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Fractional continua for linear elasticity
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Fractional continua is a generalisation of the classical continuum body. This
new concept shows the application of fractional calculus in continuum mechanics.
The advantage is that the obtained description is non-local. This natural non-locality
is inherently a consequence of fractional derivative definition which is based on the
interval, thus variates from the classical approach where the definition is given in
a point. In the paper, the application of fractional continua to one-dimensional prob-
lem of linear elasticity under small deformation assumption is presented.
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1. Introduction

Since its invention in 1695 [1], fractional calculus became an individual
branch of pure mathematics with many successful applications, e.g., in fluid
flow, rheology, dynamical processes in self-similar and porous structures, diffu-
sive transport akin to diffusion, electrical networks, probability and statistics,
control theory of dynamical systems, viscoelasticity, electrochemistry of corro-
sion, chemical physics, optics, and others, cf. [2–8] and cited therein. This interest
in fractional calculus (theory of differential equation of arbitrary order) for appli-
cations in physics can be understand as looking for better models describing the
reality [9]. The reason is that fractional differential operators introduce non-local
effects as consequence of their definition which is based on the interval.

It is commonly accepted that non-local formulations play essential role in the
physical models while locality assumption limits the processes to be covered by
a specific model. Considering as an example the description of the material defor-
mation including length scale, we are able to cover the phenomena such as scale
effects or strain softening where classical approach is no longer valid [10, 11].
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First articles in this field were written in the 1960s predicting phenomena such as
stress concentration at holes, crack-tip stresses, bending stiffness of thin beams
or stresses at free surfaces (cf. [12] and cited therein). Currently, we single out
in general two common ways to classify the introduction of the length scale, i.e.,
explicit [13–15] (e.g., via classical strain gradients) or implicit [16–20] (i.e., via re-
laxation time in Perzyna’s type viscoplasticity). Nevertheless, it is still desirable
to discover new concepts of non-local formulations in continuum mechanics.

Non-locality resulting from fractional calculus application can operate in dif-
ferent spaces. For example, one can introduce non-locality (memory) in the time
space when generalising the time derivative (cf. [6] in viscoelasticity), in the
stress space when generalising the directions of plastic strain (cf. [21]) or in the
spatial space when generalising the spatial derivative (cf. [22–29]). The last case
constitutes the main subject of this paper.

The formulation presented herein has some crucial advantages in contrast
to previous investigations, where fractional derivative operates in spatial space.
We have the following features [29]: (i) the proposed new formulation has clear
physical interpretation and is developed by analogy to general framework of
classical continuum mechanics; (ii) we deal with finite deformations (in con-
trast to [26, 27] where small deformations are considered only); (iii) contrary
to previous works, e.g., [26–28] the generalised fractional measures of the de-
formation, e.g., fractional deformation gradients or fractional strains have the
same physical dimensions as classical one (thus, their classical interpretation re-
main unchanged); (iv) characteristic length scale of the particular material is
defined explicitly (an in classical non-local models); (v) objectivity requirements
are proved; (vi) and finally the discussed concept is based on the fractional ma-
terial and spatial line elements in contrast to [28] where the whole formulation
is based on fractional motion (which can be important because in more general
formulations displacement field may not exist cf. [30], Box 3.1, pp. 57). Finally,
some important similarities with [22, 26, 27], when considering special case of
the presented formulation, namely small deformations, will be clarified in Sec-
tion 4.1.3.

The paper is divided into four main parts. In Section 2, fundamental con-
cepts of fractional calculus are presented to clarify assumptions imposed during
non-local fractional continua definition. The non-local fractional kinematics of
a continuum body in Euclidean space, defined in general setup, is presented in
Section 3. Section 4 deals with the concept of small strains for fractional con-
tinua and governing equations for boundary value problem (BVP) are stated.
In Section 5, detailed discussion on numerical implementation as well as il-
lustrative examples, showing the dependency of solution of BVP vs. order of
applied fractional derivative and characteristic material length scale, are pre-
sented.
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2. Remarks on fractional calculus

The theory of derivatives of non-integer order dates back to 30 September
1695 when Leibniz had concerned in letter to L’Hospital derivative of order one
half [1]. The genius sentence by Leibniz was: “It will lead to a paradox, from

which one day useful consequences will be drawn”.
There are many definitions of fractional derivatives with the most popu-

lar (called after their inventors) given by Grünwald–Letnikov (GL), Riemann–
Liouville (RL), and Caputo (C) [2–4]. Nevertheless, they all share one common
attribute, i.e., they are all defined on an interval contrary to integer order dif-
ferential operators defined in a point. It should be emphasised that derivatives
mentioned can be equivalent under specific assumptions and capture classical
one when the order of derivative becomes integer one.

