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Solvability of a theory of anti-plane shear

with partially coated boundaries
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We consider the anti-plane shear of an elastic solid whose boundary is partially
reinforced by a thin solid film represented by the union of a finite number of open
curves. The solvability of the resulting boundary value problems is complicated by the
presence of end-point conditions which must be satisfied at the ends of each section
of the reinforcing film. In order to avoid complicated solvability conditions which
carry no clear physical meaning, we modify the boundary integral equation method
using an equivalent (lower-order) reinforcement condition which leads to the desired
solvability results for the corresponding boundary value problems.
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1. Introduction

The modelling of the mechanical behaviour of materials in which the
separate mechanics of the bounding surface is known to significantly affect the
overall deformation of the bulk continues to attract considerable interest in the
literature. This class of problems is of particular interest to researchers working
in the emerging area of nanomechanics in which the effects of surface energy
have been included in continuum models in an attempt to understand the size-
dependency of material properties at the nano-scale (see, for example, [1–3]).

In many cases, the contribution of surface mechanics can be captured by
studying the mathematically equivalent problem of a solid whose boundary is
coated by or reinforced with a thin solid film. Essentially, this idea of boundary
reinforcement allows for the incorporation of the effects of surface stresses on
the boundary of the solid through a higher order boundary condition which
then forms part of a series of non-standard boundary value problems for the
corresponding displacement field.

Boundary value problems for Laplace’s equation involving a reinforcement
boundary condition arise, for example, in the corresponding linear theory of
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anti-plane shear deformations of an elastic solid. In [4], the authors considered
such boundary value problems but only in the case when the reinforced part of
the boundary consisted of a finite number of sufficiently smooth closed curves.
The more general case in which the reinforced section of the boundary can be
represented by a finite number of open curves is of practical relevance [5] since
it allows for the modelling of a wider class of problems. Unfortunately, this more
general case is associated with reinforcement boundary conditions posed over
a series of open arcs and the associated end-point conditions to be satisfied at
the ends of each arc mean that the standard boundary integral equation ap-
proach cannot be applied in this particular case without imposing solvability
conditions which carry no clear physical meaning. Instead, we proceed by uti-
lizing an alternative lower-order form of the reinforcement boundary condition
which is designed to automatically incorporate the corresponding end-point con-
ditions. This particular form of the reinforcement boundary condition allows for
the application of the boundary integral equation method albeit in generalized
form. We find that the corresponding interior and exterior boundary value prob-
lems are reduced directly to Fredholm integral equations of the second kind from
which solvability results are deduced in the appropriate classical function spaces.

2. Preliminaries

We consider the equilibrium of a deformable solid occupying a cylindrical
region whose generators are parallel to the x3-axis of a rectangular cartesian
coordinate system. The cylinder is assumed to be sufficiently long so that end
effects in the axial direction are negligible. A state of anti-plane shear is charac-
terized by a displacement field u = (u1, u2, u3) of the form

u1(x1, x2, x3) = u2(x1, x2, x3) = 0, u3(x1, x2, x3) = w(x),

where the out-of-plane displacement u3 is a function w of x ≡ (x1, x2) on the
cross-section S of the cylinder. We assume that S is occupied by a homogeneous
and isotropic elastic material with shear modulus µ1 > 0. The boundary ∂S of S
is described by the union of a finite number of sufficiently smooth closed curves.
We regard a subset Γ (consisting of a finite number m of sufficiently smooth open
curves Li with endpoints ai and bi, such that Lj and Lk have no point in common
for j 6= k, i, j, k = 1, . . . ,m) of ∂S as being coated with a thin, homogeneous
and isotropic elastic film with separate shear modulus µ2 > 0 (see Fig. 1).

It is well-known that, in the absence of body forces, the governing equation
for the anti-plane displacement field w is given by

(2.1) ∆w(x) = 0, x ∈ S,

where ∆ ≡ ∂2

∂x2

1

+ ∂2

∂x2

2

is the Laplace operator in R2.



Solvability of a theory of anti-plane shear. . . 115

Fig. 1. Interior problem.

