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This paper investigates linear-elastic response of cracked functionally graded
layers subjected to thermomechanical loading; classical coupled thermoelastic equa-
tions are used in the calculations. The coupled dynamical system of equations ob-
tained from the extended finite element discretization is solved by the Newmark
method in the time domain. Micromechanical models for conventional composites
are used to estimate properties of functionally graded layer. The interaction integral
is then employed to calculate the stress intensity factors at each time step. In addi-
tion, crack propagation phenomenon under thermomechanical shocks is investigated
in this paper. We have used MATLAB software to implement the algorithm and
related code of problem.
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1. Introduction

Functionally graded materials (FGMs) are a new class of composite mate-
rials characterized by the gradual variation in microstructure and material prop-
erties. FGMs were initially designed as thermal barrier materials for aerospace
structural applications and fusion reactors. They are now developed for general
use as structural components in extremely high-temperature environments. FGM
components are generally constructed to sustain severe temperature gradients.
Ceramic materials, because of their excellent properties at high temperatures
and their superior wear and corrosion resistance, are used widely in making of
FGMs. One major limitation of ceramics is their intrinsic brittleness that can
result in fracture under severe thermal shocks. Therefore, the fracture analyses
of FGMs under thermal shocks are important for their durability in engineering
applications.

To adapt the standard finite element method to the fracture computations,
the extended finite element method (XFEM) has been developed, which com-
pletely avoids remeshing [1–3]. This XFEM is based on the partition of unity [4].
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In this method, a discontinuous enrichment function is used along the crack path
in order to describe a discontinuous displacement [2]. Belytschko et al. [5] de-
veloped the method for dynamic crack growth with a loss of hyperbolicity as
a propagation criterion. Rozycki et al. [6] studied the critical time step within
XFEM in explicit dynamic crack propagation with enrichment kept active during
the propagation. Linder and Armero [7] have treated dynamic crack propaga-
tion with embedded discontinuity elements. Menouillard et al. [8] presented
a new method for crack tip enrichment based on allowing the enrichment to be
a function of time.

The response of functionally graded cracked layers under thermomechanical
shocks is found in just a few articles. Noda [9] and Fujimoto and Noda [10, 11]
conducted a series of researches on using the finite element method to obtain the
crack SIFs under thermal loading conditions in the homogeneous and functionally
graded materials. They considered the heat conduction equation where thermo-
coupling has been ignored. Jin and Paulino [12] studied an edge crack in a strip
of a functionally graded material under transient thermal loading conditions.
They employed a multi-layered material model to obtain the temperature field.
Without considering the thermoelastic coupling effect, transient elastodynamic
crack analyses in functionally graded materials have been presented previously
by many researchers in literature using various methods (see [13, 14] for more
references cited therein). Hosseini-Tehrani and Eslami [15] and Hosseini-

Tehrani et al. [16] employed the boundary element method to investigate the
effect of the coupling and inertia terms in dynamical thermal loading problems.
Duflot [17] investigated the static case of thermoelastic fracture by the XFEM
where both 2D and 3D problems with different crack face thermal boundary con-
ditions are included. KC and Kim [18] using the finite element method evaluated
the non-singular T-stress and mixed-mode stress intensity factors in FGMs under
steady-state thermal loads via interaction integral. Wang and Qin [19] devel-
oped a meshless algorithm based on analog equation theory to simulate the static
thermal stress distribution in two-dimensional FGMs. Zamani and Eslami [20]
employed the finite element method to obtain the SIF for a functionally graded
cracked body under coupled classical thermoelastic assumption. They assumed
that the crack remains stationary within simulation. Also the XFEM formula-
tion was implemented by Zamani and Eslami [21] to model the effect of the
mechanical and thermal shocks on a cracked body. The crack was assumed to be
stationary. Feng and Jin [22] examined the fracture behavior of an FGM plate
containing parallel surface cracks with alternating lengths subjected to a ther-
mal shock. Ekhlakov et al. [23] developed a boundary-domain element method
(BDEM) for a transient thermoelastic crack analysis in isotropic, continuously
non-homogeneous and linear elastic FGMs. They considered a stationary edge
crack in a two dimensional finite domain subjected to a thermal shock and com-
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puted stress intensity factors. In addition, they performed a transient thermoelas-
tic crack analysis in two-dimensional, isotropic, continuously non-homogeneous
and linear elastic FGMs subjected to a thermal shock using the Laplace trans-
form technique and the boundary element method [24]. They investigated the
influences of the material gradation, thermo-mechanical coupling, crack orien-
tation and thermal shock loading on the dynamic stress intensity factors for
stationary cracks.

