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The present paper is concerned with the propagation of Rayleigh waves in an
orthotropic elastic half-space coated with a thin orthotropic elastic layer. The half-
space and the layer are both incompressible and they are in welded contact to each
other. The main purpose of the paper is to establish an approximate secular equation
of the wave. By using the effective boundary condition method an approximate secular
equation of third-order in terms of the dimensionless thickness of the layer is derived.
It is shown that this approximate secular equation has high accuracy. From it an
approximate formula of third-order for the velocity of Rayleigh waves is obtained and
it is a good approximation. The obtained approximate secular equation and formula
for the velocity will be useful in practical applications.
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1. Introduction

The structures of a thin film attached to solids, modeled as half-
spaces coated with a thin layer, are widely applied in modern technology [1],
measurements of mechanical properties of thin supported films play an impor-
tant role in understanding the behaviors of these structures in applications, see,
e.g., [2] and references therein. Among various measurement methods, the sur-
face/guided wave method [3], is used most extensively, and for which the guided
Rayleigh wave is a convenient and versatile tool [1, 4]. When using the Rayleigh
wave tool, the explicit dispersion relations of Rayleigh waves are employed as
theoretical bases for extracting the mechanical properties of the thin films from
experimental data. They are therefore the main purpose of the investigations
of Rayleigh waves propagating in half-spaces covered with a thin layer. Taking
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the assumption of thin layer, explicit dispersion relations can be derived by re-
placing (approximately) the entire effect of the thin layer on the half-space by
the so-called effective boundary conditions which relate the displacements and
the stresses of the half-space at its surface. For deriving the effective boundary
conditions, Achenbach and Kesheva [5], Tiersten [6] replaced the thin layer
by a plate modeled by different theories: Mindlin’s plate theory and the plate
theory of low-frequency extension and flexure, while Bovik [7] expanded the
stresses at the top surface of the layer into Taylor series in its thickness. The
Taylor expansion approach was then developed by Niklasson [8], Rokhlin

and Huang [9], Benveniste [10], Steigmann and Ogden [11], Ting [12],
Vinh and Linh [13, 14], Vinh and Anh [15] and Vinh et. al. [16] to estab-
lish the effective boundary conditions. Achenbach and Kesheva [5], Tier-

sten [6], Bovik [7] and Tuan [17] assumed that the layer and the substrate
are both isotropic and the authors derived approximate secular equations of
second-order. Steigmann and Ogden [11] considered a transversely isotropic
layer with residual stress overlying an isotropic half-space and the authors de-
rived an approximate second-order secular equation. Wang et al. [18] considered
an isotropic half-space covered with a thin electrode layer and they obtained an
approximate secular equation of first-order. In Vinh and Linh [13] the layer and
the half-space are both assumed to be orthotropic and compressible, and an ap-
proximate secular equation of third-order was obtained. In Vinh and Linh [14],
the layer and the half-space are both subjected to homogeneous pre-stains and
an approximate secular equation of third-order was established that is valid for
any pre-strain and for a general strain energy function. In [15, 16] the contact
between the layer and the half-space is assumed to be smooth, and approx-
imate secular equations of third-order [15] and fourth-order [16] were estab-
lished.

The main purpose of this paper is to establish an approximate secular equa-
tion of Rayleigh waves propagating in an incompressible orthotropic elastic half-
space coated by a thin incompressible orthotropic elastic layer. By using the
effective boundary condition method, an approximate secular equation of third-
order in terms of the dimensionless thickness of the layer is derived. A numerical
investigation shows that this approximate secular equation has high accuracy.
Based on the obtained approximate dispersion relation, an approximate formula
of third-order for the velocity of Rayleigh waves is derived and it is a good ap-
proximation. The obtained approximate secular equation and the approximate
velocity formula are good tools for evaluating the mechanical properties of thin
films. deposited on half-spaces. It should be noted that due to the presence of
the hydrostatic pressure associated with the incompressibility constraint, the
derivation of the effective boundary conditions becomes more complicated than
the one for the compressible case.
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2. Effective boundary conditions of third-order

Consider an elastic half-space x2 ≥ 0 coated by a thin elastic layer
−h ≤ x2 ≤ 0. Both the layer and half-space are assumed to be orthotropic
and they are in welded contact with each other. Note that same quantities re-
lated to the half-space and the layer have the same symbol but are systematically
distinguished by a bar if pertaining to the layer. We are interested in the plain
strain so that