Let us more precisely characterise the Caputo (C) type derivative – the one
used in this paper. Therefore, consider the n-fold integration of a function f
which is given by

(2.1) Inf(t) =
1

Γ (n)

t
∫

a

(t − τ)n−1f(τ)dτ, t > a, n ∈ N,

where Γ is the Euler gamma function. If we replace in Eq. (2.1) n on an arbitrary
α > 0 we obtain (left) fractional integral operator in Riemann-Liouville (RL)
sense

(2.2) aI
α
t f(t) =

1

Γ (α)

t
∫

a

(t − τ)α−1f(τ)dτ, t > a, n ∈ R
+.

Based on relation Eq. (2.2) one can define the Caputo (C) derivative (left sided)
as

(2.3) C
a Dα

t f(t) = aI
m−α
t (Dmf)(t),

where m = [α]+1 and C
a Dα

t stands for Caputo (C) differential operator. It is clear
for α = n ∈ N\{0} (then m = α) classical derivative is captured and for α = 0 we
have C

a D0
t f(t) = f(t). It should be emphasised, that the specific for Caputo’s

derivative is that for a constant function is equal zero and requires standard
(like in the classical differential equations) initial and/or boundary conditions.
For other types of fractional derivatives such conditions can be violated.

Finally, the explicit definitions of left- and right-sided Caputo’s derivatives
are:
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– left-sided Caputo’s derivative for t > a and n = [α] + 1

(2.4) C
a Dα

t f(t) =
1

Γ (n − α)

t
∫

a

f (n)(τ)

(t − τ)α−n+1
dτ ;

– right-sided Caputo’s derivative for t < b and n = [α] + 1

(2.5) C
t Dα

b f(t) =
(−1)n

Γ (n − α)

b
∫

t

f (n)(τ)

(τ − t)α−n+1
dτ,

where α > 0 denotes the real order of the derivative, D denotes ‘derivative’
and a, t, b are so called terminals. Both definitions include integration over the
interval, namely (a, t) or (t, b), respectively. The terminals a and b can be chosen
arbitrarily.

At the end of this short introduction to fractional calculus, let us consider the
Caputo’s type derivative for t ∈ (a, b). We call such derivative a Riesz–Caputo
(RC) derivative cf. [31] – this type of fractional derivative is crucial for fur-
ther definition of fractional continua. Since any linear combination of derivatives
Eqs. (2.4) and (2.5) defines new one [2], hence we define it for t ∈ (a, b) ⊆ R and
0 < α < 1 such as (when α is an integer, the usual definition of a derivative is
used cf. [31, 32])

(2.6) RC
a Dα

b f(t) =
1

2

Γ (2 − α)

Γ (2)

(

C
a Dα

t f(t) + (−1)n C
t Dα

b f(t)
)

.

The factor Γ (2 − α)/Γ (2) will be clarified in Section 3.3 where it appears for
objectivity reasons.

In the remaining part of this paper the RC derivative is shortly denoted
as Dα with the possibility of writing variable under the D in case of partial
differentiation of multivariate functions. For example D

X1

αf represents partial

fractional derivative of f with respect to the variable X1 over the interval which
should be explicitly defined before X1 ∈ (a, b). It is important that for α = 1 we
have

(2.7) RC
a D1

bf(t) =
d

dt
f(t).

3. Fractional continua

3.1. Fractional deformation gradients

The description is given in the Euclidean space in Cartesian coordinates
(leaving more general setup as a future task). We refer to B as the reference
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configuration of the continuum body while S denotes its current configuration.
Points in B are denoted by X and in S by x. Coordinate system for B is denoted
by {XA} with base EA and for S we have {xa} with base ea.

The regular motion of the material body B can be written as

(3.1) x = φ(X, t),

and its inverse as

(3.2) X = ϕ(x, t),

thus φt : B → S is a C1 actual configuration of B in S, at time t.
Gradient of φ defines two-point tensor field F, called deformation gradient,

which describes all local deformation properties and is the primary measure of
deformation [33, 34]. Thus we have:

(3.3) F(X, t) =
∂φ(X, t)

∂X
or FaA =

∂φa

∂XA
ea ⊗EA.

It is clear that F is a linear transformation for each X ∈ B and t ∈ I ⊂ R
1,

therefore

(3.4) dx = FdX or dxa = FaAdXAea,

and inverse transformation

(3.5) dX = F−1dx or dXA = F−1
Aa dxaEA,

where

(3.6) F−1(x, t) =
∂ϕ(x, t)

∂x
or F−1

Aa =
∂ϕA

∂xa
EA ⊗ ea.

We can generalise the deformation gradient and its inverse as follows:

(3.7) F̃
X

(X, t) = ℓα−1
X D

X

αφ(X, t) or F̃
X

aA = ℓα−1
A D

XA

αφaea ⊗EA,

and

(3.8) F̃
x
(x, t) = ℓα−1

x D
x

αϕ(x, t) or F̃
x

Aa = ℓα−1
a D

xa

αϕAEA ⊗ ea,

where ℓX and ℓx are length scales in B and S, respectively. We assume addition-
ally that ℓ = ℓX = ℓx. In general we have the following relations:

(3.9) F̃
x
F̃
X
6= I = δABEA ⊗ EB,
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and

(3.10) F̃
X
F̃
x
6= i = δabea ⊗ eb,

where δ denotes the Kronecker delta. It should be emphasised that fractional
deformation gradients F̃

X
and F̃

x
are non-local due to the definition of RC frac-

tional differential operator which is based on an interval defined dependently on
material being described.