The study of crack propagation phenomena in a functionally graded cracked
layer under thermomechanical shocks using the coupled thermoelastic equations
and the XFEM have not been investigated in the previous studies. In the present
study, the XFEM formulation is implemented to model the effect of thermal
shocks on a functionally graded cracked layer under coupled classical thermoe-
lastic assumption. The Newmark time-integration scheme is used to solve the
dynamical system of matrix equations obtained from the spatial discretization
of initial coupled equations. The most general form of interaction integral for
FGMs is extracted based on the non-equilibrium formulation and the dynami-
cal stress intensity factors are computed in each time step. A MATLAB code is
developed to implement the different stages of computation from mesh gener-
ation to calculation of SIFs and crack propagation simulation. Some numerical
examples are implemented to investigate the validity and accuracy of the writ-
ten computer program. The effects of volume fraction profiles of FGMs on SIFs
are investigated in this paper. The crack is assumed to be moving under thermal
and mechanical shocks. In addition, crack propagation phenomenon is considered
which seems not to be reported with this condition in previous works.

2. General problem formulation

2.1. Governing equations

The general governing equations of the classical coupled thermoelasticity
are the equation of motion (Eq. (2.1)) and the first law of thermodynamics
(Eq. (2.2)), as [25],

σij,j + Bi = ρüi,(2.1)

qi,i + ρctθ̇ + T0(1 + θ/T0)βε̇ii = R,(2.2)

where σij , Bi, ui and qi are components of the stress tensor, components of the
body force vector, components of the displacement vector and components of
the heat flux vector per unit area respectively. Also ρ is the density, ct is the
specific heat capacity, R is the generated heat per unit volume, β = α(3λ + 2µ),
α is the coefficient of thermal expansion and θ = (T − T0). If the temperature
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change θ is small compared to the reference temperature T0, Eq. (2.2) may be
approximately written in the simpler form [25]

(2.3) qi,i + ρctθ̇ + T0βε̇ii = R.

Hooke’s law correlates the stress tensor to the displacement components and
temperature change θ via Eq. (2.4)

(2.4) σij = µ(ui,j + uj,i) + [λuk,k − βθ]δij ,

where µ and λ are Lamé’s constants and they vary with spatial location in FGMs.
According to Fourier’s law of heat conduction we have:

(2.5) qi = −kijθ,j ,

here kij is the coefficient of thermal conduction for a general anisotropic material
and it varies with spatial location in FGMs.

2.2. Space discretization

The system of coupled equations (2.1) and (2.2) does not have a general
analytical solution. The extended finite element model of the problem is obtained
by discretizing the solution domain into a number of arbitrary elements. In the
XFEM formulation, a standard local displacement approximation around the
crack is enriched with discontinuous jump function across the crack faces and
the asymptotic crack tip displacement field around the crack tip [1]. The same
procedure is used for the temperature enrichment [17]. The formulation of the
XFEM for displacement components can be written as [21],

u(x, y, t) =
∑

all nodes

Nn(x, y)an(t) +
∑

n∈Ncr

Nn(x, y)[H(x, y)−H(xn, yn)]bn(t)(2.6)

+
∑

m

∑

n∈Ntip

Nn(x, y)[Fm(r, ϕ)−Fm(rn, ϕn)]cnm(t),

where Ncr is the set of nodes that the discontinuity has in its influence domain,
while Ntip is the set of nodes inside a predefined area around the crack tip (see
Fig. 1). Here, H(x, y) is Heaviside enrichment function and Fm represents crack
tip enrichment functions [26]. Also

an(t) = {au
n(t), av

n(t)}T, bn(t) = {bu
n(t),bv

n(t)}T, cnm(t) = {au
nm(t), av

nm(t)}T

are vectors of the nodal unknowns.
In this study, the crack faces are assumed to be adiabatic so the temperature

is discontinuous along the crack faces and the heat flux is singular at the crack tip.
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Fig. 1. Selection of enriched nodes for edge crack. Circled nodes are enriched by the disconti-
nuity function whereas the squared nodes are enriched by the crack tip enrichment functions.

Thus, the temperature field is discretized similar to the displacement field, but
only with the one crack tip enrichment function [21]

θ(x, y, t) =
∑

all nodes

Nn(x, y)aT
n (t)(2.7)

+
∑

n∈Ncr

Nn(x, y)[H(x, y) − H(xn, yn)]bT
n (t)

+
∑

n∈Ntip

Nn(x, y)[r0.5 sin(ϕ/2) − r0.5
n sin(ϕn/2)]cT

n (t),

where r and ϕ are the usual crack-tip polar coordinates. Also aT
n (t), bT

n (t) and
cT
n (t) are nodal unknowns corresponding to temperature field. Now, the base

element (e) with n nodal points is considered and the displacement components
and the temperature change in the element (e) are approximated by compact
forms as follows:

ue(x, y, t) = Nh(x, y)au
h(t) + Φh(x, y)bu

h(t) + Ψhm(x, y)cu
hm(t),(2.8)

ve(x, y, t) = Nh(x, y)av
h(t) + Φh(x, y)bv

h(t) + Ψhm(x, y)cv
hm(t),(2.9)

θe(x, y, t) = Nh(x, y)aT
h (t) + Φh(x, y)bT

h (t) + Ψhm(x, y)cT
hm(t),(2.10)

h = 1, 2, . . . , ne, m = 1, 2, 3, 4, where ne is the number of nodes in element (e)
and cT

hm(t) are components of vector cT
hm(t) defined by

(2.11) c
T(t) = {cT

11, 0, 0, 0, c
T
21, 0, 0, 0, c

T
31, 0, 0, 0, c

T
41, 0, 0, 0}.
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Also Φ and Ψ exhibit the enriched parts of both displacement and temperature
fields. They can be related to face and tip enrichment, respectively.