(2.1) ui = ui(x1, x2, t), ūi = ūi(x1, x2, t), i = 1, 2, u3 ≡ ū3 ≡ 0,

where t is the time. Suppose that the material of the layer is incompressible.
Then, the strain-stress relations are [19]

σ̄11 = −p̄ + c̄11ū1,1 + c̄12ū2,2,

σ̄22 = −p̄ + c̄12ū1,1 + c̄22ū2,2,

σ̄12 = c̄66(ū1,2 + ū2,1),

(2.2)

where σ̄ij , p̄ and c̄ij are respectively the stress, the hydrostatic pressure associ-
ated with the incompressibility constraint and the material constants, commas
indicate differentiation with respect to the spatial variables xk. In the absence
of body forces, the equations of motion are

σ̄11,1 + σ̄12,2 = ρ̄ ¨̄u1,(2.3)

σ̄12,1 + σ̄22,2 = ρ̄ ¨̄u2,

where ρ̄ is the mass density, a dot signifies differentiation with respect to the
time t. The incompressibility gives

(2.4) ū1,1 + ū2,2 = 0.

Taking into account (2.1), Eqs. (2.2)-(2.4) are written in matrix form as

(2.5)

[

Ū′

T̄′

]

=

[

M1 M2

M3 M4

] [

Ū

T̄

]

where Ū = [ū1 ū2]
T, T̄ = [σ̄12 σ̄22]

T, the symbol “T “ indicates the transpose of
a matrix, the prime signifies differentiation with respect to x2 and

M1 =

[

0 −∂1

−∂1 0

]

, M2 =

[

1/c̄66 0
0 0

]

,

M3 =

[

−δ̄ ∂2
1 + ρ̄ ∂2

t 0
0 ρ̄ ∂2

t

]

, M4 = M1,

(2.6)
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where δ̄ = c̄11 + c̄22 − 2c̄12 and we use the notations ∂2
1 = ∂2/∂x2

1, ∂2
t = ∂2/∂t2,

∂1 = ∂/∂x1. It follows from (2.5) that

(2.7)

[

Ū(n)

T̄(n)

]

= Mn

[

Ū

T̄

]

, M =

[

M1 M2

M3 M4

]

, n = 1, 2, 3, . . . , x2 ∈ [−h, 0].

Let h be small (i.e., the layer is thin), by expanding into Taylor series T(-h) at
x2 = 0 up to the third-order of h we have

(2.8) T̄(−h) = T̄(0) − hT̄′(0) +
h2

2
T̄′′(0) − h3

6
T̄′′′(0).

Suppose that surface x2 = −h is free of traction, i.e., T̄(−h) = 0, using (2.7) at
x2 = 0 for n = 1, 2, 3 into (2.8) yields

(2.9)

{

I − hM4 +
h2

2
(M3M2 + M2

4)

− h3

6
[(M3M1 + M4M3)M2 + (M3M2 + M2

4)M4]

}

T̄(0)

+

{

−hM3 +
h2

2
(M3M1 + M4M3)

− h3

6
[(M3M1 + M4M3)M1 + (M3M2 + M2

4)M3]

}

Ū(0) = 0.

Since the half-space and the layer are in welded contact with each other at the
interface x2 = 0 , it follows: U(0) = Ū(0) and T(0) = T̄(0). Thus, from (2.9)

(2.10)

{

I− hM4 +
h2

2
(M3M2+M2

4)

− h3

6
[(M3M1 + M4M3)M2 + (M3M2 + M2

4)M4]

}

T(0)

+

{

−hM3 +
h2

2
(M3M1 + M4M3)

− h3

6
[(M3M1 + M4M3)M1 + (M3M2 + M2

4)M3]

}

U(0) = 0.

The relation (2.10) is called the approximate effective boundary condition of
third-order in matrix form that replaces (approximately) the entire effect of the
thin layer on the substrate. Introducing the expressions of the matrices Mk given
by (2.6) into Eq. (2.10) yields the effective boundary conditions in component
form, namely
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(2.11) σ12 +h(σ22,1 + δ̄u1,11− ρ̄ü1)+
h2

2

(

r1σ12,11 +
ρ̄

c̄66
σ̈12 + δ̄u2,111−2ρ̄ü2,1

)

+
h3

6

(

r1σ22,111 +
ρ̄

c̄66
σ̈22,1−r2u1,1111− ρ̄r3ü1,11−

ρ̄2

c̄66
ü1,tt

)

= 0 at x2 = 0,

(2.12) σ22 +h(σ12,1− ρ̄ü2)+
h2

2
(σ22,11 + δ̄u1,111−2ρ̄ü1,1)

+
h3

6

(

r1σ12,111 +
2ρ̄

c̄66
σ̈12,1 + δ̄u2,1111−3ρ̄ü2,11

)

= 0 at x2 = 0,

where r1 = 1 − δ̄/c̄66, r2 = δ̄(δ̄/c̄66 − 2), r3 = 2r1 + 1.