Let us now discuss the role of the length-scale parameters appearing in defi-
nitions Eqs (3.7) and (3.8) which is twofold.

Thus firstly, without ℓ the unit of the fractional deformation gradients would
be m1−α; hence, introduction of the length, similarly like in the classical non-
local gradient methods, allows to finally obtain dimensionless quantity. In this
way, we can compare the lengths of line elements dX and dx with their frac-
tional counterparts dX̃ and dx̃ what would be crucial concerning possible strain
definitions and clear geometrical interpretation.

Secondly, it is necessary to introduce the length scale in order to fulfil the rigid
body motion requirements, i.e., there should be no deformation for such a type
of motion. This problem is clarified in the next Section 3.3 where illustrative
example is discussed. Notice that from purely mathematical point of view, those
parameters could be omitted, however this is not the case in physical theory.

After such introduction the fractional counterparts of the material and the
spatial line elements can be introduced, namely

(3.11) dx̃ = F̃
X

dX or dx̃a = F̃
X

aAdXAea,

Fig. 1. The relations between material and spatial-line elements with their fractional
counterparts.
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and

(3.12) dX̃ = F̃
x
dx or dX̃A = F̃

x
AadxaEA.

Using Eqs. (3.4), (3.5), (3.11) and (3.12) we have (cf. Fig. 1):

dx̃ =
α

FdX̃ or dx̃a =
α

F aAdX̃Aea,(3.13)

dX̃ =
α

F
x
dX or dX̃B =

α

F
x

BAdXAEB ,(3.14)

dx̃ =
α

F
X

dx or dx̃b =
α

F
X

badxaeb,(3.15)

where
α

F = F̃
X
F−1F̃

x

−1,
α

F
x

= F̃
x
F and

α

F
X

= F̃
X
F−1. It is clear that

α

F
x

and
α

F
X

are

not two point tensors while F̃
X

, F̃
x

and
α

F are. Based on the properties of motion

Eq. (3.1) we have shown that the inverse of F̃
X

and F̃
x

exists.

Fig. 2. The equivalence of fractional continua and classical continua for α = 1.

As mentioned for α = 1 RC fractional derivative becomes classical derivative
and hence we recover classical local continuum mechanics where ℓα−1 = ℓ1−1 =
ℓ0 = 1 do not influence the results, so (Fig. 2):

F = F̃
X

= F̃
x

−1 =
α

F,(3.16)

F−1 = F̃
X

−1 = F̃
x

=
α

F−1,(3.17)

α

F
x

= I,(3.18)

α

F
X

= i,(3.19)

dx = dx̃,(3.20)

dX = dX̃.(3.21)
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3.2. Fractional strains

We define the strains by analogy to the classical continuum mechanics based
on the difference in scalar products in actual and reference configurations. The
introduced line elements (Eqs. (3.4) and (3.5)) as well as their fractional coun-
terparts (Eqs. (3.11) and (3.12)) allow to define four concepts of strains:

1. Classical formulation

(3.22) dxdx − dXdX ≡ dX(FTF − I)dX ≡ dx(i − F−TF−1)dx,

so

(3.23) E =
1

2
(FTF − I), e =

1

2
(i − F−TF−1).

2. Formulation based on the fractional spatial line element (dx̃) and classical
material line element (dX)

(3.24) dx̃dx̃ − dXdX ≡ dX(F̃
X

TF̃
X
− I)dX ≡ dx̃(i − F̃

X

−TF̃
X

−1)dx̃,

so

(3.25) Ẽ
X

=
1

2
(F̃
X

TF̃
X
− I), ẽ

X
=

1

2
(i − F̃

X

−TF̃
X

−1).

3. Formulation based on the classical spatial line element (dx) and fractional
material line element (dX̃)

(3.26) dxdx − dX̃dX̃ ≡ dX̃(F̃
x

−TF̃
x

−1 − I)dX̃ ≡ dx(i − F̃
x

TF̃
x
)dx,

so

(3.27) Ẽ
x

=
1

2
(F̃

x

−TF̃
x

−1 − I), ẽ
x

=
1

2
(i − F̃

x

TF̃
x
).

4. Formulation based on the fractional spatial line element (dx̃) and fractional
material line element (dX̃)

(3.28) dx̃dx̃ − dX̃dX̃ ≡ dX̃(
α

FT
α

F − I)dX̃ ≡ dx̃(i −
α

F−T
α

F−1)dx̃,

so

(3.29)
α

E =
1

2
(

α

FT
α

F − I),
α
e =

1

2
(i −

α

F−T
α

F−1).