The boundary condition on the (reinforced) subset Γ of the boundary ∂S
couples the response of the solid to that of the coating on Γ and is given by [4]:

(2.2)
1

µ1
σ3n =

∂w

∂n
= −hµ2

µ1

d2w

ds2
+ g.

Here, Γ is parametrized by arclength s and we denote by n(s) the unit outward
normal to Γ at s ∈ Γ , h is the thickness of the coating, ∂( )/∂n = n·∇ represents
the normal derivative, σ3n is the usual stress component in the Cartesian basis
and g represents a prescribed traction along Γ.

In addition to (2.2), we must impose conditions at the end-points of Γ . Nat-
ural end-point conditions describe ’free-ends’ at which the appropriate shearing

force given by hµ2
dw

ds
must vanish. Consequently, we impose conditions of the

form

(2.3)
dw

ds
(ai) =

dw

ds
(bi) = 0, i = 1, . . . ,m.

Alternatives to the end-point conditions (2.3) include the cases when one or both
of the end-points of the coating are fixed, for example,

(2.4)

dw

ds
(ai) = 0, w(bi) = 0, or

w(ai) = 0, w(bi) = 0, i = 1, . . . ,m.

Finally, we recall that the fundamental solution for the Laplace operator is
given by

D(x, y) = − 1

2π
ln |x− y|,

where x = (x1, x2) and y = (y1, y2) denote generic points in R2.



116 T. Sigaeva, P. Schiavone

3. Alternative form of the reinforcement conditions

The reinforcement condition (2.2) is required over open arcs and when cou-
pled with the end-point conditions (2.3) or (2.4) leads to a nonstandard boundary
value problem whose analysis is not accommodated by the methods used in [4].
Instead, we proceed by integrating (2.2) along the reinforcement using the ac-
companying end-point conditions (from (2.3) or (2.4)) to evaluate the constants
of integration. In this way, we incorporate the reinforcement condition (2.2)
and the corresponding end-point conditions into an equivalent single lower-order
boundary condition on the reinforcement.

We begin by writing (2.2) and (2.3) as

(3.1)

d2w

ds2
(x) = − 1

hµ2
(σ3n(x) − t(x)) = − 1

hµ2
S(x), x ∈ Γ,

dw

ds
(ai) =

dw

ds
(bi) = 0, i = 1, . . . ,m,

where t(x) = h(µ2/µ1)g(x). Integrate (3.1)1 over the interval [ai, x], x ∈ Γ :

dw

ds
(x) − dw

ds
(ai) = − 1

hµ2

x
∫

ai

S(t)dst, x ∈ Li.

Using the end-point conditions (3.1)2, we obtain

(3.2)
dw

ds
(x) = − 1

hµ2

x
∫

ai

S(t)dst, x ∈ Li.

To satisfy the remaining condition
dw

ds
(bi) = 0, i = 1, . . . ,m, from (3.2) it is

necessary and sufficient that

(3.3)

bi
∫

ai

S(t)dst = 0, i = 1, . . . ,m,

which expresses the requirement that S be a self-equilibrating system of tractions
along the arcs Li, i = 1, . . . ,m. It is clear that (3.2) and (3.3) are equivalent
to (3.1).

Integrating (3.2) again, we obtain

(3.4) w(x) − w(ai) = − 1

hµ2

x
∫

ai

t2
∫

ai

S(t1)dst1dst2 , x, t2 ∈ Li, i = 1, . . . ,m.



Solvability of a theory of anti-plane shear. . . 117

Here w(ai) are constrained by conditions (3.3) and must therefore be chosen
accordingly. In fact, (3.3) requires that

(3.5) w(ai) =
1

|Li|

bi
∫

ai

(w(x) +
1

hµ2

x
∫

ai

t2
∫

ai

S(t1)dst1dst2 + λS(x))dsx,

x, t2 ∈ Li, i = 1, . . . ,m,

where λ is a suitably chosen parameter introduced to ensure that the term λS
is dimensionally correct.

