advantage of nonlocal elasticity the-
ory, Lim [28] presented the new equilibrium conditions and derived a modified
nonlocal beam model in which the higher-order differential governing equation
and the corresponding higher-order boundary conditions were presented. He also
showed that the nanostructure stiffness is consistently enhanced by increasing
the value of nonlocal parameter.

Based on the exact nonlocal stress model, Wang [26] developed a modified
nonlocal beam model with the higher-order differential terms to analyze the
vibration and stability properties of nanotubes conveying fluid. He also provided
a new comprehension of the effect of nanoscale parameter on the vibration and
stability of nanotubes conveying fluid.

On the other hand, in a nanoscale fluid structure interaction (FSI) problems,
the small-size effects on the flow field become significantly important and the
assumption of no-slip boundary conditions between the fluid flow and nanotube
walls is no longer valid [29]. Rashidi et al. [29] considered the small-size effects
on the flow field to investigate the instability of CNTs conveying fluid. They
devised a dimensionless parameter, called velocity correction factor (VCF) as
a function of Kn to modify the FSI governing equations. It was found that for
passage of gas through a nanotube, ignoring the small-size effects on the flow field
in a nanoscale FSI problem might generate erroneous results. By considering the
small size effects of viscosity of fluid flow, Kaviani and Mirdamadi [30] mod-
ified the parameter VCF introduced by Rashidi et al. [29]. They revealed that
this new formulation of VCF generated different results as compared to the case
where nanosized fluid viscosity had been ignored in slip boundary conditions.
Mirramezani and Mirdamadi [31] investigated the effects of nonlocal elastic-
ity and Kn on FSI in carbon nanotube conveying fluid. They revealed that the
nonlocal parameter had more effect than Kn on the reduction of critical flow ve-
locities of a liquid nanoflow, however in a gas nanoflow, the situation was totally
different and Kn could cause more reduction in critical flow velocities. In the
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previous studies on the effects of nanosize of fluid flow on the dynamics of nan-
otube conveying nanoflow, the classical continuum beam theory [29, 30] or the
partial nonlocal beam theory [31] were employed for modeling nanotubes while
the higher-order terms for both differential governing equations and boundary
conditions were ignored.

As for the literature published so far, it is noted that several methods have
been used to solve the FSI problems, such as Galerkin’s method [29, 32], gener-
alized differential quadrature method (GDQM) [33], general differential quadra-
ture rule (GDQR) [26], etc. In this study, the differential transformation method
(DTM) is employed to investigate the free vibration of SWCNT conveying nano-
flow. The DTM was first proposed by Zhou [34] for solving linear and non-linear
initial value problems in electrical circuit analysis. Taking advantage of DTM,
many investigations used this method to solve linear and nonlinear engineering
problems, e.g., [35–38]. As was shown by Ni et al. [39], DTM has high precision
and computational efficiency in the vibration analysis of pipes conveying fluid. In
fact, DTM is a semi-analytical method for solving differential equations, which
is based on Taylor’s series expansion. Taking advantage of some efficient trans-
formation rules, DTM is used to convert the governing differential equations of
motion into a set of algebraic equations.

The main objective of this paper is to present a nanoscale FSI model for an-
alyzing the vibration and stability of a SWCNT conveying nanoflow embedded
in biological soft tissue. For this purpose, a nanoscale FSI model is developed
that considered the effects of nano-size of both fluid flow and nanotube simulta-
neously, in order to acquire a more exact forecast of the vibrational and stability
properties of a SWCNT conveying nanoflow. Also, Kelvin–Voigt’s viscoelastic
model is employed to consider the effects of the biological medium on the stabil-
ity of embedded SWCNT conveying fluid. Then, DTM, as an efficient numerical
method, is employed to solve the obtained higher-order governing equations of
motion. Numerical results are presented in graphical form to investigate the in-
fluence of Kn, nonlocal parameter and viscoelastic medium on the vibrational
characteristics of SWCNT conveying fluid.

2. Derivation of the equations of motion

2.1. Nanoflow model

The Knudsen number, i.e., the ratio of mean free path to a characteristic length
of problem geometry, is utilized as a discriminant parameter for identification of
flow regime.Based onKn, four flow regimes canbe classified [40]: 1) continuumflow
regime (0 < Kn < 10−3), 2) slip flow regime (10−3 < Kn < 10−1), 3) transition
flow regime (10−1 < Kn < 10) and 4) free molecular flow regime (Kn > 10).
In a nanoscale FSI problem, Kn may be larger than 10−3 and consequently, the
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assumption of no-slip boundary conditions is invalid, therefore the Navier–Stokes
continuum equations should be modified for the slip flow regime [29].

