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Brief Note

Nonlinear deformation of a tapered elastica cantilever

due to a tip load
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The nonlinear large deformation of a tip loaded tapered cantilever is studied.
Different cross sectional shapes, deformation directions, tapers, base inclinations and
end loads are considered. Explicit stability characteristic equations are given. Asymp-
totic analysis gives good approximations for large tip loads (p > 20). Deformation
properties of the tapered cantilever are discussed.
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1. Introduction

The elastica models are very flexible thin rods which can sustain large
deformations. The theory of elastica was formulated by Euler [1] and given
in the seminal work of Love [2] and Frisch-Fay [3]. There are basically two
types of loads that deform the elastica, namely body forces such as self weight
and point forces (and moments) which are usually applied at the ends. The
governing equations, solutions and results are quite different for these two types.

Most literature in the elastica theory considered uniform cross sections. There
are few reports for the non-uniform tapered elastica. In a recent paper, Wang [4]
studied the large deformations of the tapered elastica under self weight. The
present Note considers the other fundamental type, i.e., the tapered elastica
deformed by a tip load. This situation occurs in load bearing robotic arms and
other flexible mechanisms where the self weight of the elastica can be neglected
in comparison to the effects of the tip load.

There are several sources which considered the tapered elastica deformed by
a tip load. Raju and Rao [5] solved the elastica column with linearly varying
similar cross sections under an axial load. Lee et al. [6] considered the constant
thickness elastica cantilever with linearly tapered sides under a transverse load.
Of interest is the work of Holland et al. [7] who studied the tapered, constant
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thickness column with an inclined tip load. Their experiments confirm numerical
results superbly. These sources studied smaller post-buckling deformations. The
present work considers large deformations of four different tapers, using both
numerical and asymptotical methods.

2. Formulation and stability

Figure 1 shows an elastica cantilever with a tip load. The angle between the
load P and the base inclination is γ. When γ = 0 the undeformed cantilever is
vertical, and when γ = π/2 it is a horizontal cantilever. Let s′ be the arc length
from the base and θ be the local inclination after deformation. A local moment
balance on an elemental segment gives

(2.1)
d

ds′

(

EI
dθ

ds′

)

+ P ′ sin θ = 0.

Fig. 1. Tip load P ′on an inclined cantilever.

Normalize all lengths by the elastica length L and drop primes. Let EI0 be
the flexural rigidity at the larger fixed (base) end, and

(2.2) EI = EI0 l(s).

Equation (2.1) becomes

(2.3)
d

ds

(

l(s)
dθ

ds

)

+ p sin θ = 0,

where p = P ′L2/EI0 is the normalized load. The boundary conditions are

θ(0) = γ,(2.4)

dθ

ds
(1) = 0.(2.5)
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For linearly tapered cantilevers, the rigidity function l(s) can be expressed
as

(2.6) l(s) = (1 − cs)m,

where 0 ≤ c ≤ 1 and m ≥ 0 are constants. The cantilever is uniform if c = 0
or m = 0. If the cross section is doubly tapered (as a cone) then m = 4. If
the thickness is constant but the width tapers and the cantilever bends in the
thickness direction, then m = 1. If it bends in the width direction then m = 3.
If the cantilever is composite with surface material separated by a tapered low
density filling, then m = 2. Note that [5] considered only m = 4 and [6, 7] only
m = 1.

When the load is an axial compression, γ = 0. The cantilever would remain
straight until a critical load is reached. Linearization of Eq. (2.3) for small θ
gives the equation

(2.7)
d

ds

(

(1 − cs)m dθ

ds

)

+ pθ = 0.

With the boundary conditions

(2.8) θ(0) = 0,
dθ

ds
(1) = 0.

This stability problem was solved by Dinnik [8] for doubly-tapered columns,
which are equivalent to fixed-free cantilevers. Here we shall give some explicit
stability solutions. Let

(2.9) z = 1 − cs, µ =
√

p/c.

Equation (2.3) becomes

(2.10)
d

dz

(

zm dθ

dz

)

+ µ2θ = 0.

For m = 1 the independent solutions are in terms of the Bessel functions
J0(2µ

√
z) and Y0(2µ

√
z) [9]. Applying the boundary conditions Eq. (2.8) at

z = 1 and z = 1 − c gives the characteristic equation (c 6= 1)

(2.11) Y0(2µ)J1(2µ
√

1 − c) − J0(2µ)Y1(2µ
√

1 − c) = 0

from which the buckling load p can be obtained easily by bisection.
For m = 2 the independent solutions are

z−1/2 sin(
√

µ2 − 1/4 ln z) and z−1/2 cos(
√

µ2 − 1/4 ln z).
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The boundary conditions give

(2.12) tan[
√

µ2 − 1/4 ln(1 − c)] − 2
√

µ2 − 1/4 = 0.

For m = 3 the independent solutions are z−1J2(2µ/
√

z) and z−1Y2(2µ/
√

z). The
characteristic equation is

(2.13) J2(2µ)Y1(2µ/
√

1 − c) − Y2(2µ)J1(2µ/
√

1 − c) = 0.