It is seen that the reinforcement conditions (3.1) are equivalent to the Dirich-
let condition (3.4) in which w(ai) are given by (3.5). For convenience, we write
the specific values w(ai) from (3.5) as Ci, i = 1, . . . ,m. Then, from (3.4), we
have the following Dirichlet boundary condition equivalent to (3.1):

(3.6) w(x) = − 1

hµ2

x
∫

ai

t2
∫

ai

S(t1)dst1dst2 + Ci, x, t2 ∈ Li, i = 1, . . . ,m.

3.1. The case of ’free-fixed’ and ’fixed-fixed’ end-point conditions

We can also consider end-point conditions given by (2.4). In the case of (2.4)1,
we again arrive at Eq. (3.4) with the w(ai) constrained by the requirement that
w(bi) = 0. Consequently, we choose

(3.7) w(ai) =
1

hµ2

bi
∫

ai

t2
∫

ai

S(t1)dst1dst2 , i = 1, . . . ,m.

Using (3.7) in (3.4) we again obtain a Dirichlet condition of the form (3.6) with
the constants Ci, i = 1, . . . ,m given by (3.7).

In the case of (2.4)2, an integration over the interval [ai, x] x ∈ Li, i =
1, . . . ,m, again brings us to

dw

ds
(x) − dw

ds
(ai) = − 1

hµ2

x
∫

ai

S(t)dst, x ∈ Li.

But now
dw

ds
(ai) 6= 0, so we integrate again over the interval [ai, x]:

w(x) − w(ai) −
dw

ds
(ai)(x− ai) = − 1

hµ2

x
∫

ai

t2
∫

ai

S(t1)dst1dst2 , x ∈ Li.
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Applying the condition w(ai) = 0,

(3.8) w(x) =
dw

ds
(ai)(x− ai) −

1

hµ2

x
∫

ai

t2
∫

ai

S(t1)dst1dst2 , x ∈ Li.

We choose the value of
dw

ds
(ai) to satisfy the condition w(bi) = 0, i.e.:

w(bi) =
dw

ds
(ai)(bi − ai) −

1

hµ2

bi
∫

ai

t2
∫

ai

S(t1)dst1dst2 = 0,

so that

(3.9)
dw

ds
(ai) =

1

hµ2(bi − ai)

bi
∫

ai

t2
∫

ai

S(t1)dst1dst2 .

Eq. (3.8) with Eq. (3.9) now leads to the following Dirichlet condition on Γ :

w(x) =
(x− ai)

hµ2(bi − ai)

bi
∫

ai

t2
∫

ai

S(t1)dst1dst2 −
1

hµ2

t2
∫

ai

x
∫

ai

S(t1)dst1dst2 , x ∈ Li,

or in the form of a Dirichlet condition similar to (3.6), we have

(3.10) w(x) = Ci(x− ai) −
1

hµ2

t2
∫

ai

x
∫

ai

S(t1)dst1dst2 , x ∈ Li,

where the constants Ci, i = 1, . . . ,m are given by the values of
dw

ds
(ai) from

(3.9).

4. Mixed boundary-value problems

In the formulation of the corresponding boundary value problems, we first
consider the case when S is a bounded domain enclosed by sufficiently smooth
boundary ∂S. Write ∂S = ∂S1 ∪ Γ where the curve ∂S1 represents the non-
reinforced section of ∂S. We divide ∂S1 into two sets of open curves ∂Su =
∂Su1 ∪ ∂Su2, ∂St = ∂St1 ∪ ∂St2 (generally, they can have common points c1, c2)
and let Γ represent two open curves L1 and L2 with endpoints a1, b1 and a2,
b2, respectively, such that they have no point in common. The case where ∂S1 is
divided into more than four parts and where Γ consists of a finite number (> 2)
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of open curves is treated similarly without any significant modifications to our
method. One of the domains satisfying this boundary-value problem is shown on
Fig. 1.

The interior mixed boundary value problem requires that we find w ∈ C2(S)∩
C1(S̄ \ γ) such that (2.1) is satisfied in S and

w(x) = w(0)(x), x ∈ ∂Su,

∂w(x)

∂n(x)
= t(0)(x), x ∈ ∂St,(4.1)

∂w(x)

∂n(x)
= −hµ2

µ1
d2

xw(x) + g(x), x ∈ Γ.