Based on the above relations it is clear that the generalisation of classical
continuum mechanics can be formulated just by exchanging classical deformation
gradient with the one of its fractional counterparts. Thus, one can define:

E =
1

2
(
3

FT
3

F − I) or EAB =
1

2
(

3

FT
Aa

3

F aB − IAB)EA ⊗ EB,(3.30)

e =
1

2
(i −

3

F−T
3

F−1) or eab =
1

2
(iab −

3

F−T
aA

3

F−1
Ab )ea ⊗ eb,(3.31)
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where generalised pull-back transformation of e gives

(3.32) E =
3

FTe
3

F,

while generalised push-forward of E gives

(3.33) e =
3

F−TE
3

F−1,

and

C =
3

FT
3

F or CAB =
3

FT
Aa

3

F aBEA ⊗ EB ,(3.34)

c =
3

F−T
3

F−1 = b−1 or cab =
3

F−T
aA

3

F−1
Abea ⊗ eb,(3.35)

finally using the theorem of polar decomposition of non-singular second-order
tensor we have

(3.36)
3

F = RU = vR or
3

F aA = RaBUBAea ⊗ EB = vabRbAea ⊗ EB ,

and as a consequence

(3.37) C = UU and b = vv.

In the above expression, depending on the formulation,
3

F can be replaced

with F or F̃
X

or F̃
x

or
α

F. According to the chosen
3

F the associated others variables

denote: E is the classical Green–Lagrange strain tensor or its fractional counter-
part (symmetric); e is the classical Euler–Almansi strain tensor or its fractional
counterpart (symmetric); C is the classical right Cauchy–Green tensor or its
fractional counterpart (symmetric and positive definite); c = b−1 is the classical
left Cauchy–Green tensor/Finger deformation tensor or its fractional counter-
part (symmetric and positive definite); R is orthogonal tensor; U is the classical
right stretch tensor (symmetric and positive definite) or its fractional counter-
part, v is the classical left stretch tensor (symmetric and positive definite) or its
fractional counterpart.

We have also analogous definitions for the volume ratio and surface element
mapping. Based on the possible linear transformations defined by Eqs. (3.4),
(3.5), (3.11) and (3.12), and by analogy to the classical results we have

(3.38) dv = det(
3

F)dV,

and

(3.39) ds = det(
3

F)
3

F−TdS,
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Fig. 3. The relations between material and spatial volumes with their fractional
counterparts.

Fig. 4. The relations between material and spatial surface elements with their fractional
counterparts.

where according to chosen
3

F the following variables denote: dv is the spatial
volume element or its fractional counterpart, dV is the material volume element
or its fractional counterpart, ds is the spatial surface element or its fractional
counterpart, dS is the material surface element or its fractional counterpart –
cf. Figs. 3 and 4 (by analogy to Fig. 1). In Figs. 3 and 4 we have denoted:

J = det(F), J̃
X

= det(F̃
X

), J̃
x

= det(F̃
x
),

α

J
X

= det(
α

F
X

),
α

J
x

= det(
α

F
x
),

α

J = det(
α

F).

3.3. Remarks on objectivity

This new concept of fractional continua should not of course violate the ob-
jectivity requirements. It is clear that under the change of the observer the dis-
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tances between arbitrary pairs of points in the space and time intervals between
events should be preserved. As common, the change of the observer may equiv-
alently be viewed as a certain rigid-body motions superimposed on the current
configuration. Thoroughly we will use this concept to prove that the proposed
fractional kinematics leads to the same results (in the sense of objectivity) as the
classical ones. It should be emphasised that it is crucial to observe how fractional
deformation gradients transform under isomorphism (superimposed rigid-body
motions).

We denote the superimposed rigid-body motion on the current configuration
x as

(3.40) x∗ = Q(t)x + c(t),

where Q(t) is assumed to be the proper orthogonal tensor and c(t) denotes its
translation. In classical sense the rigid body motion means that there is no defor-
mation, i.e., E = e = 0. It is equivalent to say that for such a type of deformation,
the deformation gradient is an orthogonal tensor, i.e., FTF = I, thus F = R or
in other words motion φ is a linear function on material coordinates X.

The described situation is not so obvious considering fractional deformation.
In order to fully satisfy the requirements of the new formulation additional as-
sumptions concerning ℓ and the type of linear combination in RC definition are
needed (namely, the necessity of the term Γ (2 − α)/Γ (2) in Eq. (2.6)). This can
be thought of as putting the physical constraints on the obtained fractional gen-
eralisation of classical kinematics. In order to understand the problem we will
follow this logic.

Let us calculate F̃
X

and F̃
x

for the rigid-body motion under the assumption that

in RC fractional derivative the terminals are a = XA − L/2 and b = L/2 + XA

(thus, we calculate the RC derivative on the interval with length L, and XA is
the point of interest). Hence we have

(3.41) F̃
X

= ℓα−1

(

L

2

)1−α

R,

and

(3.42) F̃
x

= ℓα−1

(

L

2

)1−α

R−1.

So, from Eqs. (3.41) and (3.42) we see that only for

(3.43) ℓ =
L

2
,
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the pure rotation is obtained and that is the reason this relation is chosen as
a definition of ℓ.