Beskok and Karniadaki [41] suggested a slip velocity model to consider
the slip boundary conditions in nanoflow field as

(2.1) Vs − Vw =

(

2 − σv

σv

) (

Kn

1 − bKn

) (

∂νx

∂n

)

,

where Vs is the slip flow velocity near the CNT wall surface, Vw is the axial
rigid body solid wall velocity, νx is the axial flow velocity through the nan-
otube, n is the outward normalized unit normal vector to the CNT wall surface,
σv is tangential momentum accommodation coefficient which is considered to be
0.7 for most practical purposes and b is a general slip coefficient. By choosing
b = −1, one can make the effect of slip conditions as accurate as a second- order
term. It should be noted that Eq. (2.1) can be valid for the entire Knudsen flow
regime.

Rashidi et al. [29] used the popular Navier–Stokes equations through the
nanotube complemented with a second-order term for slip boundary conditions
proposed by Eq. (2.1) and derived a velocity correction factor (VCF) as a func-
tion of Kn. They defined the VCF as the ratio of the average flow velocity through
the nanotube considering slip boundary conditions (Uslip), to the average flow
velocity through the nanotube incorporating no-slip boundary conditions (U) as

(2.2) VCF
∆
=
Uslip

U
= (1 + aKn)

(

4

(

2 − σv

σv

) (

Kn

1 +Kn

)

+ 1

)

,

where a is a coefficient which can be varied from zero to a constant value, as
follows [40]:

(2.3) a = a0
2

π

[

tan−1(a1Kn
B)

]

.

The values of a1 = 4 and B = 0.4 are some empirical parameters and a0 is
defined as [40]

(2.4) a0 =
64

3π
(

1 − 4
b

) ,

where the parameter b in Eq. (2.4) is the same as b in Eq. (2.1). Here, a cor-
rection factor for average velocity is used to connect the continuum flow theory
to the nanoflow model. It is noteworthy to mention that the slip velocity model
(Eq. (2.1)) and the velocity correction factor (Eq.(2.4)) can be used for both
nanoliquid and nanogas flows [29]. Although liquid flows have a small Kn, be-
cause the mean free path of liquid molecules could not reach large amount,
however a gas flow could reach any Kn continuously and typically are sensitive
to small size effects [29].
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2.2. Nonlocal stress model

As illustrated in [42, 43], at nanoscale the material properties are size-depen-
dent which makes the material microstructure significantly important. In this
situation, the continuum beam model needs to be modified; this may be achieved
by using the nonlocal stress field theory. In accordance with this theory [44, 45],
the nonlocal stress field at a reference point x is assumed to be a function of the
strain field at all the other points in the body as

(2.5) σ(x) =

∫

v

ℜ(|x′ − x|, τ)t(x′)dx
′,

where t(x) is the local macroscopic stress tensor at the reference point x,
ℜ(|x′ − x|, τ) is the kernel function, |x′ − x| is the distance between points and
τ is a dimensionless nanolength scale:

(2.6) τ =
e0a

L
,

in which a and L are the internal and external characteristic lengths, respec-
tively, and eo is a material constant. It should be noted that, when τ → 0, the
effect of strain at points x 6= x

′ can be neglected. Because of special integral
in the nonlocal relation, solving the nonlocal elasticity problems is mathemat-
ically difficult. For this reason and according to Eringen [44, 45], the nonlocal
constitutive relation with a certain approximation error can be expressed as

(2.7) (1 − τ2L2∇2)σ = t.

In a one-dimensional Euler–Bernoulli nanobeam, the nonlocal constitutive
equation can be expressed as [46]

(2.8) σ =
∞
∑

n=1

τ2(n−1) d
2(n−1)ε

dx2(n−1)
,

where σ and ε are dimensionless nonlocal stress and strain, respectively.

2.3. FSI governing equation

Consider a uniform nanotube of length L with bending rigidity of EI and
mass per unit length m embedded in a viscoelastic medium, as shown in Fig. 1.
Suppose that nanofluid with mass per unit length M and with steady axial
slip flow velocity Uslip flows through the nanotube. The nanotube is assumed
to be slender with lateral motion W (X,T ), where X and T are axial and time
coordinates, respectively. The governing equation and the corresponding bound-
ary conditions can be derived via the extended Hamilton principle. This can be
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Fig. 1. Configuration of SWCNT conveying nanoflow embedded in a viscoelastic medium.

formulated as

(2.9)

t2
∫

t1

(δEk − δEe + δW ext) dt = 0,

where Ek and Ee denote the kinetic and potential energies, respectively and
δW ext is virtual work due to the non-conservative external forces. For free vi-
bration of nanotubes conveying fluid, the kinetic energy is given by

(2.10) Ek =
1

2
M

L
∫

0

[

U2
slip +

(

∂W

∂T
+ Uslip

∂W

∂X

)2]

dX +
1

2
m

L
∫

0

(

∂W

∂T

)2

dX.

