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An approximate analytic solution for isentropic flow

by an inviscid gas model
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The aim of the present analysis is to apply the modified decomposition method
(MDM) for the solution of isentropic flow of an inviscid gas model (IFIG). The mod-
ification form based on a new formula of Adomian’s polynomials (APs). The new
approach provides the solution in the form of a rapidly convergent series with easily
computable components and not at grid points. The proof of convergence of MDM
applied to such systems is introduced with a bound of the error. Using suitable initial
values, the solution of the system has been calculated and represented graphically.
An analytic continuous solution with high accuracy was obtained.
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1. Introduction

The Adomian decomposition method (ADM) [1, 2] has been used to give
analytic approximation for a large class of linear and nonlinear functional equa-
tions, including algebraic equations, differential equations, integral equations and
integro-differential equations [3–6]. For nonlinear models, such as systems of con-
servation laws, the method has shown reliable results in supplying analytical ap-
proximation that converges rapidly [7–9]. Recently, a modification of the ADM
[10] based on a new formula for APs was proposed. In this paper, we apply this
modification to the model of IFIG.

The system of balance laws (conservation laws with source terms) given by

(1.1)
∂

∂t

(u

v

)

+
∂

∂x

(

f(u, v)
g(u, v)

)

=

(

h1(x, t)
h2(x, t)

)

, (x, t) ∈ (α, β) × [0, T ] ,

with initial condition

(1.2)

(

u(x, 0)
v(x, 0)

)

=

(

u0(x)
v0(x)

)

, x ∈ (α, β).
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The functions f(u, v) and g(u, v) are the fluxes, which are assumed to be
analytic functions, h1(x, t) and h2(x, t) are the source terms. The system (1.1)
can be written in a more convenient and compact form by introducing the no-
tations U = ( u v )T, F = ( f g )T and H = ( h1 h2 )T, the initial value problem
(1.1)–(1.2) attains the form

(1.3) Ut(x, t) + F (U(x, t))x = H(x, t), U(x, 0) = U0(x).

The Jacobian matrix of F (U) is

(1.4) dF =

(

fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

)

,

where fu means ∂f/∂u and fv means ∂f/∂v and so on. The system in (1.3) is
said to be strictly hyperbolic in a domain Ω ⊂ R

2, if for every (x, t) ∈ Ω and for
all possible solutions u and v of the system in Ω, the matrix (1.4) has two real
distinct eigenvalues λ1(x, t, u, v), λ2(x, t, u, v). If there is a region E ⊂ R

2 where
the 2×2 matrix in (1.4) has no real eigenvalues the system is called elliptic in E.
If neither Ω nor E is empty, then the system is of mixed type.

2. Procedure of the method

To illustrate the MDM method [10], we consider the following system in
operator form:

(2.1) L(U) + N(U) = H(x, t),

where L = ∂/∂t is a linear partial differential operator, N is a nonlinear analytic
operator and H(x, t) is bounded function on (α, β)×[0, T ]. Operating the inverse
operator L−1 =

∫ t

0 (·)dτ on both sides of Eq. (2.1) yields

U(x, t) = U0(x, t) + L−1(H(x, t)) − L−1(N(U)).

According to MDM, U(x, t) is considered as the sum of series

(2.2) U(x, t) =

∞
∑

k=0

Uk(x, t) =

( ∞
∑

k=0

uk(x, t),

∞
∑

k=0

vk(x, t)

)T

,

and N(U) as a sum of the series

N(U) = (f(u, v), g(u, v))T(2.3)

=

∞
∑

k=0

Pk(x, t) =

( ∞
∑

k=0

Ak(x, t),

∞
∑

k=0

Bk(x, t)

)T

,
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where Ak’s and Bk are the APs. The APs are not unique and they can be gen-
erated from Taylor series expansion of nth-order partial differentiable function
N about the first component U0. To obtain this formula, using the partial sum

Rk =

(

Sk, Tk)
T = N

( k
∑

i=0

Ui

)

(2.4)

=

(

f

( k
∑

i=0

ui,

k
∑

i=0

vi

)

, g

( n
∑

k=0

uk,

n
∑

k=0

vk

))T

.

Pks are defined as follows:

(2.5) Pk = N(Rk) −
k−1
∑

i=0

Pi =

(

f(Sk, Rk) −
k−1
∑

i=0

Ai, g(Sk, Rk) −
k−1
∑

i=0

Bi

)T

.

The method consists of the following scheme:

(2.6)

{

U0 = U(x, 0) + L−1H,

Uk+1 = L−1Pk, k ≥ 0.

We construct the solution U(x, t) as

U(x, t) = (u(x, t), v(x, t))T = lim
k→∞

Φk(x, t)(2.7)

= lim
k→∞

(ϕk(x, t), φk(x, t))T,

where

(2.8) Φk = (ϕk, φk)
T =

( k
∑

i=0

uk,

k
∑

i=0

vk

)T

.