Φh(x, y) = Nh(x, y)[H(x, y) − H(xh, yh)],(2.12)

Ψh(x, y) = Nh(x, y)
[
r0.5 sin(ϕ/2) − r0.5

h sin(ϕh/2),(2.13)

r0.5 cos(ϕ/2) − r0.5
h cos(ϕh/2),

r0.5 sin(ϕ) sin(ϕ/2) − r0.5
h sin(ϕh) sin(ϕh/2),

r0.5 sin(ϕ) cos(ϕ/2) − r0.5
h sin(ϕh) cos(ϕh/2)

]
.

Applying the weighted residual integral to the equation of motion (Eq. (2.1))
and the energy equation (Eq. (2.3)) with respect to the weighting functions
Sl(x, y), the formal Galerkin approximations reduce to

∫

V (e)

(σij,j + Bi − ρüi)Sl dV = 0, l = 1, 2, . . . , ns,(2.14)

∫

V (e)

(qi,i + ρctθ̇ + T0βε̇ii − R)Sl dV = 0, l = 1, 2, . . . , ns,(2.15)

where ns is the number of shape functions of the element (e) and Sl is the
component of the vector S

(2.16) S = {N1, N2, N3, N4, Φ1, Φ2, Φ3, Φ4, Ψ1m, Ψ2m, Ψ3m, Ψ4m}, m = 1, 2, 3, 4.

By substituting Eqs. (2.4) and (2.5) into Eqs. (2.14) and (2.15) and using the
Gauss divergence theorem, after some manipulations, the following equations for
two-dimensional coupled thermoelasticity are obtained:

(2.17)
∫

V (e)

ρüiSl dV +

∫

V (e)

∂Sl

∂xj
[µ(ui,j + uj,i) + λuk,kδij] dV −

∫

V (e)

βθ
∂Sl

∂xi
dV

=

∫

V (e)

BiSl dV +

∫

A(e)

tiSl dA, i, j = 1, 2,

(2.18)
∫

V (e)

ρctθ̇Sl dV −
∫

V (e)

qi
∂Sl

∂xi
dV +

∫

V (e)

T0βu̇i,iSl dV

=

∫

V (e)

RSl dV −
∫

A(e)

(qini)Sl dA, l = 1, 2, . . . , ns,
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where ti is component of traction force vector and ne = 4 for a four node element.
By substituting Eqs. (2.8)–(2.10) into Eqs. (2.17) and (2.18), and by assembling
them into a matrix form the general finite element coupled equation is written
as follows:

(2.19) [M ]{∆̈} + [C]{∆̇} + [K]{∆} = {Fr},

where [M ], [C] and [K] are the mass, damping, and stiffness matrices, respec-
tively. Generally, for the base element (e) which is enriched with both Heaviside
and crack tip enrichment functions, these matrices can be written as follows:

[M ](e) =

[
[M1] [0]48×24

[0]24×48 [0]24×24

]
,(2.20)

[C](e) =

[
[0]48×48 [0]48×24

[C1] [C2]

]
,(2.21)

[K](e) =

[
[K1] [K2]

[0]24×48 [K3]

]
.(2.22)

{Fr} is the force vector defined by

(2.23) {F}(e) =





∫

V (e)

[S]T{Bf} dV +

∫

A(e)

[S]T {Tf} dA

∫

V (e)

R[St]TdV −
∫

A(e)

(qxnx + qyny)[St]T dA





and {∆} is the nodal displacements and temperature changes vector,

(2.24) {∆}(e) = {au
h, av

h,bu
h,bv

h, cu
hm, cv

hm, aT
h ,bT

h , cT
hm}T, h,m = 1, . . . , 4.

Also {∆̇} and {∆̈} are the first and second time derivative of {∆}, respectively.
Components of mass, damping, and stiffness matrices are obtained as follows:

[M1] =

∫

V (e)

ρ[S]T[S] dV ,(2.25)

[C1] =

∫

V (e)

T0β[St]T[S1] dV,(2.26)

[C2] =

∫

V (e)

ρct[St]T[St]dV ,(2.27)
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[K1] =

∫

V (e)

[S2]
T[D][S2] dV ,(2.28)

[K2] = −
∫

V (e)

β[S1]
T [St] dV .(2.29)

For isotropic materials kx = ky = k, therefore [K3] is obtained as follows:

(2.30) [K3] =

∫

V (e)

k[S3]
T[S3] dV .