Here, d2
x = dxdx where dx ≡ d/dsx denotes the directional derivative with respect

to s(x) along Γ, γ = {ai, bi, ci} i = 1, 2 and w(0), t(0) are, respectively, functions
of prescribed displacement and stress on ∂Su and ∂St. In addition, we require
the end-point conditions (2.3) (or (2.4)).

The exterior problem is posed similarly except that S is now an unbounded
domain in which we require, additionally, the standard asymptotic condition that
as r = |x| → ∞,

(4.2) w = w∗ + d,

where w∗ = O(r−1) and d is an arbitrary constant.

4.1. Uniqueness result

Theorem 1. Both the interior and exterior problems have at most one so-

lution.

P r o o f. The result follows immediately using classical techniques [6] by
applying Green’s first identity for the Laplace operator over a positively oriented
boundary ∂S to the difference of any two solutions of either the interior or
exterior mixed boundary value problem.

4.2. Reduction to singular integro-differential equations

Without loss of generality, we consider the following mixed reinforcement
problem.
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Find w ∈ C2(S) ∩ C1(S̄ \ γ) such that (2.1) is satisfied in S and

w(x) = 0, x ∈ ∂Su,

∂w(x)

∂n(x)
= 0, x ∈ ∂St,(4.3)

∂w(x)

∂n(x)
= −hµ2

µ1
d2

xw(x) + g(x), x ∈ Γ,

dw

ds
(ai) =

dw

ds
(bi) = 0, i = 1, 2.

When S is bounded, (4.3) will describe the interior problem. When S is infinite,
(4.3), with the added requirement (4.2), will describe the exterior problem.

4.2.1. Interior problem with natural (’free’) end-point conditions. If we apply the
standard boundary integral equation method [6] and seek the solution of the
interior problem in the form of a single-layer potential, we obtain the following
singular integro-differential equation:

(4.4)
1

2
ϕ(x) +

hµ2

2πµ1

∫

Γ

eiθ(x) ϕ(y)

(x− y)2
dy =

∫

Γ

Λ(x, y)ϕ(y)dsy + g(x), x ∈ Γ,

where, Λ(x, y) is a weakly singular kernel. Following standard procedures, we
can show that the imposition of two supplementary conditions on any solution
ϕ of (4.4), namely

(4.5) ϕ(ai) = ϕ(bi) = 0,

(see, for example, [7]), reveals that the singular operator associated with (4.4)
has zero index. This allows for the application of Fredholm’s alternative and
the establishment of solvability results for the corresponding boundary value
problems.

However, the conditions (4.5) have no apparent physical meaning in the con-
text of this theory of reinforcement and are thus inconvenient in any existence
theory.

To address this issue, we will show that if the reinforcement condition (3.1)
is replaced with the alternative lower-order form (3.6), we can establish the
required solvability results without resorting to conditions similar to (4.5).

To this end, we introduce the (in general, multiply-connected) domain ΩI

with sufficiently smooth boundary ∂ΩI constructed so that

(i) S ∈ ΩI , (ii) Γ ∈ ΩI , ∂Su ∪ ∂St ⊆ ∂ΩI .
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We write

ΩI = S +M1 ∪M2, ∂ΩI = ∂Su ∪ ∂St ∪ S1 ∪ S2,

where the subregions M1 and M2 are enclosed by S1, L1 and S2, L2, respectively.
The domains Si (i = 1, 2) are divided, in turn, into two parts: Si1 and Si2 such
that Si1 ∩ Li consists of the endpoints Li and Si2 ∩ Li is the empty set.

Introduce the function P1 satisfying

∆P1(x, y) = 0, x ∈ ΩI ,

P1(x, y) = − 1

2π

∂ ln |x− y|
∂n(y)

, x ∈ ∂ΩI \ (∂St + S1 ∪ S2),

∂P1(x, y)

∂n(x)
= − 1

2π

∂2 ln |x− y|
∂n(x)∂n(y)

, x ∈ ∂St + S1 ∪ S2.