3. Convergence of solution

The convergence of the decomposition series has been investigated by sev-
eral authors [11–14] analytically and numerically in [3–9, 15–17] and references
therein. In this section, we study the convergence analysis presented in [10] ap-
plied to the general 2×2 nonlinear systems of partial differential equations (2.1).
In [10], the authors have given new conditions for obtaining convergence of the
decomposition series using fixed point theorem [18].

Let us consider the Hilbert space H , defined by H = L2((α, β)× [0, T ]) with
the set of applications:

u : H → R with

∫

u2dx < ∞,
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and the norm

‖u‖2
H =

∫

(α,β)×[0,T ]

u2(σ, τ)dσdτ.

Define H2 = H ⊕H by the direct sum of Hilbert spaces H and H , which is also
Hilbert space with the set of applications

U = (u, v)T : ((α, β) × [0, T ])2 → R
2 with

∫

(α,β)×[0,T ]

(u2 + v2) dσdτ < ∞,

and the norm

‖U‖2 =: ‖U‖2
H2 =

∫

(α,β)×[0,T ]

(u2(σ, τ) + v2(σ, τ))dσdτ(3.1)

= ‖u‖2
H + ‖v‖2

H .

Suppose that N is Lipschitzian operator with Lipschitz constant C. The series
solution (2.7) converges to the exact solution U(x, t) if ‖U1‖H2 < ∞, and if
∃δ ≥ 0, δ = CT , such that δ < 1. To verify the convergence proof: let U ∈ H2,
define the operator E(U) : H2 → H2 by

(3.2) E(U) = U0(x, t) + L−1H(x, t) − L−1N(U).

Using arbitrary U1, U2 ∈ H2, we have

‖E(U1) − E(U2)‖ = ‖L−1(N(U1) − N(U2))‖ ≤ L−1‖(N(U1) − N(U2))‖
≤ T‖(N(U1) − N(U2))‖.

But, N is Lipchitzian with Lipchitz constant C, thus

‖E(U1) − E(U2)‖ ≤ CT‖U1 − U2‖ = δ‖U1 − U2‖

implies that E is a contraction operator. Hence, there is a unique solution of the
problem (2.1). The sequence Rk in (2.4) is Cauchy in the Hilbert space H2 since

‖Rk − Rm‖ =

∥

∥

∥

∥

k
∑

i=m+1

Ui

∥

∥

∥

∥

≤ L−1‖
k

∑

i=m+1

Pi‖

= L−1‖N(Rk−1) − N(Rm−1)‖
≤ TC‖Rk−1 − Rm−1‖ = δ‖Rk−1 − Rm−1‖,

the triangle inequality was used, and since δ < 1, we get

‖Rk − Rm‖ ≤ δm

1 − δ
‖R1 − R0‖ =

δm

1 − δ
‖U1‖.
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Now, to show that the convergent series solution (2.7) is itself the existing unique
solution of (2.1), we have

L−1N(U) = L−1

(

N

( ∞
∑

i=0

Ui

))

= L−1

(

N( lim
k→∞

k
∑

i=0

Ui

))

= L−1( lim
k→∞

N(Rk)) = lim
k→∞

L−1(N(Rk)).

Moreover, if the truncated series (2.8) is used as an approximation to the exact
solution U(x, t), then the error bound can be found using

(3.3)

∥

∥

∥

∥

U(x, t) −
k

∑

i=0

Ui(x, t)

∥

∥

∥

∥

H

≤ δk

1 − δ
‖U1(x, t)‖H .

With the above notations, we have proved the following result:

Theorem 1. The series solution obtained by MDM applied to the nonlinear

partial differential system

L(U) + N(U) = H(x, t), (x, t) ∈ (α, β) × [0, T ],

converges to the exact solution U(x, t) ∈ H2 if for Lipchitzian operator N , with

Lipchitz constant C, there is δ = CT such that δ < 1 and ‖U1‖ < ∞.

In summary, by defining the convergence rate αi = ‖Ui+1‖H2/‖Ui‖H2 if
‖Ui‖H2 6= 0, and 0 if ‖Ui‖H2 = 0, Theorem 1 ensures the convergence of trun-
cated series (2.8) to exact solution if αi < 1 for i = 0, 1, . . . , k.

4. Solution of IFIG model

For purposes of illustration of the MDM for solving the IFIG equations,
the computer application program “Mathematica” was used to execute the algo-
rithms that were used with the numerical example.

Example 1. The IFIG model [19] is an example of system of conservation
laws of the form

(4.1)
ut + uux + c2v−1vx = 0,

vt + uvx + vux = 0,

where u = u(x, t) and v = v(x, t) are the velocity and density of the gas respec-
tively, and c is the local speed of sound. Given c2 = c2(v) = aγvγ−1 for a perfect
gas where a is constant and the ratio of specific heats γ = 1.4 for air, we have

(4.2)
c2

v
= aγv0.4v−1 = 1.4av−0.6.
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This can be written as

(4.3) ut +

(

1

2
u2 + bv0.4

)

x

= 0, vt + (uv)x = 0,

with b = 3.5a. The system is hyperbolic for a > 0 (equivalently for b > 0), and
elliptic for a < 0, but never to be of mixed type.