Matrices [St], [S], [S1], [S2], [S3] and vectors {Bf} and {Tf} are derived as
follows:

[St] =
[
N1 . . . N4 Φ1 . . . Φ4 Ψ11 Ψ21 Ψ31 Ψ41

]
,(2.31)

[S] =

[
N1 . . . N4 0 . . . 0 Φ1 . . . Φ4 0 . . . 0
0 . . . 0 N1 . . . N4 0 . . . 0 Φ1 . . . Φ4

(2.32)

Ψ11 . . . Ψ44 0 . . . 0
0 . . . 0 Ψ11 . . . Ψ44

]
,

[S1] = [ N1,x . . . N4,x N1,y . . . N4,y Φ1,x . . . Φ4,x Φ1,y(2.33)

. . . Φ4,y Ψ11,x . . . Ψ44,x Ψ11,y . . . Ψ44,y ],

[S2] =




N1,x . . . N4,x 0 . . . 0 Φ1,x . . . Φ4,x 0 . . . 0
0 . . . 0 N1,y . . . N4,y 0 . . . 0 Φ1,y . . . Φ4,y

N1,y . . . N4,y N1,x . . . N4,x Φ1,y . . . Φ4,y Φ1,x . . . Φ4,x

(2.34)

Ψ11,x . . . Ψ44,x 0 . . . 0
0 . . . 0 Ψ11,y . . . Ψ44,y

Ψ11,y . . . Ψ44,y Ψ11,x . . . Ψ44,x


 ,

[S3] =

[
N1,x N2,x N3,x N4,x Φ1,x Φ2,x Φ3,x Φ4,x Ψ11,x . . . Ψ44,x

N1,y N2,y N3,y N4,y Φ1,y Φ2,y Φ3,y Φ4,y Ψ11,y . . . Ψ44,y

]
,(2.35)

{Bf} =

{
Bx

By

}
, {Tf} =

{
tx

ty

}
.(2.36)

For plane strain state matrix [D] is defined as follows:

(2.37) [D] =
E

(1 + ν)(1 − 2ν)




1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2


 .
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2.3. Time integration

The most widely used family of direct methods for solving semi-discrete equa-
tion of motion is the Newmark family which consists of the following equa-
tions [27]:

[M ]{∆̈n+1} + [C]{∆̇n+1} + [K]{∆n+1} = {Frn+1},(2.38)

{∆n+1} = {∆n} + ∆t{∆̇n+1} + ∆t2(1/2 − ζ){∆̈n} + ∆t2ζ{∆̈n+1},(2.39)

{∆̇n+1} = {∆̇n} + ∆t(1 − γ){∆̈n} + ∆tγ{∆̈n+1}.(2.40)

The Newmark family contains many well-known and widely used methods.
The average acceleration method, which is unconditionally stable, is one of them
and it is used for structural dynamics applications. In this method, γ and ζ are
equal to 0.5 and 0.25, respectively. We will choose the mean acceleration scheme,
which is unconditionally stable, since for the partition of unity method with an
explicit Newmark-type scheme, the stable time step of the enriched problem is
a small fraction of the stable time step of the problem with no enriched shape
function [28].

3. Interaction integral and SIF computations

In this section, the interaction integral is formulated by superimposing the
actual and auxiliary fields on the path independent J -integral [29]. In this work,
the non-equilibrium formulation [30] is used in conjunction with the XFEM to
determine the M -integral for arbitrarily oriented cracks in FGMs under ther-
momechanical loading and the computation of SIFs is explained in conjunction
with the M -integral.

With the help of a weighting function q that is unity on Γ0 and zero on Γ1,
the J integral is written along a closed contour Γ ∗ surrounding the crack tip (as
shown in Fig. 2) as [20],

(3.1) J =

∫

Γ ∗

[
σij

∂uj

∂x1
− (SE + KE)δ1i

]
qmidΓ −

∫

Γ++Γ−

σ2j
∂uj

∂x1
qdΓ,

where SE and KE are the strain energy and kinetic energy densities, respec-
tively:

SE =
1

2
σij(εij − αtθδij),(3.2)

KE =
1

2
ρu̇iu̇i.(3.3)
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Fig. 2. J integral contour around the crack tip.

Assuming the traction-free condition for the cracked faces and applying the
divergence theorem gives [20]

J =

∫

A∗

[
σij

∂uj

∂x1
− (SE + KE)δ1i

]
∂q

∂xi
dA(3.4)

+

∫

A∗

[
∂

∂xi

(
σij

∂uj

∂x1

)
− ∂(SE + KE)

∂x1

]
qdA.

Substituting Eqs. (3.2) and (3.3) into Eq. (3.4) and replacing σijuj,1i with σijεij,1

gives

(3.5) J =

∫

A∗

{[
σijuj,1 −

1

2
σjkε

m
jkδ1i −

1

2
ρu̇ku̇kδ1i

]
q,i

+

[
σij,iuj,1 + σijuj,1i −

1

2
σijε

m
ij,1 −

1

2
σij,1ε

m
ij − ρu̇iu̇i,1 −

1

2
ρ,1u̇iu̇i

]
q

}
dA.

In this equation q is a weight function varying from unity at the crack tip to
zero on boundary of domain A∗ [30] and εm

jk = εjk − εT
jk where εjk denotes the

total strain and εm
jk and εT

jk denote the mechanical part and thermal part of the
strain, respectively.