It is well-known [8] that P1 exists uniquely for each y ∈ Γ in the class C2(ΩI)∩
C1(Ω̄I \ γ).

Now seek the solution of the interior mixed reinforcement problem in the
form of a modified double layer potential

(4.6) w(x) = (Wϕ)(x) =

∫

Γ

[
∂D(x, y)

∂n(y)
− P1(x, y)]ϕ(y)dsy, x ∈ S.

It is not difficult to show that all conditions of the interior problem are
satisfied except for the reinforcement boundary condition (3.6) which leads to
the following integral equation:

(4.7)
1

2
ϕ(x) −

bi
∫

ai

[

∂D(x, y)

∂n(y)
− P1(x, y)

]

ϕ(y)dsy

=
1

hµ2

x
∫

ai

t2
∫

ai

S(t1)dst1dst2

− 1

|Li|

bi
∫

ai

(w(x) +
1

hµ2

x
∫

ai

t2
∫

ai

S(t1)dst1dst2 + λS(x))dsx, x, t2 ∈ Li.

Using standard results from [6], we can write (4.7) in the equivalent form of
a Fredholm equation of the second kind:

(4.8)
1

2
ϕ(x) +

bi
∫

ai

K(x, y)ϕ(y)dsy = T ∗(x), x ∈ Li.
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Here, K(x, y) is a Fredholm kernel and T ∗(x) is determined by the data g(x)
prescribed on Γ .

Consequently, Fredholm’s theorems hold for (4.8) and its corresponding ad-
joint equation. According to the properties of a standard double-layer potential
for the Laplace equation as well as those of the function P1, it follows that if we
can show that (4.8) has a unique solution in C1,α(Γ ) whenever T ∗ ∈ C1,α(Γ ),
then the modified potential (4.6) must be the unique solution of the interior
reinforcement problem. To this end, we have the following theorem.

Theorem 2. The homogeneous equation (4.8)0 (i.e. (4.8) with T ∗(x) ≡ 0)
has only the trivial solution.

P r o o f. Let ϕ0(∈ C1,α(Γ )) be a solution of (4.8)0. Then,

w0 = (Wϕ0)(x) =

∫

Γ

[

∂D(x, y)

∂n(y)
− P1(x, y)

]

ϕ0(y)dsy x ∈ S,

solves the homogeneous interior problem (17)0 (i.e. (4.3) with g ≡ 0). The
Uniqueness Theorem now yields w0 = (Wϕ0)(x) = 0, x ∈ S. Consequently,
∂w0(x)

∂n(x)
= 0, x(∈ S) → Γ . By the Lyapunov–Tauber theorem for the double

layer potential 16), we have that
∂w0(x)

∂n(x)
= 0, x (∈ ΩI \ S) → Γ . Using the

definition of P1(x, y) this means that

△w0(x) = 0, x ∈ Ω1 \ S,
w0(x) = 0, x ∈ S12 ∪ S22,

∂w0(x)

∂n(x)
= 0, x ∈ S11 ∪ S21 ∪ Γ.

By the uniqueness result for the classical interior mixed problem for Laplace’s
equation (see [8]), w0(x) = 0 in the bounded domain ΩI \ S. Hence (Wϕ0)
vanishes on both sides of the boundary Γ . The jump relations arising from the
double layer potential [6] now yield that necessarily

W+(ϕ0) −W−(ϕ0) = ϕ0 = 0 on Γ,

which completes the proof.

This theorem now allows us to prove the main existence result for the bound-
ary value problem (4.3).

Theorem 3. The interior problem (4.3) with reinforced boundary Γ has

a unique solution whenever g ∈ C1,α(Γ ), 0 < α < 1. This solution is given

by (4.6) with ϕ ∈ C1,α(Γ ), 0 < α < 1, the unique solution of (4.8) whenever

T ∗ ∈ C1,α(Γ ).
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P r o o f. From what has been said above, Fredholm’s theorems hold for (4.8)
and its associated (adjoint) system. From Theorem 2, the homogeneous system
(4.8)0 has only the trivial solution. Hence, by Fredholm’s theorems and results
on smoothness of solution for equations of the type (4.8) [6], we have that (4.8)
always has a unique solution ϕ ∈ C1,α(Γ ) whenever T ∗ ∈ C1,α(Γ ). Finally, (4.6)
is the unique solution of (4.3) with ϕ ∈ C1,α(Γ ) delivered from (4.8).