Knowing the explicit definition of ℓ the transformations of deformation gra-
dients can be expressed as

F∗ = QF,(3.44)

F̃
X

∗

= QF̃
X

,(3.45)

F̃
x

∗

= F̃
x
Q−1,(3.46)

so
α

F∗ = QF̃
X
F−1Q−1(F̃

x
Q−1)−1 = QF̃

X
F−1F̃

x
= Q

α

F,(3.47)

α

F
X

∗ = QF̃
X
F−1Q−1 = Q

α

F
X
QT,(3.48)

α

F
x

∗ = F̃
x
Q−1QF =

α

F
x
.(3.49)

From Eqs. (3.44)-(3.49) it appears that all fractional counterparts of classical
measures of deformation keep the same objectivity relations. Similarly to the
classical approach also in this approach any material field (like e.g., C,E) is
unaffected by a rigid-body motion superimposed on current configuration.

4. Fractional linear elasticity – isotropy

4.1. Infinitesimal fractional strains

4.1.1. Finite fractional strains in terms of fractional displacement gradient. Let
us consider the relation between fractional displacement gradient tensor and
fractional strains. As in the classical continuum mechanics one can define the
relation between strains and displacement gradient tensor utilising introduced
fractional gradient tensors F̃

X
and F̃

x
.

The displacements in the material description U are defined as (U and should
not be confused with the right stretch tensor defined previously):

(4.1) U(X, t) = x(X, t) −X,

and its fractional gradient

(4.2) Grad Ũ
X

= F̃
X
− I or ℓα−1 D

XA

αUa = (F̃
X

aA − IaA)ea ⊗EA,

thus we have

(4.3) F̃
X

= Grad Ũ
X

+ I.
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Similarly, the displacements in spatial description u are defined as

(4.4) u(x, t) = x −X(x, t),

and its fractional gradient

(4.5) grad ũ
x

= i − F̃
x
, or ℓα−1D

xa

αuA = (iAa − F̃
x

Aa)EA ⊗ ea,

thus we have

(4.6) F̃
x

= i − grad ũ
x
.

By applying Eqs. (4.3) and (4.6) into the fractional strain definitions Eqs. (3.30)
and (3.31) we obtain their dependence on the fractional displacement gradients.
Thus one obtains:

Ẽ
X

= 1
2(Grad Ũ

X
+ Grad Ũ

X

T + Grad Ũ
X

T Grad Ũ
X

),(4.7)

ẽ
X

= 1
2(−Grad Ũ

X

−1 − Grad Ũ
X

−T − Grad Ũ
X

−T Grad Ũ
X

−1),(4.8)

and

Ẽ
x

= 1
2(− grad ũ

x

−1 − grad ũ
x

−T + grad ũ
x

−T grad ũ−1

x
),(4.9)

ẽ
x

= 1
2(grad ũ

x
+ grad ũ

x

T − grad ũ
x

T grad ũ
x
),(4.10)

and

(4.11)
α

E = 1
2

[

(Grad Ũ
X

+ Grad Ũ
X

T) − (grad ũ
x

−1 + grad ũ
x

−T)

− (∇u + ∇uT) + (. . . )
]

,

(4.12)
α
e = 1

2

[

−(Grad Ũ
X

−1 + Grad Ũ
X

−T) + (grad ũ
x

+ grad ũ
x

T)

+ (∇u−1 + ∇u−T) + (. . . )
]

.

For definitions
α

E and
α
e we have omitted second- and third-order terms de-

noting them (. . . ) for clarity.

Of course for α = 1 we have classical solution (Grad Ũ
X

−1
= −∇u and

grad ũ
x

−1 = −∇U like in classical continuum mechanics where ∇u = −∇U−1

and consequently ∇U = −∇u−1), so

E = 1
2(∇U + ∇UT + ∇UT∇U) = 1

2(−∇u−1 −∇u−T + ∇u−T∇u−1),(4.13)

e = 1
2(∇u + ∇uT −∇uT∇u) = 1

2(−∇U−1 −∇U−T −∇U−T∇U−1),(4.14)

where ∇ stands for classical gradient.
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4.1.2. Small fractional strains. If we now take into account small deformation as-
sumption, understood as omitting higher order terms in above strain definitions,
we obtain infinitesimal fractional Cauchy’s strain tensor

(4.15)
3

ε =
1

2

[

Grad Ũ
X

+ Grad Ũ
X

T
]

=
1

2

[

grad ũ
x

+ grad ũ
x

T
]

.

It is clear that for a rigid body motion, when displacement field is independent
from a spatial variable [26], we obtain from Eq. (4.15)

3

ε = 0 (cf. Sec. 3.3, and
RC derivative properties discussed in Sec. 2).

And again for α = 1 classical Cauchy’s strain tensor is recovered

(4.16) ε =
3

ε =
1

2

[

∇U + ∇UT
]

=
1

2

[

∇u + ∇uT
]

.