Now, we consider two independent admissible fields which are the actual
(u, ε, σ) and the auxiliary (uaux, εaux, σaux) fields. The J -integral of the super-
imposed fields (actual and auxiliary) can be written as follows:
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Js =

∫

A∗

{[
(σij + σaux

ij )(uj,1 + uaux
j,1 ) − 0.5(σjk + σaux

jk )(εm
jk + εaux

jk )δ1i(3.6)

− 0.5ρ(u̇k + u̇aux
k )(u̇k + u̇aux

k )δ1i

]
q,i

+
[
(σij,i + σaux

ij,i )(uj,1 + uaux
j,1 ) + (σij + σaux

ij )(uj,1i + uaux
j,1i)

− 0.5(σij + σaux
ij )(εm

ij,1 + εaux
ij,1) − 0.5(σij,1 + σaux

ij,1 )(εm
ij + εaux

ij )

− ρ(u̇i + u̇aux
i )(u̇i,1 + u̇aux

i,1 ) − 0.5ρ,1(u̇i + u̇aux
i )(u̇i + u̇aux

i )
]
q
}

dA.

Equation (3.6) is decomposed into

(3.7) Js = J + Jaux + MI,

where J and Jaux are given respectively by

(3.8) J =

∫

A∗

{[
σijuj,1 − 0.5σjkεm

jkδ1i −
1

2
ρu̇ku̇kδ1i

]
q,i

+ [σij,iuj,1 + σijuj,1i −
1

2
σijε

m
ij,1 −

1

2
σij,1ε

m
ij − ρu̇iu̇i,1 −

1

2
ρ,1u̇iu̇i]q

}
dA,

(3.9) Jaux =

∫

A∗

{[
σaux

ij uaux
j,1 − 1

2
σaux

jk εaux
jk δ1i −

1

2
ρu̇aux

k u̇aux
k δ1i

]
q,i

+

[
σaux

ij,i uaux
j,1 +σaux

ij uaux
j,1i−

1

2
σaux

ij εaux
ij,1−

1

2
σaux

ij,1εaux
ij −ρu̇aux

i u̇aux
i,1 −1

2
ρ,1u̇

aux
i u̇aux

i

]
q

}
dA.

The resulting M -integral is given by

MI =

∫

A∗

{[
σiju

aux
j,1 + σaux

ij uj,1 −
1

2
σjkε

aux
jk δ1i −

1

2
σaux

jk εm
jkδ1i − ρu̇ku̇

aux
k δ1i

]
q,i

(3.10)

+

[
σij,iu

aux
j,1 + σaux

ij,i uj,1 + σiju
aux
j,1i + σaux

ij uj,1i −
1

2
σijε

aux
ij,1 − 1

2
σaux

ij εm
ij,1

− 1

2
σij,1ε

aux
ij − 1

2
σaux

ij,1εm
ij − ρu̇iu̇

aux
i,1 − ρu̇aux

i u̇i,1 − ρ,1u̇iu̇
aux
i

]
q

}
dA.

Since the actual fields employ the quantities obtained from numerical simula-
tion, the equilibrium and compatibility condition are satisfied. For the auxiliary
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fields, the equilibrium condition is not satisfied [30], i.e., σaux
ij,i 6= 0. While the re-

lation between strain and displacement is compatible, i.e., εaux
ij = 1

2(uaux
i,j +uaux

j,i )
and σiju

aux
j,1i = σijε

aux
ij,1 . The auxiliary stress field is defined as follows:

(3.11) σaux
ij = Cijkl(x)εaux

kl .

Notice that the auxiliary fields are chosen as the asymptotic fields for the ho-
mogeneous materials. Auxiliary fields, used in this paper, are based on Williams’
solution [31] for stationary cracks and Swenson and Ingraffea [32] for moving
cracks. The resulting interaction integral (MI ) becomes

MI =

∫

A∗

{[
σiju

aux
j,1 + σaux

ij uj,1 − σjkε
aux
jk δ1i − ρu̇ku̇

aux
k δ1i

]
q,i(3.12)

+
[
ρüju

aux
j,1 + σaux

ij,i uj,1 + σaux
ij (α,1θ + αθ,1)δij − (Cijkl,1ε

m
klε

aux
ij )

− ρu̇iu̇
aux
i,1 − ρu̇aux

i u̇i,1 − ρ,1u̇iu̇
aux
i

]
q
}
dA.

Since the numerical computation of displacements, strains, stresses, etc., is
based on the global coordinate system, first the M -integral is evaluated in the
global (MI global) and then transformed into the local coordinate system (MI local).
The global M -integral quantities are evaluated by

(3.13) (MIn)global =

∫

A∗

{[
σiju

aux
j,n + σaux

ij uj,n − σjkε
aux
jk δni − ρu̇ku̇

aux
k δni

] ∂q

∂Xi

+
[
ρüju

aux
j,n + σaux

ij,i uj,n + σaux
ij (α,nθ + αθ,n)δij − (Cijkl,nεm

klε
aux
ij )

− ρu̇iu̇
aux
i,n − ρu̇aux

i u̇i,n − ρ,nu̇iu̇
aux
i

]
q

}
dA, n = 1, 2,

where Xi denotes the global coordinate system. The local M -integral quantity
is given as [30]

(3.14) MIlocal = (MI1)global cos ω + (MI2)global sin ω,

where ω is the angle between local and global Cartesian coordinate systems on
crack tip. The relation between M -integral and SIFs for stationary crack in plane
strain state is as follows:

(3.15) MIlocal =
2

Etip
(1 − ν2

tip)(KIK
aux
I + KIIK

aux
II ).