3. Approximate secular equation of third-order

Suppose that the elastic half-space is also incompressible. Then, the unknown
vectors U = [u1 u2]

T, T = [σ12 σ22]
T are satisfied by Eq. (2.5) without bars. In

addition to this equation there are required the effective boundary conditions
(2.11) and (2.12) and the decay condition at x2 = +∞ is as follows

U = T = 0 at x2 = +∞.(3.1)

Now, we consider a Rayleigh wave travelling in the x1-direction with velocity c,
wave number k and decaying in the x2-direction. According to Ogden and Vinh

[19] the displacement components of the Rayleigh wave are given by

(3.2)
u1 = −k(b1B1e

−kb1x2 + b2B2e
−kb2x2)eik(x1−ct),

u2 = −ik(B1e
−kb1x2 + B2e

−kb2x2)eik(x1−ct),

where B1, B2 are constants to be determined from the effective boundary condi-
tions (2.11) and (2.12), b1, b2 are roots of the characteristic equation

(3.3) γb4 − (2β − X)b2 + (γ − X) = 0

whose real parts are positive to ensure the decay condition (13), X = ρc2, and

(3.4) γ = c66, β = (δ − 2γ)/2, δ = c11 + c22 − 2c12.

From Eq. (3.3) it follows

(3.5) b2
1 + b2

2 =
(2β − X)

γ
= S, b2

1 · b2
2 =

γ − X

γ
= P.

It is not difficult to verify that if the Rayleigh wave exists (→ b1, b2 having
positive real parts), then

(3.6) 0 < X < c66
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and

(3.7) b1 · b2 =
√

P , b1 + b2 =

√

S + 2
√

P.

Substituting (3.2) into Eqs. (2.2) corresponding to the half-space and taking into
account (2.3) yield

(3.8)
σ12 = k2{β1B1e

−kb1x2 + β2B2e
−kb2x2}eik(x1−ct),

σ22,1 = k3{γ1B1e
−kb1x2 + γ2B2e

−kb2x2}eik(x1−ct),

in which βn = c66(b
2
n + 1), γn = (X − δ + βn)bn, n = 1, 2.

Introducing (3.2) and (3.8) into the effective boundary conditions (2.11) and
(2.12) leads to two equations for B1, B2, namely

(3.9)
f(b1)B1 + f(b2)B2 = 0,

F (b1)B1 + F (b2)B2 = 0,

where

(3.10)

f(bn) = βn + ε{γn − (X̄ − δ̄)bn} +
ε2

2

{

2X̄ − δ̄ −
(

r1 +
X̄

c̄66

)

βn

}

+
ε3

6

{

−
(

r1 +
X̄

c̄66

)

γn +

(

r2 + X̄ r3 +
X̄2

c̄66

)

bn

}

,

F (bn) = γn + ε
{

X̄ − βn

}

+
ε2

2

{

−γn + bn(2X̄ − δ̄)
}

+
ε3

6

{

βn

(

r1 + 2
X̄

c̄66

)

+ δ̄ − 3X̄

}

, n = 1, 2, X̄ = ρ̄c2.

Due to B2
1 + B2

2 6= 0, the determinant of coefficients of the homogeneous system
(3.9) must vanish. This gives

(3.11) f(b1)F (b2) − f(b2)F (b1) = 0.