4.1.3. Some comments on one-dimensional case. For one-dimensional case
Eq. (4.15) reduces to the following relation:

(4.17)
3

ε = Grad Ũ
X

=
1

2
ℓα−1D

X

αU,

or more explicitly when applying RC definition (cf. Eq. (2.6)) we have

(4.18)
3

ε = ℓα−1 Γ (2 − α)

2

(

C
a1D

α
XU − C

XDα
a2U

)

.

The result given by Eq. (4.18) allows to observe crucial differences with one
obtained in [22] (Eq. 9), [26] (Eq. 2.7) and [27] (Eq. 20). Thus first, as men-
tioned, Eq. (4.18) is obtained as a special case of general fractional finite strains.
Second, in contrast to the previous results, in Eq. (4.18) the fractional derivative
operates on the finite interval. Finally, the length scale ℓ is given explicitly, and
is in the relation with the interval over which the fractional differential operator
acts.

As a concluding remark of this section, it is important, that by analogy
to [27], Eq. (4.18) can be expressed in terms of the so-called Marchaud or Riesz
fractional derivatives.

4.2. Boundary value problem

Let us consider the problem of static deformation under the assumption that
material is linear elastic and small fractional deformation holds. The governing
equations are
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(4.19)



















































σij,j + bi = 0,
3

εij = 1
2ℓα−1

(

D
Xj

αUi + D
Xi

αUj

)

,

σij = Le
ijkl

3

εij ,

Ui = Ǔi, X ∈ ΓU ,

σijnj = ťi, X ∈ Γσ,

ΓU ∩ Γσ = ∅ and ΓU ∪ Γσ = Γ.

In above we have denoted: σ is the Cauchy stress tensor, b is the body force,
Le is the stiffness tensor, n is the outward unit normal vector, t is the Cauchy
traction vector, ΓU and Γσ are parts of boundary Γ where the displacements
and the tractions are applied, respectively.

5. Numerical example

5.1. Description of the problem

To show the main features of the proposed formulation let us consider one-
dimensional tension of fractional continuum body (Fig. 5). Total length of the
body is l = 1, and b

E
= 0.1. The body is fixed at the left end (U(X = 0) = 0)

while on the right end the displacement (U(X = l) = Ǔ = 0.01l) is applied. The
computations are carried out for the following set of crucial parameters in the
presented description:

• the order of fractional derivative α ∈ {0.2, 0.5, 0.9, 1.0},and
• the length scale ℓ ∈ {1%l, 10%l, 30%l}.

5.2. Numerical scheme

According to Sec.4.2, the analysed problem of one-dimensional tension of the
fractional continua under linear elasticity with Dirichlet’s boundary conditions
is defined by

(5.1)



















∂

∂X
(Grad Ũ

X
) +

b

E
= 0,

U(X = 0) = 0,

U(X = l) = Ǔ = 0.01l.

Taking into account the result given by Eq. (4.18), it is clear that to solve
Eq. (5.1) we need to calculate adequate left and right Caputo’s derivatives of U .
Discrete form of Eq. (5.1) is obtained through the following logic.
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Fig. 5. Spatial discretization for one-dimensional fractional continuum body.

We introduce the homogeneous grid of nodes (see Fig. 5). We see, that addi-
tional fictitious nodes X−m, . . . ,X−1 and XN+1, . . . ,XN+m placed outside the
domain [X0,XN ] are introduced. We denote a value of the displacement at the
node Xi as U(Xi) = Ui. Next, by analogy as in [35], we assume that for all ficti-
tious nodes on the left the displacements are U−m = U−m+1 = . . . = U−1 = U0

and on the right the displacements are UN+m = UN+m−1 = . . . = UN+1 = UN .
For calculation of the displacements Ui for i = 1, 2, . . . , N − 1 we use the

following approximation of first-order derivative (backward difference):

(5.2)
∂

∂X

(

Grad Ũ
X

)∣

∣

X=Xi

∼=
Grad Ũ

X

∣

∣

X=Xi
− Grad Ũ

X

∣

∣

X=Xi−1

∆X

= ℓα−1 Γ (2 − α)

2∆X

(

C
Xi−m

Dα
XU

∣

∣

X=Xi
− C

XDα
Xi+m

U
∣

∣

X=Xi

− C
Xi−m−1

Dα
XU

∣

∣

X=Xi−1
+ C

XDα
Xi+m−1

U
∣

∣

X=Xi−1

)

.