With considering the average velocity correction factor, Eq. (2.2), and introduc-
ing dimensionless axial, lateral and time coordinates as

x =
X

L
, w =

W

L
, t =

T

L2

(

EI

M +m

)1/2

respectively, Eq. (2.10) can be rewritten as

(2.11) Ek =
1

2
ML

1
∫

0

{

EI

ML2
(V CF )2u2

+

[

1

L

(

EI

M +m

)1/2∂w

∂t
+

(

EI

M

)1/2

(VCF )
u

L

∂w

∂x

]2}

dx

+
m

L

(

EI

m+M

)

1
∫

0

(

∂w

∂t

)2

dx,
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the variation of kinetic energy can be obtained as

(2.12)

t2
∫

t1

δEk dt =

t2
∫

t1

EI

L

{

−
1

∫

0

(

∂2w

∂t2
+ 2(VCF )u

√

β
∂2w

∂x∂t
+ (VCF )2u2∂

2w

∂x2

)

δw dx

+

[(

(VCF )u
√

β
∂w

∂t
+ (VCF )2u2∂w

∂x

)

δw

]1

0

}

dt,

where u and β are respectively dimensionless flow velocity with no-slip conditions
and mass ratio,

(2.13) u =

(

M

EI

)1/2
UL, β =

M

m+M
.

In the present study, the potential energy is composed of two terms: 1) strain
energy of deformed nanotube expressed as “Eep” and 2) potential energy due to
the spring forces, stated as “Ees”; therefore, the variation of potential energy can
be written as

(2.14) δEe = δEep + δEes.

As discussed by Lim [28], the variation of strain energy of deformed nanotube
can be finally expressed as

δEep =
EI

L

1
∫

0

[

−
∞

∑

n=1

(2n− 3) τ2(n−1)∂
2(n+1)w

∂x2(n+1)

]

δw dx(2.15)

+
EI

L

[ ∞
∑

n=1

(2n− 3)τ2(n−1)∂
(2n+1)w

∂x(2n+1)
δw

−
∞
∑

n=1‘

(2n− 3)τ2(n−1)∂
2nw

∂x2n

∂δw

∂x

+
∞
∑

n=1

(2n− 1)τ2n∂
(2n+1)w

∂x(2n+1)

∂2δw

∂x2
+ · · ·

]1

0

.

Regarding the Kelvin–Voigt viscoelastic model, the potential energy due to
the spring forces and the virtual work due to the damping properties of soft
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tissue medium can be written respectively as

δEes =

1
∫

0

KL3w(x, t) δw dx,(2.16)

δW ext =

1
∫

0

CL

(

EI

M +m

)1/2∂w(x, t)

∂t
δw dx,(2.17)

where K and C are elastic and damping coefficients, respectively. Substituting
Eqs. (2.15), (2.16) into Eq. (2.14), then putting the result and Eqs. (2.12), (2.17)
into Eq. (2.9), the higher-order governing equation of motion is obtained as
follows:

(2.18) −
∞
∑

n=1

(2n− 3)τ2(n−1)∂
2(n+1)w

∂x2(n+1)
+ (V CF )2u2∂

2w

∂x2

+ 2(V CF )u
√

β
∂2w

∂x∂t
+
∂2w

∂t2
+ c

∂w

∂t
+ kw = 0,

consequently, the related higher-order boundary conditions are derived as

(2.19)



































































−
∞
∑

n=1

(2n−3)τ2(n−1) ∂
(2n+1)w

∂x(2n+1)
+(VCF )2u2∂w

∂x
+(VCF )u

√

β
∂w

∂t
= 0

or w = 0, x = 0, 1,
∞
∑

n=1

(2n−3)τ2(n−1)∂
2nw

∂x2n
= 0 or

∂w

∂x
= 0, x = 0, 1,

∞
∑

n=1

(2n−1)τ2n∂
(2n+1)w

∂x(2n+1)
= 0 or

∂2w

∂x2
= 0, x = 0, 1,

...

The dimensionless damping (c) and stiffness (k) parameters are defined as
below:

(2.20) c =
CL2

√

EI(M +m)
, k =

KL4

EI
.

To explore the nonlocal effect represented by the parameter τ , the first two non-
local terms (for n = 1 and n = 2) in the series of Eqs. (2.18) and (2.19) are taken
into account and the other higher-order terms are neglected [28]. Therefore, the
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equation of motion and the corresponding boundary conditions can be rewritten
in the final forms as

(2.21) − τ2∂
6w

∂x6
+
∂4w

∂x4
+ (V CF )2u2∂

2w

∂x2

+ 2(V CF )u
√

β
∂2w

∂x∂t
+
∂2w

∂t2
+ c

∂w

∂t
+ kw = 0,

∂3w

∂x3
− τ2∂

5w

∂x5
+ (V CF )2u2∂w

∂x
+ (V CF )u

√

β
∂w

∂t
= 0 or w = 0,(2.22)

∂2w

∂x2
− τ2∂

4w

∂x4
= 0 or

∂w

∂x
= 0,

∂3w

∂x3
+ 3τ2∂

5w

∂x5
= 0 or

∂2w

∂x2
= 0.