Also for moving crack MIlocal can be obtained from Eq. (3.16) [8]:

(3.16) MIlocal =
2

Etip
(1 − ν2

tip)(β1(ȧ)KIK
aux
I + β2(ȧ)KIIK

aux
II ),
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where Etip and νtip denote Young’s modulus and Poisson’s ratio at crack tip
respectively and ȧ is crack velocity. βi are the universal functions (see [8]). Con-
sequently, KI and KII are calculated by choosing Kaux

I = 1, Kaux
II = 0 and

Kaux
I = 0, Kaux

II = 1, respectively. The equivalent dynamic stress intensity factor
Keq is defined by Eq. (3.12) [8]:

(3.17) Keq = KI cos3(ωc/2) − 1.5KII cos(ωc/2) sinωc,

where ωc is the direction in which the crack will propagate from its current tip,
and is obtained using the maximum hoop stress criteria [8].

(3.18) ωc = 2arctan

(
1

4

[
KI

KII
− sign(KII)

((
KI

KII

)2

+ 8

)1/2])
, −π<ωc <π.

In dynamic fracture mechanics, the initiation of growth and continued prop-
agation of a crack depend on the equivalent stress intensity factor Keq relative
to the material critical stress intensity factor KIC . While Keq < KIC , the crack
tip remains stationary. If Keq ≥ KIC , the crack tip will move. In this paper, we
use an algorithm similar to the algorithm presented in reference [28] to detect
the crack propagation phenomenon.

4. Modeling of functionally graded layer

The material properties of the functionally graded layer must be described
across the layer thickness. In the present analysis, we assume that the material
gradation is along the x direction and the volume fraction of inclusion follows a
simple power function,

(4.1) Vi(x) = (x/L)p,

where Vi is the volume fraction of inclusion and p is the power exponent deter-
mining the volume fraction profiles.

We assume that the functionally graded layer is made of metal-phase and
ceramic-phase. In this study, we use micromechanical models for conventional
composites given by Hatta and Taya [33] and Mori and Tanaka [34] to cal-
culate the properties of functionally graded ceramics (FGCs). Also the fracture
toughness of the two-phase FGC composite needs to be determined. Here we
adopt Jin and Batra’s [35] rule of mixtures formula for a two-phase FGC com-
posite

(4.2) KIC(x) =
{
V1(x)(K1

IC)2 + V2(x)(K2
IC)2

}1/2
.
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To incorporate these relations into the XFE model, the value of each material
property is calculated at each individual node based on micromechanical models.

Utilizing the generalized isoparametric graded finite elements, introduced by
Kim and Paulino [36], material properties gradation is considered in an ele-
ment. In the generalized isoparametric formulation, material properties at each
Gaussian integration point can be interpolated from the nodal material proper-
ties of the element using the isoparametric shape functions which are the same
for the spatial coordinates and displacements. Thus, material properties such as
elastic modulus (E), Poisson’s ratio (ν), and mass density (ρ) at Gauss’ points
will be interpolated as [36]

(4.3) E =

m∑

i=1

NiEi, ν =

m∑

i=1

Niνi, ρ =

m∑

i=1

Niρi,

respectively, as illustrated in Fig. 3. To obtain more information about precision
of this formulation, see [36].

Fig. 3. Material properties variations in the generalized isoparametric formulation using the
linear shape functions for the functionally graded materials.

5. Numerical examples

In this section, first we present three numerical examples, which examine
the accuracy and precision of the presented method in this paper. Then, in the
next example we consider the effect of the volume fraction profile of FGMs and
loading condition on crack tip SIFs. In the last example, we study the crack
propagation phenomenon in a FG layer under thermal and mechanical shocks.
The plane strain state is assumed in all numerical examples.

5.1. Homogeneous cracked layer under thermal shock

We consider an elastic two dimensional isotropic and homogeneous layer with
an edge crack (Fig. 4). The initial temperature T0 is chosen to be 400 ◦K. The
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Fig. 4. Geometry and boundary condition of layer.

layer is rapidly cooled by conduction at its left surface to T1, which is equal to
350 ◦K in this study. All other sides are assumed to be thermally insulated. In
this example, we neglect the coupling term in the energy equation as Lee and
Sim [37] did in their analytical solution and obtained SIFs are compared with
their analytical solution.

a) b)

Fig. 5. Normalized SIFs versus the logarithm of normalized time for the homogeneous cracked
layer: a) convergent study obtained by using different FE mesh density, b) comparison of

numerical and analytical curves.