Now we determine discrete form of the fractional operators occurring in (5.2).
There are many numerical schemes for the fractional equations containing the
left and right fractional derivatives (see [35, 36]). These schemes are based on
the modified trapezoidal rule [7, 37, 38]. For α ∈ (0, 1) the left Caputo derivative
is approximated by

(5.3) C
Xi−m

Dα
XU

∣

∣

X=Xi
=

1

Γ (1 − α)

Xi
∫

Xi−m

U ′(τ)dτ

(Xi − τ)α

∼= (∆X)1−α

Γ (3 − α)

{

[(m − 1)2−α − (m + α − 2)m1−α]U ′(Xi−m) + U ′(Xi)

+

i−1
∑

j=i−m+1

[

(i − j − 1)2−α − 2(i − j)2−α + (i − j + 1)2−α
]

U ′(Xj)
}

.
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Using the forward difference formula for derivatives occurring in (5.3) we finally
obtain the following discrete form of the left Caputo derivative:

(5.4) C
Xi−m

Dα
XU

∣

∣

X=Xi

∼= (∆X)−α

Γ (3 − α)

i+1
∑

j=i−m

Ujv1(i, j),

where

(5.5) v1(i, j) =


















































−(m − 1)2−α + (m + α − 2)m1−α for j = i − m,

−(m − 2)2−α + 3(m − 1)2−α

−(m + α − 2)m1−α − m2−α for j = i − m + 1,

−(i − j − 1)2−α + 3(i − j)2−α

−3(i − j + 1)2−α + (i − j + 2)2−α for j = i − m + 2, . . . , i − 1 ∧ j 6= i,
22−α − 3 for j = i,
1 for j = i + 1,
0 otherwise.

Similarly, for the right Caputo derivative we obtain the following formula:

(5.6) C
XDα

Xi+m
U

∣

∣

X=Xi
=

−1

Γ (n − α)

Xi+m
∫

Xi

U ′(τ)dτ

(τ − Xi)
α

∼= −(∆X)1−α

Γ (3 − α)

{[

(m − 1)2−α − (m + α − 2)m1−α
]

U ′(Xi+m) + U ′(Xi)

+

i+m−1
∑

j=i+1

[

(j − i − 1)2−α − 2(j − i)2−α + (j − i + 1)2−α
]

U ′(Xj)
}

∼= (∆X)−α

Γ (3 − α)

i+m+1
∑

j=i

Ujw1(i, j),

where the coefficients w1(i, j) have the form

(5.7) w1(i, j) =


















































−(m − 1)2−α + (m + α − 2) m1−α for j = i + m + 1,

−(m − 2)2−α + 3(m − 1)2−α

− (m + α − 2) m1−α − m2−α for j = i + m,

−(j − i − 2)2−α + 3(j − i − 1)2−α

−3(j − i)2−α + (j − i + 1)2−α for j = i + 2, . . . , i + m − 1 ∧ j 6= i + 1,
22−α − 3 for j = i + 1,
1 for j = i,
0 otherwise.
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In a similar way, we determine the discrete form of other derivatives occurring
in the expression (5.2), and we have

C
Xi−m−1

Dα
XU

∣

∣

X=Xi−1

∼= (∆X)−α

Γ (3 − α)

i
∑

j=i−m−1

Ujv2 (i, j),(5.8)

C
XDα

Xi+m−1
U

∣

∣

X=Xi−1

∼= (∆X)−α

Γ (3 − α)

i+m
∑

j=i−1

Ujw2 (i, j),(5.9)

where the coefficients v2 (i, j) and w2 (i, j) are as follows:

(5.10) v2 (i, j) =


























































−(m − 1)2−α + (m + α − 2) m1−α for j = i − m − 1,

−(m − 2)2−α + 3(m − 1)2−α

− (m + α − 2)m1−α − m2−α for j = i − m,

−(i − j − 2)2−α + 3(i − j − 1)2−α

−3(i − j)2−α + (i − j + 1)2−α for j = i − m + 1, . . . , i − 2 ∧ j 6= i − 1,

22−α − 3 for j = i − 1

1 for j = i,

0 otherwise,

and

(5.11) w2 (i, j) =


























































−(m − 1)2−α + (m + α − 2)m1−α for j = i + m,

−(m − 2)2−α + 3(m − 1)2−α

− (m + α − 2) m1−α − m2−α for j = i + m − 1,

−(j − i − 1)2−α + 3(j − i)2−α

−3(j − i + 1)2−α + (j − i + 2)2−α for j = i + 1, . . . , i + m − 2 ∧ j 6= i,

22−α − 3 for j = i,

1 for j = i − 1,

0 otherwise.

Using the formulas (5.2), (5.4), (5.6), (5.8) and (5.9), we can describe a discrete

form of the fractional operator
∂

∂X
(Grad Ũ

X
) as
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(5.12)
∂

∂X
(Grad Ũ

X
)
∣

∣

X=Xi

∼= ℓα−1

(4 − 2α)(∆X)1+α

( i+1
∑

j=i−m

Ujv1(i, j) −
i+m+1
∑

j=i

Ujw1(i, j)

−
i

∑

j=i−m−1

Ujv2(i, j) +

i+m
∑

j=i−1

Ujw2(i, j)

)

.

Finally, we present the discrete form of the considered problem (5.1). For cal-
culation of displacements U0, U1, . . . , UN we need to solve the system of N + 1
linear equations. For every grid node Xi, where i = 0, . . . , N , we can write the
following equations:

(5.13)















































U0 = 0,
i+1
∑

j=i−m

Ujv1(i, j) −
i+m+1
∑

j=i

Ujw1(i, j)

−
i

∑

j=i−m−1

Ujv2(i, j) +

i+m
∑

j=i−1

Ujw2(i, j) = − b

F · E ,

UN = 0.01l.

where

(5.14) F =
ℓα−1

(4 − 2α)(∆X)1+α
.