Substituting (3.10) into (3.11) and taking into account (3.5) and (3.7), after
lengthy calculations whose details are omitted we arrive at

(3.12) A0 + A1ε +
A2

2
ε2 +

A3

6
ε3 + O(ε4) = 0,

where ε = kh called the dimensionless thickness of the layer, and
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(3.13)

A0 = c66

{

(X−δ)(b1b2−1)−c66(b
2
1+1)(b2

2+1)
}

,

A1 = c66(b1+b2)[X̄+b1b2(X̄− δ̄)],

A2 = −
(

X̄

c̄66
− δ̄

c̄66

)

A0−2X̄(X̄− δ̄)+ δ̄
[

X−δ+c66(b1+b2)
2
]

,

A3 = c66(b1+b2)

{

3X̄

(

1−r1−
X̄

c̄66

)

−2δ̄−b1b2

[

r2+X̄

(

r3−3+
X̄

c̄66

)]}

,

in which b1b2 and b1 + b2 are given by (3.5) and (3.7). Equation (3.12) is the
desired approximate secular equation of third-order that is totally explicit. In
the dimensionless form the equation (3.12) becomes

(3.14) D0 + D1ε +
D2

2
ε2 +

D3

6
ε3 + O(ε4) = 0,

where

(3.15)

D0 = (x − eδ)
√

P + x,

D1 = rµ[r2
vx + (xr2

v − ēδ)
√

P ]

√

S + 2
√

P ,

D2 = −(xr2
v − ēδ)D0 − 2r2

µr2
vx(xr2

v − ēδ) + rµēδ(x − eδ + S + 2
√

P ),

D3 = −rµ

√

S + 2
√

P
{

−3xr2
v(ēδ − xr2

v) + 2ēδ

+
√

P [ēδ(ēδ − 2) + xr2
v(xr2

v − 2ēδ)]
}

,

P = 1 − x, S = eδ − 2 − x,

and

x =
X

c66
, eδ =

δ

c66
, ēδ =

δ̄

c̄66
, rµ =

c̄66

c66
, rv =

c2

c̄2
,

c2 =

√

c66

ρ
, c̄2 =

√

c̄66

ρ̄
.

It is clear from (3.14) and (3.15) that the squared dimensionless Rayleigh wave
velocity x = c2/c2

2 depends on five dimensionless parameters: eδ, ēδ, rµ, rv and ε.
Note that eδ > 0, ēδ > 0 because cii > 0, c̄ii (i = 1, 2, 6), c11 + c22 − 2c12 > 0
and c̄11 + c̄22 − 2c̄12 > 0 (see Ogden and Vinh [19]).

When the layer is absent, i.e., ε = 0, Eq. (3.14) becomes

D0 = (x − eδ)
√

1 − x + x = 0

that coincides with the secular equation of Rayleigh waves in an incompressible
orthotropic elastic half-space, see [19].
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When the layer and the half-space are both transversely isotropic (with the
isotropic axis being the x3-axis): c11 = c22, c̄11 = c̄22, c11 − c12 = 2c66, c̄11 − c̄12

= 2c̄66, then

(3.16) eδ = ēδ = 4, S = 2 − x.

From (3.15) and (3.16), D0,D1,D2,D3 are expressed by:

(3.17)

D0 = (x − 4)
√

1 − x + x,

D1 = rµ(1 +
√

1 − x)
[

(r2
vx − 4)

√
1 − x + r2

vx
]

,

D2 = − (r2
vx − 4)D0 − 2r2

µr2
vx(r2

vx − 4) + 8rµ(
√

1 − x − 1),

D3 = −rµ(1 +
√

1 − x)

×
[

−12r2
vx + 8 + 3r4

vx
2 + (8 − 8r2

vx + r4
vx

2)
√

1 − x
]

.

When the layer and the half-space are both isotropic, D0,D1,D2,D3 are also
given by (3.17), but in which x = ρc2/µ, µ is the shear modulus.

Figure 1 presents the dependence on ε of the squared dimensionless Rayleigh
wave velocity x = c2/c2

2 that is calculated by the exact dispersion relation (3.9)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 

ε ε

Fig. 1. The Rayleigh wave velocity curves drawn by solving the exact dispersion relation
(3.9) in [17] (solid line) and by solving the approximate secular equation (3.14) (dashed line)

with eδ = ēδ = 4, rµ = 1, rv = 3.
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in Tuan [17] (solid line), by the approximate secular equation (3.14) (dashed
line) with eδ = ēδ = 4, rµ = 1, rv = 3. Figure 1 shows that the approximate and
exact velocity curves are very close to each other. This says that the obtained
third-order approximate secular equations have high accuracy.