The boundary conditions considered in this study are:
(a) pinned-pinned nanotube:

(2.23) at x = 0, 1, w = 0,
∂2w

∂x2
= 0, −∂

2w

∂x2
+ τ2∂

4w

∂x4
= 0.

b) clamped-clamped nanotube:

(2.24) at x = 0, 1, w = 0,
∂w

∂x
= 0,

∂3w

∂x3
+ 3τ2∂

5w

∂x5
= 0.

c) clamped-pinned nanotube:

at x = 0, w = 0,
∂w

∂x
= 0,

∂3w

∂x3
+ 3τ2∂

5w

∂x5
= 0,(2.25)

at x = 1, w = 0,
∂2w

∂x2
= 0, −∂

2w

∂x2
+ τ2∂

4w

∂x4
= 0.

It should be noted that the above modified nonlocal beam model described in
Eqs. (2.21) and (2.22) can be reduced to the classical continuum beam model by
letting τ = 0 and Kn = 0 (VCF = 1).

3. Differential transformation method and solution methodology

The basic definitions and the application procedure of differential transfor-
mation method can be expressed as follows. Consider a function f(x) which is
analytic in a domain S and let x = x0 represents any point in S. The function
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f(x) may be represented by a power series whose center is located at x0. The
ith differential transformation of the function f(x) is given as [34]

(3.1) f̄(i) =
1

i!

(

dif(x)

dxi

)

x=x0

,

while the inverse differential transformation method can be defined as

(3.2) f(x) =

∞
∑

i=0

(x− x0)
if̄(i).

It is proved that
∑∞

i=N+1 (x− x0)
if̄(i) is very small and can be ignored when

N is sufficiently large, so Eq. (3.2) can be rewritten as a finite series [39]:

(3.3) f(x) =
N

∑

i=0

(x− x0)
if̄(i),

where the value ofN depends on the convergence requirement conditions. Table 1
lists the basic mathematical operations related to DTM.

Table 1. Basic theorems of DTM for equations of motion.

Original functions Transformed functions

f(x) = g(x) ± h(x) f̄(i) = ḡ(i) ± h̄(i)

f(x) = λ g(x) f̄(i) = λ ḡ(i)

f(x) = g(x) h(x) f̄(i) =
i

P

l=0

ḡ(i − l) h̄(l)

f(x) =
dng(x)

dxn
f̄(i) =

(i + n) !

i!
ḡ(i + n)

f(x) = xm f̄(i) = δ(i − m) =

(

0 if i 6= m,

1 if i = m

3.1. DTM transformation of equation of motion

The solution of Eq. (2.21) is assumed to be in the form of:

(3.4) w(x, t) = w̃(x)eΩt,

where Ω is the dimensionless eigenvalue. Substituting Eq. (3.4) into Eq. (2.21)
yields:
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(3.5) − τ2 d
6w̃

dx6
+
d4w̃

dx4

+ (VCF )2u2d
2w̃

dx2
+ 2(V CF )u

√

βΩ
dw̃

dx
+Ω2w̃ + cΩw̃ + kw̃ = 0.

Using the transformation operations defined in Table 1 and taking the differential
transformation of Eq. (3.5) at x0 = 0, one may obtain:

(3.6) − τ2(i+ 1)(i+ 2)(i+ 3)(i+ 4)(i+ 5)(i+ 6)w̄(i+ 6)

+ (i+ 1)(i+ 2)(i+ 3)(i+ 4)w̄(i+ 4) + (i+ 1)(i+ 2)(VCF )2u2w̄(i+ 2)

+ 2(i+ 1)(V CF )u
√

βΩw̄(i+ 1) + (Ω2 + cΩ + k)w̄(i) = 0,

where w̄(i) is the transformed functions of w̃(x). Rearranging Eq. (3.6), the
equation of motion can be transformed into the following recurrence relation as

(3.7) w̄(i+ 6) =
(Ω2 + cΩ + k)w̄(i)

τ2(i+ 1)(i+ 2)(i+ 3)(i+ 4)(i+ 5)(i+ 6)

+
2(V CF )u

√
β Ωw̄(i+ 1)

τ2(i+ 2)(i+ 3)(i+ 4)(i+ 5)(i+ 6)

+
(V CF )2u2w̄(i+ 2)

τ2(i+ 3)(i+ 4)(i+ 5)(i+ 6)
+

w̄(i+ 4)

τ2(i+ 5)(i+ 6)
.