The approximation for fractional strains can be written as
• for X0 we use forward difference for derivatives in Eqs. (5.3) and (5.6)

(5.15)
3

ε = Grad Ũ
X

∣

∣

X=X0

∼= F∆X

[ 1
∑

j=−m

Ujv1(0, j) −
m+1
∑

j=0

Ujw1(0, j)

]

,

• for X1÷XN−1 we use central difference for derivatives in Eqs. (5.3) and (5.6)

(5.16)
3

ε = Grad Ũ
X

∣

∣

X=Xi

∼= F∆X

2

[ i+1
∑

j=i−m−1

Uj [v1(i, j) + v2(i, j)] −
i+m+1
∑

j=i−1

Uj [w1(i, j) + w2(i, j)]

]

.

• for XN we use backward difference for derivatives in Eqs. (5.3) and (5.6)

(5.17)
3

ε = Grad Ũ
X

∣

∣

X=XN

∼= F∆X

[ N
∑

j=N−m−1

Ujv2(N, j) −
N+m
∑

j=N−1

Ujw2(N, j)

]

.
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As an illustrative example let us consider the case for m = 2. We obtain from
Eq. (5.2)

∂

∂X
(Grad Ũ

X
)
∣

∣

X=Xi

∼= F
[

BUi−3 + (C − 2B)Ui−2 + (B − 2C + 2)Ui−1(5.18)

+ (2C − 4)Ui + (B − 2C + 2)Ui+1

+ (C − 2B)Ui+2 + BUi+3

]

,

where

B = 1 − α21−α,

C = 22−α − 2.

Similarly, for fractional strains we have:
• for X0

3

ε = Grad Ũ
X

∣

∣

X=X0
(5.19)

∼= F∆X
[

− BU−2 + (B − C)U−1 + (C − 2)U0 + (2 − C)U1

+ (C − B)U2 + BU3

]

,

• for X1 ÷ XN−1

3

ε = Grad Ũ
X

∣

∣

X=Xi
(5.20)

∼= F∆X

2

[

−BUi−3 − CUi−2 + (B − 2)Ui−1 + (2 − B)Ui+1

+ CUi+2 + BUi+3

]

,

• for XN

3

ε = Grad Ũ
X

∣

∣

X=XN
(5.21)

∼= F∆X
[

−BUN−3 + (B − C)UN−2 + (C − 2)UN−1 + (2 − C)UN

+ (C − B)UN+1 + BUN+2

]

.

5.3. Numerical results

In Figs. 6, 7 and 8 (right side) the computations for BVP defined by Eqs (5.1)
for b/E = 0.1 are presented. Comparing with classical solution α = 1 we see
that fractional continua enable us to obtain a family of solutions dependently on
chosen α (the order of fractional kinematics) and length scale ℓ.

It is observed that by decreasing ℓ one captures classical solution almost
independently of α. This situation is somehow equivalent to local theory. On
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Fig. 6. The comparison of strains distribution and displacements through the length of the
body for α = 0.2, and selected ℓ and m for b/E = 0.1.

the other hand, by making ℓ bigger one observes stronger discrepancy, thus the
surrounding of the point of interest influences the results more considerably.

One should notice that for α = 0.2 ‘oscilations’ of displacements can occur
cf. Fig. 6. In this sense, it seems that for specific physical process some α are not
allowed.
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Fig. 7. The comparison of strains distribution and displacements through the length of the
body for α = 0.5, and selected ℓ and m for b/E = 0.1.

Figures 6, 7 and 8 (left side) present the strains distribution through the
length l of the analysed problem. We observe that for α ∈ (0, 1), in general,
different values of strain appear comparing with classical solution for α = 1.
Thus, α and ℓ induce the change of the stiffness of the body.
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Fig. 8. The comparison of strains distribution and displacements through the length of the
body for α = 0.9, and selected ℓ and m for b/E = 0.1.

6. Conclusions

In this paper the concept of fractional continua is presented. This concept
shows a new way, contrary to the existing models, of utilising fractional calculus
in continuum mechanics to formulate non-local theory. Fractional counterparts
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of commonly known measures such as left and right Cauchy–Green’s tensors, left
and right stretch tensors etc. are introduced. It is also presented that objectivity
requirements hold in exactly the same way as those in the classical description.

Based on the results of the boundary value problem showing one-dimensional
deformation of fractional linear elastic body, the role of the non-local kinemat-
ics based on the fractional differential operators is presented. The numerical
solution is obtained using generalised finite difference method. It is concluded
that fractional continua dependently of their order and length scale can provide
the opportunity for deeper insight into the analysed problem than classical ap-
proach. In this sense, the order of fractional continua and length scale become
additional material parameters, whose value should be identified for specific type
of material under consideration.

It is clear that the classical formulation is recovered as a special case of the
introduced generalisation.
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