4. Third-order approximate formula for the velocity

In this section, we establish an approximate formula of third-order for the
squared dimensionless Rayleigh wave velocity x(ε) that is of the form

(4.1) x(ε) = x(0) + x′(0)ε +
1

2
x′′(0)ε2 +

1

6
x′′′(0)ε3 + O(ε4),

where x(0) is the squared dimensionless velocity of Rayleigh waves propagating
in an incompressible orthotropic elastic half-space that, according to [19], is given
by

(4.2) x(0) = 1 − 1

9

[

−1 +
3

√

[

9eδ + 16 + 3
√

3
√

eδ(4e
2
δ − 13eδ + 32)

]

/2

+
3

√

[

9eδ + 16 − 3
√

3
√

eδ(4e
2
δ − 13eδ + 32)

]

/2

]2

,

in which the roots are understood as real roots. In view of the relation

(4.3) 3

√

[

9eδ + 16 − 3
√

3
√

eδ(4e
2
δ − 13eδ + 32)

]

/2

=
4 − 3eδ

3

√

[

9eδ + 16 + 3
√

3
√

eδ(4e
2
δ − 13eδ + 32)

]

/2

,

x(0) is given by the formula

(4.4) x(0) = 1 − 1

9

[

−1 +
3

√

[

9eδ + 16 + 3
√

3
√

eδ(4e
2
δ − 13eδ + 32)

]

/2

+
4 − 3eδ

3

√

[

9eδ + 16 + 3
√

3
√

eδ(4e
2
δ − 13eδ + 32)

]

/2

]2

,

that is more convenient to use because

9eδ + 16 + 3
√

3
√

eδ(4e
2
δ − 13eδ + 32) > 0
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for all positive values of eδ. From (3.14) it follows that

(4.5)

x′(0) = − D1

D0x

∣

∣

∣

x=x(0)
,

x′′(0) = −D2D2
0x−2D0xD1D1x+D2

1
D0xx

D3
0x

∣

∣

∣

x=x(0)
,

x′′′(0) =

−D3+3D2xx′(0)+3D1xxx′2(0)+3D1xx′′(0)+3D0xxx′(0)x′′(0)+D0xxxx′3(0)
D0x

∣

∣

∣

∣

x=x(0)

,

where D1, D2, D3 are given by (3.15) and

(4.6)

D0x =
2 − 3x + eδ

2
√

1 − x
+ 1,

D0xx =
eδ − 4 + 3x

4
√

(1 − x)3
,

D0xxx =
3(eδ − 2 + x)

8
√

(1 − x)5
,

D1x = rµ

[(

r2
ν +

2r2
ν + ēδ − 3r2

νx

2
√

1 − x

) √

S + 2
√

P

−
[

r2
νx + (r2

νx − ēδ)
√

P
]

√
P + 1

2
√

P
√

S + 2
√

P

]

,

D1xx = rµ

[

ēδ − 4r2
ν + 3r2

νx

4
√

P 3

√

S + 2
√

P

−
√

P + 1
√

P
√

S + 2
√

P

(

r2
ν +

2r2
ν + ēδ − 3r2

νx

2
√

1 − x

)]

− rµ

[

r2
νx + (r2

νx − ēδ)
√

P
]

4
√

P 3

√

(

S + 2
√

P
)3

[

S + 2
√

P +
√

P
(
√

P + 1
)2

]

,

D2x = − r2
νD0 − (r2

νx − ēδ)D0x − 2r2
µr2

ν(2r2
νx − ēδ) −

rµēδ√
1 − x

.

Figure 2 presents the dependence on ε of the Rayleigh wave velocity x = c2/c2
2

that is calculated by the exact dispersion relation (3.9) in [17] (solid line) and by
the approximate formula (4.1) (dashed line) witheδ = ēδ = 4, rµ = 0.8, rv = 1.2.
It shows that the approximate formula (4.1) is a good approximation for the
Rayleigh wave velocity.
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x
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Fig. 2. The Rayleigh wave velocity curves drawn by solving the exact dispersion relation
(3.9) in [17] (solid line) and by using the approximate formula (4.1) (dashed line) with

eδ = ēδ = 4, rµ = 0.8, rv = 1.2.

5. Conclusions

In this paper, the propagation of Rayleigh waves in an incompressible or-
thotropic elastic half-space coatedbya thin incompressible orthotropic elastic layer
with the welded contact is investigated. First, an approximate effective boundary
condition of third-order in matrix form is established that replaces the entire effect
of the layer on the half-space. Then, by using it, an approximate secular equation of
third-order is obtained. Based on this secular equation an approximate formula of
third-order for the Rayleigh wave velocity is derived. It is shown that the obtained
approximate secular equation and the approximate formula for the velocity are
good approximations. They will be useful in practical applications.
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