Following the MDM analysis mentioned in Section 2, the system (4.3) in an
operator form is

(4.4)
Lu + f(u, v)x = 0,

Lv + g(u, v)x = 0,

where, f(u, v) = 0.5u2 + bv0.4 and g(u, v) = uv. Applying the inverse operator
L−1 =

∫ t

0 (·)dτ to the coupled equations (4.4) gives

(4.5)
u = u(x, 0) − L−1[f(u, v)x],

v = v(x, 0) − L−1[g(u, v)x].

Simply, take the equation in the compact form

(4.6) U = U(x, 0) − L−1[F (u, v)x].

Consider the system in (4.3) with b = 1 subject to the initial conditions

(4.7) U(x, 0) = (x, 1)T, x ∈ [0, 3].

We solve this model using our approach by finding the first 10 terms of the series
(2.6). We give here the first few APs for F (U) using formula (2.5) as

P0 = F (U0) = (f(U0), g(U0))
T,

P1 = F (R1) − P0,

P2 = F (R2) − (P0 + P1),

P3 = F (R3) − (P0 + P1 + P2),

P4 = F (R4) − (P0 + P1 + P2 + P3),

...

and so on. For t = 0 the zeroth component U0 is given by

U0(x, t) = (x, 1)T.
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We obtained in succession U1, U2, U3, . . ., U10 according to MDM scheme (2.6)
to determine the individual terms of the series solution (2.8) as

U1(x, t) = −1

4
tU0(x, t), U2(x, t) =

t2

8

(

1 − t

6

)

U0(x, t), . . . .

Our approximate solution is given by

(4.8) Φ10 =
10
∑

i=0

Ui(x, t).

Given ‖U1‖H2 = 0.5 < ∞, and taking into account convergence rates αks, we
have

α0 = 0.288675 < 1,

α1 = 0.333631 < 1,

α2 = 0.211644 < 1,

α3 = 0.179207 < 1,

α4 = 0.144667 < 1,

...

Choosing α = maxi αi = α1, Theorem 1 implies that the approximate so-
lution (4.8) of the IFIG equations using MDM converges to unique solution.
In general, decomposition series (2.8) converges rapidly in real physical prob-
lems. Figure 1 represents the approximate velocity and density of the gas for
(x, t) ∈ [0, 3] × [0, 1].

Fig. 1. The behavior of: a) the velocity of gas; b) the density of gas.

In this example, we cannot determine the error in comparison with exact so-
lution since we do not know this solution, but an error bound can be determined
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using formula (3.3) to be

∥

∥

∥

∥

U(x, t) −
10
∑

i=0

Ui(x, t)

∥

∥

∥

∥

H

≤ 2.41145 × 10−8.

Moreover, substituting the obtained approximate solution (4.8) in the sys-
tem (4.3) and comparing results to the zeros right-hand sides, Table 1 shows
the absolute errors for x ∈ {1, 2, 3} and t = 0, 0.1, 0.2, . . . , 1 rounding to three
significant digits. In addition, Figure 2 shows the errors in approximating the
velocity and density of the gas for (x, t) ∈ [0, 3] × [0, 1].

Table 1. The absolute error for approximate values of the velocity and density.

t

u(x, t) v(x, t)

x

1 2 3 1 2 3

0.1 2.78×10−17 5.55×10−17 0 5.55×10−17 5.55×10−17 5.55×10−17

0.2 4.05×10−15 8.10×10−15 1.24×10−14 4.14×10−15 4.14×10−15 4.14×10−15

0.3 1.79×10−13 3.57×10−13 5.36×10−13 1.79×10−13 1.79×10−13 1.79×10−13

0.4 2.46×10−12 4.92×10−12 7.39×10−12 2.46×10−12 2.46×10−12 2.46×10−12

0.5 1.79×10−11 3.59×10−11 5.38×10−11 1.79×10−11 1.79×10−11 1.79×10−11

0.6 8.76×10−11 1.75×10−10 2.63×10−10 8.76×10−11 8.76×10−11 8.76×10−11

0.7 3.25×10−10 6.51×10−10 9.76×10−10 3.25×10−10 3.25×10−10 3.25×10−10

0.8 9.90×10−10 1.98×10−9 2.97×10−9 9.90×10−10 9.90×10−10 9.90×10−10

0.9 2.59×10−9 5.18×10−9 7.78×10−9 2.59×10−9 2.59×10−9 2.59×10−9

1.0 6.03×10−9 1.21×10−8 1.81×10−8 6.03×10−9 6.03×10−9 6.03×10−9

Fig. 2. The error of: a) velocity of gas; b) the density of gas.
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5. Conclusions

In this paper, we consider non-linear coupled isentropic flow of inviscid gas
equations (IFIG) for finding an analytic solution via modified decomposition
method (MDM). In this example, a high accuracy analytic approximate solution
was obtained. It may be concluded that the MDM methodology is very powerful
and efficient technique in finding analytical solutions for wide classes of problems
and can be easily extended to other non-linear evaluation equations, with the
aid of Mathematica.
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