3.2. DTM transformation of boundary conditions

Similarly, by substituting Eq. (3.4) into Eqs. (2.23)–(2.25) and applying DTM
by using the theorems introduced in Table 1, the DTM transformation of bound-
ary conditions are given as follows:

(a) pinned-pinned nanotube:

w̄(0) = 0,(3.8)

w̄(2) = 0,(3.9)

2w̄(2) − 24τ2w̄(4) = 0,(3.10)
N

∑

i=0

w̄(i) = 0,(3.11)

N
∑

i=0

i(i− 1)w̄(i) = 0,(3.12)

N
∑

i=0

[i(i− 1) − i(i− 1)(i− 2)(i− 3)τ2]w̄(i) = 0.(3.13)
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(b) clamped-clamped nanotube:

w̄(0) = 0,(3.14)

w̄(1) = 0,(3.15)

6w̄(3) + 360τ2w̄(5) = 0,(3.16)
N

∑

i=0

w̄(i) = 0,(3.17)

N
∑

i=0

iw̄(i) = 0,(3.18)

N
∑

i=0

[i(i− 1)(i− 2) + 3 τ2i(i− 1)(i− 2)(i− 3)(i− 4)]w̄(i) = 0.(3.19)

(c) clamped-pinned nanotube:

w̄(0) = 0,(3.20)

w̄(1) = 0,(3.21)

6w̄(3) + 360τ2w̄(5) = 0,(3.22)
N

∑

i=0

w̄(i) = 0,(3.23)

N
∑

i=0

i(i− 1)w̄(i) = 0,(3.24)

N
∑

i=0

[

i(i− 1) − i(i− 1)(i− 2)(i− 3)τ2
]

w̄(i) = 0.(3.25)

3.3. Solution procedure and stability method

Combining Eq. (3.7) and those of the boundary conditions, we can obtain
a solution to the problem in hand. In order to avoid the unnecessary repeating
calculations, the solution procedure is explained for the pinned-pinned boundary
condition.

From Eqs. (3.7)–(3.13), it can be seen that w̄(i), (i = 6, 7, 8, . . . , N) is a linear
function of w̄(1), w̄(3), w̄(4), w̄(5). Using Eq. (3.7) w̄(i) can be worked out
via an iterative procedure. Substituting w̄(i) into Eqs. (3.8)–(3.13) leads to an
eigenvalue problem:
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(3.26)









y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

















w̄(1)
w̄(3)
w̄(4)
w̄(5)









= 0,

where yij are associated with the dimensionless eigenvalue Ω and other parame-
ters of system, corresponding to N . For a nontrivial solution, the determinant of
the coefficient matrix vanishes. This leads to the characteristic equation of the
problem as

(3.27) ∆(τ,Kn, u, β, k, c;Ω) = 0.

Therefore, the dimensionless eigenvalue Ω can be computed numerically from
Eq. (3.27) as a function of Kn, τ and other parameters of nanotube system.
Generally, Ω is a complex number where its imaginary component, Im(Ω), rep-
resents the dimensionless system frequency; while the real component, Re(Ω), is
related to the damping of system denoted as the decaying rate of amplitude.

The system becomes unstable when the damping part of one of the eigenval-
ues becomes positive. The parameter values in which this condition takes place
are often called critical parameter. In the case of divergence instability, the criti-
cal values of parameter are computed by setting Ω = 0 in Eq. (3.27) and solving
the resulting equation for an unknown parameter called divergence parameter.
Thus, for given values of τ,Kn, β, k and c, the critical flow velocity at which
divergence instability occurs can be determined.

4. Results and discussion

In this section, the DTM is utilized to simulate the vibrational behavior of
SWCNT conveying nanoflow embedded in biological soft tissue. To this end,
the material and geometrical properties of SWCNT are considered as, the outer
radius R0 = 3 nm, the wall thickness h = 0.1 nm, the aspect ratio L/(2R0) = 40,
the mass density ρc = 2300 kg ·m−3 and the Young’s modulus E = 3.4 TPa [10].
The fluid mass density is ρwater = 1000 (kg · m−3) for water, and ρair = 1.169
(kg ·m−3) for air. The elastic and damping properties of viscoelastic medium are
taken to be K = 0.1 MPa and C = 1.02 × 10−4 Pa · s, respectively, [10].

4.1. Convergence study and validation

Successful application of numerical methods in engineering problems could
be guaranteed only after their convergence study. As mentioned in Section 3, the
precision of differential transformation method depends on the number of DTM
terms (N) taken into account. The following inequalities present a criterion for
determining the value of N to hold a desired accuracy [35]:
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(4.1) |Im(ΩN
j ) − Im(ΩN−1

j )|〈ε; |Re(ΩN
j ) − Re(ΩN−1

j )|〈ε,

where ΩN
j denotes the jth estimated eigenvalue corresponding to N terms and

ΩN−1
j is associated with (N−1) terms and ε is a small value. The computer pack-

age Maple is used to write a program for the expressions given by Eqs. (3.7)–(4.1).
At this stage, the convergence and accuracy of the DTM solution is verified

and the effects of different parameters on the natural frequencies and divergence
critical flow velocities are studied. Here, it should be noted that the critical flow
velocity is the flow velocity at which the frequency and decaying rate reach to
zero at the first mode. In fact, divergence critical flow velocities, ucr, is indepen-
dent of mass ratio, β, this is so because β is always associated with velocity-
dependent terms in the equation of motion, while divergence represents a static
instability [32].