A convergent study was done by using different FE mesh density and its
results were presented in Fig. 5a. This figure illustrate that a 51× 101 four-node
rectangular element mesh is adequate for numerical analyzes. The analytical
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and numerical dimensionless SIF (KID) is plotted versus the logarithm of the
dimensionless time (tD) in Fig. 5b, where good accordance is observed. In this
example, we define KID and tD which follow from Eqs. (5.1) and (5.2) [37]

KID = KI(1 − ν)/{Eα(T0 − T1)L
1/2},(5.1)

tD = kt/ρctL
2.(5.2)

5.2. Al2O3/Si3N4FG cracked layer under thermal shock

An FG two-dimensional layer with a horizontal edge crack is considered, as
shown in Fig. 4. The layer is initially at a constant temperature. Without a loss
of generality, the initial temperature can be assumed to be 200 ◦K. The layer is
suddenly cooled down by conduction at its left surface to temperature T1, which
is equal to 190 ◦K. the initial and boundary conditions for the temperature field
are as follows:

(5.3)

T = 200 ◦K at t = 0,

T = 190 ◦K at x = 0,

T = 200 ◦K at x = L.

It is assumed that the heat transfer coefficient on the surfaces of the FGM
strip is infinite which is an idealized thermal shock boundary condition. The
problem dimensions are L = 0.001 m and W = 0.002 m (Fig. 4). Two crack
lengths are considered in this example, a = 0.0001 m and a = 0.0003 m. The
mesh consists of 61× 121 four-node rectangular element in this example and the
selected time step is ∆t = 2× 10−4 s. A square domain with dimensions 2a× 2a
was used to calculate the interaction integral and the SIF.

Table 1. Material properties of Al2O3 and Si3N4 [22].

Young’s
modulus
(GPa)

Poisson’s
ratio

CTE
(10−6/K)

Thermal
conductivity
(W/m·K)

Mass
density

(Kg/m3)

Specific
heat

(J/Kg·K)

Fracture
toughness

(MPa·m1/2)

Al2O3 320 0.25 8 20 3800 900 4

Si3N4 320 0.25 3 35 3200 700 5

Table 1 lists the properties of the constituent materials, i.e., Al2O3 and Si3N4.
This study assumes that the volume fraction of Si3N4 (phase i) follows a simple
power function (Eq. (4.1)). The material gradation in the x-direction is consid-
ered. The SIFs for this two dimensional thermoelasticity problem are compared
with those obtained by Jin and Paulino [12] in Fig. 6, which shows a good
agreement between both results. Figure 6 illustrates that under thermal shock,
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a) b)

Fig. 6. Normalized SIFs versus the normalized time for Al2O3/Si3N4 FG layer;
a) a/L = 0.1, b) a/L = 0.3.

increasing crack length will decrease the SIF. The dimensionless thermal stress
intensity factor at the crack tip and dimensionless time can be computed as
follows [12].

5.3. Homogeneous cracked layer under mechanical shock

An elastic two-dimensional homogeneous layer with an edge crack is consid-
ered in this example. A schematic of the problem is shown in Fig. 7. A uniform
traction of magnitude σ0 = 63750 Pa is applied at time t = 0 as a step function
to the top and bottom edges of the layer. The layer dimensions are 10m × 4m,
and the initial crack length is a = 5 m. The analytical solution given by Freund

[38] is for an infinite layer. Since the specimen is finite, we stopped the simulation
before the reflected wave from the edges reaches the crack tip at t = 0.001 s. The
material properties are ρ = 7833 kg/m3, E = 200 GPa and ν = 0.3. A 201 × 81
quadrilateral mesh was used for discretizing the layer.

Fig. 7. Isotropic and homogeneous cracked layer under mechanical shock.
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Fig. 8. Comparison of numerical and analytical SIFs for homogeneous cracked layer under
mechanical shock.

We use a domain of 0.5 m × 0.5 m to calculate the interaction integral
and SIF. The SIF values for this problem are obtained and compared with the
analytical solution in Fig. 8, which shows a good agreement between both re-
sults. The results are quite smooth and oscillate close to the analytic solution.
These unavoidable oscillations are also observed in [39, 5, 40, 20, 21] for the stan-
dard XFEM. These oscillations are the characteristic of the solution of a shock
propagation problem by the FE discretization in the spatial domain and by the
Newmark method in the time domain [21].

5.4. Ti-6Al-4V/ZrO2 FG cracked layer under thermo-mechanical shock

An elastic two-dimensional FG layer with an edge crack (Fig. 9) is considered
in this example. A tension of magnitude σ0 = 10 MPa and cooling thermal shocks
of magnitude θ = −10 and θ = −20 is applied at time t = 0 as a step function to
the top and bottom edges. The layer dimensions are L = 0.1 m and W = 0.02 m,
and the initial crack length is a = 0.05 m. The calculations are carried out to
the point t = 10 µs, before the reflected wave from the edges reaches the crack
tip. Initial temperature T0 is chosen to be 300 ◦K.

In these numerical calculations, we consider a Ti-6Al-4V and ZrO2 FGM. The
properties of the constituent materials are presented in Table 2. The material
gradation in the x-direction is considered and the volume fraction of ZrO2 follows
then Eq. (4.1). A mesh with 81× 201 four-node rectangular element is used and
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Fig. 9. Ti-6Al-4V/ZrO2 FG cracked layer under thermo-mechanical shock.