4.2.2. Exterior problem with natural end-point conditions The exterior problem
from (4.3) is treated similarly except that now since S is an unbounded do-
main, any solution must also satisfy the asymptotic condition given by (4.2).
We proceed as for the interior problem and introduce the (in general, multiply-
connected) infinite domain ΩE with sufficiently smooth boundary ∂ΩE such that

(i) S ⊂ ΩE ; (ii) Γ ⊂ ΩE ; (iii) (∂Su ∪ ∂St) ⊆ ∂ΩE; (iv) {0} 6∈ Ω̄E .

We write

ΩE = S +M1 ∪M2, ∂ΩE = ∂Su ∪ ∂St ∪ S1 ∪ S2,

where subregions M1 and M2 are enclosed by S1, L1 and S2, L2, respectively.
Si (i = 1, 2) are divided, in turn, into two parts: Si1 and Si2 such that Si1 ∩ Li

consists of the endpoints Li and Si2 ∩Li is empty set.We then seek a solution in
the form

(4.9) w(x) = (Wϕ)(x) =

∫

Γ

[

∂D(x, y)

∂n(y)
− P2(x, y)

]

ϕ(y)dsy, x ∈ S,

where the function P2(x, y) (for each y ∈ Γ ) is the unique solution of the following
mixed boundary value problem in C2(ΩE) ∩ C1(Ω̄E \ γ) satisfying (see [8]):

∆P2(x, y) = 0, x ∈ ΩE ,

P2(x, y) = − 1

2π

∂ ln |x− y|
∂n(y)

, x ∈ ∂ΩE \ (∂St + S1 ∪ S2),

∂P2(x, y)

∂n(x)
= − 1

2π

∂2 ln |x− y|
∂n(x)∂n(y)

, x ∈ ∂St + S1 ∪ S2.

Here ϕ is again an unknown density-function of the Hölder class C1,α(Γ ), α ∈
(0, 1), defined on Γ . The fact that (Wϕ) from (4.9) satisfies the asymptotic

condition (4.2) follows from the asymptotic behaviour of
∂D(x, y)

∂n(y)
as |x| → ∞

and the definition of the function P2 which is chosen specifically to satisfy the
boundary value problem above.
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It is again clear that (4.9) satisfies all the conditions of the exterior problem
from (4.3) except the reinforcement boundary condition (3.6). Proceeding as
above for the interior problem we again obtain Fredholm-type equations for ϕ
on Γ , almost identical to (4.8), for which the analogue of Theorem 2 can be
established. Moreover, Theorem 3 also holds for the exterior problem, except
that the unique solution is now given by (4.9).

Remark 1. The ’free-fixed’ and ’fixed-fixed’ end-point conditions lead only
to insignificant changes in detail in the ensuing integral equations of the
form (4.8). Consequently, it is a relative simple matter to write down similar
existence results for these particular cases.

Finally, we remark that the implementation of the above theory is the subject
of a further paper [9] in which the authors study asymptotic solutions near the
crack tip of an interface crack whose crack faces are coated with a thin reinforcing
film of separate elastic material. We find that the effect of the reinforcement is
to reduce the order of the stress singularity at the crack tip from the classical
O(r−

1

2 ) to O(ln r). In addition, we demonstrate that the reinforcement induces
a displacement field which is smooth locally and bounded at the crack tip.

5. Conclusions

We consider an elastic solid whose boundary is partially reinforced by a thin
elastic coating represented by the union of a finite number of open curves. By
integrating the non-standard higher-order boundary condition on the reinforced
section of the boundary, we obtain an alternative lower-order form of boundary
condition which automatically incorporates the end-point conditions. This allows
for the establishment of appropriate existence results for the corresponding mixed
boundary value problems via the theory of Fredholm integral equations.
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