Table 2 presents the dimensionless critical flow velocities without considering
the nonlocal effect, the small size effects on the flow field and the viscoelastic
medium τ = Kn = k = c = 0, which exposes a classical pipe conveying fluid. As
shown in this table, with increasing of N the results of DTM become closer to
the solutions reported in [32] and a good agreement is obtained.

Table 2. Convergence and accuracy of the of the dimensionless critical flow
velocity of the classical pipe conveying fluid for various numbers of DTM

terms (N), (τ = Kn = k = c = 0).

N
Dimensionless critical continuum flow velocity

pinned-pinned clamped-pinned clamped-clamped

10 3.0787 3.9394 4.8664

15 3.1416 4.4772 5.9807

20 3.1416 4.4934 6.2842

25 3.1416 4.4934 6.2831

30 3.1416 4.4934 6.2832

35 3.1416 4.4934 6.2832

Païdoussis [32] π ≈ 4.49 2π

In Table 3, the results of dimensionless critical flow velocity of a SWCNT
conveying nanoflow embedded in a Kelvin–Voigt foundation for different number
of DTM terms (N) are presented for τ = 0.2, Kn = 0.1, k = 12.1 and c = 6.4.
Converged results up to six significant digits are obtained by using 45 DTM
terms (N = 45). It can be seen that with increasing of N , the precision of DTM
increases. Compared with the pinned end condition, the clamped end condition
requires more terms adopted in the DTM.
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Table 3. Convergence of the dimensionless critical flow velocity (ucr) of the
SWCNT conveying nanoflow embedded in a Kelvin–Voigt foundation for various

numbers of DTM terms (N), (τ = 0.2, Kn = 0.1, k = 12.1, c = 6.4).

N
Dimensionless critical continuum flow velocity

pinned-pinned clamped-pinned clamped-clamped

10 2.249752 1.111117 –

15 2.125470 2.544861 –

20 2.125536 3.258014 –

25 2.125536 3.209115 5.052731

30 2.125536 3.209355 5.084570

35 2.125536 3.209355 5.084442

40 2.125536 3.209355 5.084442

45 2.125536 3.209355 5.084442

Table 4 shows the critical continuum flow velocity against Kn for simply
supported nanotube and the DTM results are compared with the results reported
by Kaviani and Mirdamadi [30]. In this table, the calculations are performed
for the same parameters as reported by above reference. The parameter values
are, E = 1.0 TPa, h = 10 nm, R0 = 50 nm, ρc = 2300 kg ·m−3, L/(2R0) = 500,
and ρair = 1.169 kg · m−3. The results are derived based on the classical beam
model (τ = 0) and for k = c = 0. The numerical results illustrate an excellent
agreement with the results of [30].

Table 4. Convergence and accuracy of critical continuum flow (air) velocity
(m/s) against Kn for simply supported nanotube conveying fluid for various

numbers of DTM terms (N), (τ = k = c = 0).

N
Kn

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

15 1327.7 496.5 298.7 211.2 162.3 131.2 109.8 94.26 82.45 73.19 65.75

20 1393.0 520.9 313.4 221.6 170.3 137.7 115.2 98.90 86.50 76.79 68.99

25 1395.4 521.8 313.9 222.0 170.6 137.9 115.4 99.07 86.65 76.92 69.10

30 1395.4 521.8 313.9 222.0 170.6 137.9 115.4 99.07 86.65 76.92 69.10

Kaviani and

Mirdamadi [30]
1395.4 521.8 313.9 222.0 170.6 137.9 115.4 99.07 86.65 76.92 69.10

The natural frequencies of SWCNT conveying nanoflow are dependent on
the fluid velocity u. A SWCNT with zero fluid velocity behaves the same as
a nanobeam structure, the natural frequencies of which can be obtained analyt-
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ically. In order to show the accuracy of the DTM solution, the numerical results
are presented to compare with those available in literature.

First, the lateral vibration of a classical nanobeam for τ = Kn = k = c= 0,
with zero fluid velocity is considered. The DTM results for the first four dimen-
sionless natural frequencies are presented in Table 5 and compared with the
exact solution of [47]. It is observed that, the results obtained by DTM are in
very good agreement with the exact solutions for pinned-pinned, clamped-pinned
and clamped-clamped boundary conditions.

Table 5. Comparison between the first four dimensionless natural frequencies of
a classical nanobeam with different boundary condition (u = τ = Kn = k = c = 0).

Boundary condition Method
Frequency

Im(Ω1) Im(Ω2) Im(Ω3) Im(Ω4)

Pinned-Pinned
DTM 9.8696 39.4784 88.8264 157.9137

Exact solution [47] 9.8696 39.4784 88.8264 157.9137

Clamped-Pinned
DTM 15.4182 49.9649 104.2477 178.2697

Exact solution [47] 15.4182 49.9649 104.2477 178.2697

Clamped-Clamped
DTM 22.3733 61.6728 120.9034 199.8594

Exact solution [47] 22.3733 61.6728 120.9034 199.8594

Figure 2 shows the fundamental dimensionless vibration frequency of a pin-
ned-pinned CNT conveying fluid as a function of the dimensionless flow velocity
and the DTM results are compared with the results reported by Wang [26]. The
results are computed for the case of τ = 0.1, Kn = k = c = 0 and β = 0.1; as it
is clear from this figure, a satisfactory agreement is found.