Table 2. Material properties of Ti-6Al-4V and ZrO2 [21].

Young’s
modulus
(GPa)

Poisson’s
ratio

CTE
(10−6/K)

Thermal
conductivity
(W/m·K)

Mass
density

(Kg/m3)

Specific
heat

(J/Kg·K)

Fracture
toughness

(MPa·m1/2)

Ti-6Al-4V 66.2 0.321 10.3 18.1 4410 808.3 60

ZrO2 117 0.333 7.11 2.036 5600 615.6 4

the selected time step is ∆t = 10−7 s. A domain of dimensions 0.005 m×0.005 m
was used to calculate the SIF.

To study the effect of the material gradation, the coupled thermoelasticity
problem with three different values of p is analyzed (i.e., p = 0.2, p = 1 and
p = 5). The time variations of the mode-I thermal dynamic SIF are shown in
Fig. 10.

Figures 10a and 10b demonstrate that the SIF due to thermomechanical
shocks is superposition of SIFs produced with thermal and mechanical shocks
separately. Figures 10c and 10d show that a rise in the material gradient pa-
rameter p increases the SIF regardless of loading conditions. We can see from
Fig. 10 that the curve related to the thermal shocks is smoother than other
curves.

5.5. Crack propagation phenomenon in the Ti-6Al-4V/ZrO2 FG layer

In this example, we study the crack propagation phenomenon in a FG layer
with a horizontal edge crack under thermal and mechanical shocks. Dimensions,
properties, mesh and boundary conditions of considered layer are identical to
the previous example. Initial temperature T0 is chosen to be 500 ◦K. A cooling
thermal shock equal to −100 degree (θ = −100) and a mechanical shock of
magnitude σ0 = 200 MPa are applied to upper and bottom surfaces of layer.
The total simulation time is 60 µs.
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a) b)

c) d)

Fig. 10. Stress intensity factor versus time for the Ti-6Al-4V/ZrO2 FG cracked layer in various
loading conditions: a) p = 1, b) p = 5, c) mechanical and thermomechanical shock, d) thermal

and thermomechanical shock.

The crack tip propagation velocity curves for FG layers with p = 0.2 and
p = 5 under thermomechanical shocks are illustrated in Fig. 11. It is derived
from Fig. 11 that crack propagation initiation time is dependent on the loading
condition and the volume fraction profile of the FG layer. Crack growth initia-
tion under mechanical shocks happens earlier than crack growth initiation under
thermal shocks. Also a rise in the material gradient parameter p decreases the
crack propagation initiation time and increases the crack propagation velocity.
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a)

b)

c)

Fig. 11. Crack tip velocity for the Ti-6Al-4V/ZrO2 FG layers under: a) mechanical shock,
b) thermal shock, c) thermomechanical shock.

Figure 11 shows that the velocity curve related to p = 5 almost lies over curve
related to p = 0.2.

Figures 12 and 13 illustrate the crack propagation path, von Mises stress
contours and deformed mesh for FG layers with p = 0.2 and p = 5 respectively,
under thermomechanical shocks at various times. For more clarification, displace-
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ments were multiplied by 5 in plotting deformed meshes. Figures 12 and 13 show
that crack propagates in straight line until about t = 40 µs, regardless of loading
conditions and material gradient parameter (p). After this time crack deviates
upward. Belytschko et al. [5] predicted for homogeneous materials that after
crack propagation in straight line, crack branching may be occur but our written
code does not have ability to detect the crack branching phenomenon.

Comparison of Figs. 12 and 13 confirms that increasing p will increase crack
propagation velocity and crack length. In addition, deviation of crack path will
increase with increasing p.

a) t = 10 µs

b) t = 40 µs

c) t = 60 µs

Fig. 12. Von Mises stress contours and deformed mesh of Ti-6Al-4V/ZrO2 FG layer with
p = 0.2 under thermomechanical shock at various times. Von Mises stress contours and de-
formed mesh of Ti-6Al-4V/ZrO2 FG layer with p = 0.2 under thermomechanical shock at

various times.
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a) p = 5, t = 10 µs

b) p = 5, t = 40 µs

c) p = 5, t = 60 µs

Fig. 13. Von Mises stress contours and deformed mesh of Ti-6Al-4V/ZrO2 FG layer with
p = 5 under thermomechanical shock at various times.

6. Conclusions

In this study, classical coupled thermoelastic equations were solved using the
XFE and Newmark’s methods in FGMs. The most general form of interaction
integral were developed to evaluate dynamical SIFs for both homogenous and
FG materials. In addition, the crack propagation phenomenon was considered
in FG layers under thermomechanical shock. Some numerical examples were
implemented and good agreements and accuracies were observed. The following
results were obtained for the Ti-6Al-4V/ZrO2 FG layer where the crack is located
on the stiffer side:
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1. A rise in the material gradient parameter (p) increases the SIF (KI).
2. The crack growth initiation under mechanical shocks happens earlier than

the crack growth initiation under thermal shocks.
3. An increase in the material gradient parameter (p) decreases the crack

propagation initiation time.
4. A rise in the material gradient parameter (p) increases the crack propaga-

tion velocity.
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