Fig. 2. The dimensionless natural frequency as a function of the dimensionless flow velocity
for pinned-pinned nanotube, β = 0.1, τ = 0.1, Kn = k = c = 0.
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4.2. Frequency analysis

The vibrational frequencies of nanotubes conveying fluid depend on various
parameters. Here, the influence of Knudsen number, nonlocal parameter and
the mechanical characteristics of the surrounding biological medium have been
examined in detail. As was discussed before in this nanoscale FSI study, the
vibrational behaviors of system are examined in both the gas and liquid flows.
In order to highlight the effects of aforementioned parameters, wherever the effect
of Kn is important or disputable, the gas flow has been considered as the fluid
flow; whereas, the liquid flow (denoted by zero Knudsen number) is considered
wherever the effects of other parameters have been discussed.

The dimensionless frequency and damping parts of fundamental eigenvalues
of a simply supported SWCNT are shown as a function of the dimensionless
internal flow velocity in Fig. 3a and 3b, respectively. The results are presented

a)

b)

Fig. 3. Effect of the Kn on the dimensionless frequency and damping parts of the simply
supported SWCNT conveying nanoflow for β = 0.01, τ = 0.1 and k = c = 0; a) frequency

part and b) damping part.
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for different Kn, Kn = 0, 0.01 and 0.1. For numerical calculations in this case,
τ = 0.1, β = 0.01 (air flow) and k = c = 0. It can be seen that by increasing Kn,
the bending stiffness of SWCNT and the critical flow velocity decrease, so for
nanogas flows, the small size effects on the flow field could extremely change the
results.

In order to study the small scale effects on the solid SWCNT walls, the di-
mensionless frequency and damping parts of fundamental eigenvalues of a simply
supported SWCNT are plotted as a function of the dimensionless internal flow
velocity for three different nonlocal parameters, τ = 0, 0.1 and 0.2 (Figs. 4a
and 4b). For numerical calculation in this case, β = 0.86 (water flow), k = 12.1,
Kn = 0 and c = 6.4. According to Fig. 4, the nonlocal effect tends to increase
the critical flow velocity as well as the bending stiffness of SWCNT conveying
nanoflow.

a)

b)

Fig. 4. Effect of the nonlocal parameter on the dimensionless frequency and damping parts
of the simply supported SWCNT conveying nanoflow for β = 0.86, Kn = 0, k = 12.1 and

c = 6.4; a) frequency part and b) damping part.
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Fig. 5. Effect of the nonlocal parameter and Knudsen number simultaneously on the dimen-
sionless frequency of the simply supported SWCNT conveying nanoflow for β=0.01, k=c=0.

a)

b)

Fig. 6. The dimensionless frequency and damping parts of the simply supported SWCNT
conveying nanoflow as a function of the dimensionless flow velocity for different value of

dimensionless elastic parameter, β = 0.86, Kn = 0, τ = 0.1 and c = 6.4; a) frequency part
and b) damping part.
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Thus, to explore the importance of simultaneous consideration of the afore-
mentioned effects, i.e., the small size effects of both fluid and nanotube, the re-
sults of different models are compared with the present modified model (Fig. 5).
According to this figure, ignoring any of those effects in a nanoscale FSI problem
may generate erroneous results.

In the case of τ = 0.1, Kn = 0, β = 0.86 (water flow) and c = 6.4, Figs. 6a
and 6b, show the dimensionless frequency and damping parts of the fundamental
eigenvalues of a simply supported SWCNT conveying nanoflow, respectively, for
different dimensionless elastic parameters k = 0, k = 50, k = 100. It can be
seen that by increasing the elasticity of the biological medium, the critical flow
velocity increases.

Figures 7a and 7b illustrate the effect of damping coefficient c on the dimen-
sionless frequency and damping parts of fundamental eigenvalues of the simply

a)

b)

Fig. 7. The dimensionless frequency and damping parts against the dimensionless flow
velocity for a pinned-pinned SWCNT conveying nanoflow for different values of dimensionless

damping parameter, β = 0.86, τ = 0.1, Kn = 0 and k = 12.1; a) frequency part and
b) damping part.
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supported SWCNT conveying nanoflow, respectively. Here, the results are pre-
sented for different dimensionless damping parameters, c = 0, c = 10 and c = 15.
In this case, τ = 0.1, k = 12.1, Kn = 0 and β = 0.86 (water flow). According
to Fig. 7, the damping property of surrounding biological medium tends to de-
crease the bending stiffness of SWCNT conveying nanoflow. However it can be
seen that the critical flow velocity for divergence instability is independent of
damping coefficient, as far as divergence is a static behavior. In the other words,
between the points A, B and C in Fig. 7, only in point C divergence occurs,
because both the imaginary and the real parts of eigenvalue reach zero in this
point.

4.3. Stability analysis

Another important aspect of dynamic analysis of nanotubes conveying nano-
flow is the prediction of critical flow velocity ucr. Similar to the natural frequen-
cies, the critical flow velocities depend on several factors including the boundary
conditions, the nonlocal parameter, the small size effects of flow field and the
viscoelastic behaviors of the foundation.

The influence of nonlocal parameter on the critical flow velocities for simply
supported SWCNT is presented in Fig. 8. The results are presented for classi-
cal and modified nonlocal beam models. For numerical calculations in this case,
Kn = 0 and k = c = 0. From this figure, it is clear that the critical flow veloc-
ity predicted by the modified nonlocal model increases with stronger nonlocal
effects which is higher than the classical value. The graphical results illustrate
an excellent agreement with the results of Wang [26]. In this figure ucr_c shows
critical flow velocity for classical beam models.

Fig. 8. The dimensionless critical flow velocity as a function of τ , predicted by modified
nonlocal or classical beam model for Kn = k = c = 0 and pinned-pinned SWCNT.
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Figures 9–11 represent the variation of critical flow velocity, ucr, against Kn,
while the effects of other parameters, i.e., boundary conditions, nonlocal pa-
rameter, and viscoelastic behaviors of the foundation, have been examined.
In these figures, Kn changes from 0 to 10, the lines in these figures demon-
strate the divergence boundaries. As can be seen there is one stable zone as
well as one divergence zone for any certain parameter. It can be seen that in
the case of continuum flow regime (0 < Kn < 10−3) such as a liquid flow,
Kn is not large enough to change the critical flow velocity drastically and ucr

becomes almost constant vs. Kn, but the effects of other parameters under in-
vestigation are still important. In the nanoscale FSI problem, when we have

Fig. 9. The dimensionless critical flow velocity against the Kn with different values of the
nonlocal parameter, for k = 12.1 and pinned-pinned SWCNT.

Fig. 10. The dimensionless critical flow velocity against the Kn with different values of the
dimensionless elastic parameter for τ = 0.1 and pinned-pinned SWCNT.
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Fig. 11. The dimensionless critical flow velocity against the Kn with different type of
boundary conditions for τ = 0.1, k = 12.1.

gas flows as fluid flows such as air, Kn may be larger than 0.001, so in this
case two approximate FSI flow regimes can be classified, (1) 0.001 < Kn < 1;
(2) Kn > 1.

For 0.001 < Kn < 1, the effects of Kn, the nonlocal parameter, the boundary
conditions and the elastic property of surrounding biological soft tissue, on the
critical flow velocity are significant. However, for Kn > 1, it is found that the
Kn has the dominant effect. In the other words, influences of other parameters
are reduced significantly after Kn = 1 and increasing the Knudsen number
decreases the critical flow velocity considerably. For Kn > 1 the critical flow
velocity tends to vanish and the effects of expected influential parameters on the
critical flow velocity become faint. On the other hand when Kn → 1 the critical
flow velocity limits to zero and Kn ≈ 1 can be reported as a critical parameter
in this nanoscale FSI problem. This approximate flow regime classification in
the nanoscale FSI problems provide a new understanding of the influence of
remarkable parameters on the vibration characteristics of nanotubes conveying
nanoflow.

5. Conclusions

In this paper, we presented a modified nanoscale FSI model for vibration
and stability analysis of SWCNT conveying nanoflow embedded in biological
soft tissue. We developed a modified model that incorporates the small-size ef-
fects of flow field and nanotube, simultaneously while the small-size effects on
slip boundary conditions of nanoflow were formulated through the Knudsen num-
ber, as a discriminant parameter. Consideration of Kn effect led to a decrease
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in both the natural frequencies and critical flow velocities. Besides, an increase
in both natural frequencies and critical flow velocities emerged from considering
the nanoscale effect on the solid CNT walls. Also, the effect of viscoelastic pa-
rameters corresponding to the surrounding biological soft tissue was examined.
It was observed that by increasing the elastic parameter of viscoelastic model,
the critical flow velocity increased; on the other hand, the damping property
of surrounding biological medium tended to decrease the bending stiffness of
SWCNT conveying nanoflow, while the critical flow velocity did not change.
Finally, a classification based on different values of Kn was made with respect
to the critical flow velocity:

1) 0 < Kn < 10−3. In this band, Kn is not large enough to change the critical
flow velocity drastically but the effects of other parameters were important.

2) 10−3 < Kn < 1. In this flow regime, both Kn and other parameters were
important and remarkable on critical flow velocity.

3) Kn > 1. The critical flow velocity tended to vanish and the effects of
expected influential parameters on critical flow velocity become faint. This clas-
sification was concluded by using the proposed modified model.
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