For m = 4 let ς = µ/z. After some work, Eq. (2.10) becomes

(2.14)
d2θ

dς2
− 2

ς

dθ

dς
+ θ = 0.

The independent solutions are cos ς + ς sin ς and sin ς − ς cos ς. The charac-
teristic equation is then

(2.15) (cos µ + µ sin µ) sin[µ/(1 − c)] − (sinµ − µ cos µ) cos[µ/(1 − c)] = 0.

Table 1 shows a comparison of our results with Dinnik’s values [8]. Dinnik
used the ratio of the end moment of inertia i : I related to our taper factor c by
c = 1 − (i : I)1/m. Also, the buckling load of Dinnik’s pinned-pinned symmetric
taper is four times the cantilever buckling load. We see the values are very close,
except for m = 4 and i : I = 0.1, which we suspect to be a typo in Dinnik’s
entry.

Table 1. Comparisons of critical loads with those from Dinnik [8].

i : I c
4p

(Dinnik)
4p

(present)

m=1
0.2 0.8 7.01 7.008

0.8 0.2 9.27 9.262

m=2
0.1 0.6838 5.40 5.399

0.8 0.1056 9.24 9.243

m=3
0.2 0.4152 6.14 6.136

0.8 0.1717 9.23 9.236

m=4
0.1 0.4377 4.31 4.812

0.8 0.0543 9.23 9.232

The buckling loads using our formulas are given in Table 2. Of course, when
c = 0 or m = 0 the cantilever is uniform and the buckling load is π2/4 = 2.4674.
For c = 1 the cantilever diminishes into a sharp point, and is unlikely to support
any tip load.
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Table 2. The critical load pcr for various cross sections m and tapers c.

m\c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 2.393 2.316 2.235 2.151 2.062 1.968 1.865 1.752 1.621

2 2.319 2.167 2.012 1.851 1.683 1.507 1.318 1.109 0.862

3 2.246 2.023 1.798 1.569 1.336 1.099 0.853 0.597 0.321

4 2.175 1.883 1.595 1.309 1.029 0.757 0.498 0.264 0.0804

3. Asymptotic analysis

For large p the elastica cantilever becomes highly deformed and an asymptotic
solution is possible. We shall use the boundary layer method. Let

(3.1) ε =
1√
p
≪ 1.

Equation(2.3) is singular

(3.2) ε2 d

ds

(

(1 − cs)m dθ

ds

)

+ sin θ = 0.

The interior solution satisfying sin θ = 0 is θ = nπ. We can take n = 1 without
loss of generality since γ can vary. Inside the boundary layer near the base, let

(3.3) s = εt

and expand

(3.4) θ = θ0(t) + εmcθ1(t) + O(ε2).

Equating like orders of ε, Eq. (3.2) yields the first two orders

d2θ0

dt2
+ sin θ0 = 0,(3.5)

d2θ1

dt2
+ (cos θ0) θ1 =

d

dt

(

t
dθ0

dt

)

.(3.6)

The boundary conditions Eqs. (2.4) and (2.5) are

θ0(0) = γ, θ0(∞) = π,(3.7)

θ1(0) = 0, θ1(∞) = 0.(3.8)

Multiply Eq. (3.5) by dθ0/dt and integrate to obtain

(3.9)
dθ0

dt
= 2 cos

(

θ0

2

)

.
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With the boundary conditions Eq. (3.7) the solution is found to be

(3.10) θ0 = π − 4 tan−1[ge−t], g = 1/ tan[(γ + π)/4].

Eq. (3.10) is substituted into Eq. (3.6). We are fortunate to obtain an analytic
solution as follows. Guided by Eq. (3.10), let

(3.11) u = ge−t.

After some work, Eq. (3.6) becomes

(3.12) u(1 + u2)2
d

du

(

u
dθ1

du

)

− (u4 − 6u2 + 1)θ1

= 4u[(1 + u2) + ln

(

u

g

)

(1 − u2)] = 0.

The homogeneous solutions are u/(1 + u2), (u4 + 4u2 ln u − 1)/[2u(1 + u2)] and
the particular solution is u{u2 − 1 + 2[(1 + 2 ln u) ln(u/g)− (ln u)2]}/[2(1 + u2)].
Using the boundary conditions

(3.13) θ1|u=0 = 0, θ1|u=g = 0

the solution is

(3.14) θ1 =
u{u2 − g2 + 2[(1 + 2 ln u) ln(u/g) − (lnu)2 + (ln g)2]}

2(1 + u2)
.

Fig. 2. First order boundary layer function θ1(t) versus t (γ = 0).

Figure 2 shows a typical profile for θ1(t). From Eq. (3.14) we find the simple
result

(3.15)
dθ1

dt
(0) = −g =

−1

tan((γ + π)/4)
.
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The normalized moment at the base is then

M0 =
dθ

ds
(0)(3.16)

=
1

ε

[

dθ0

dt
(0) + εmc

dθ1

dt
(0) + O(ε2)

]

= 2 cos
(γ

2

)√
p − mc

tan((γ + π)/4)
+ O(p−1/2).

Note that the effect of taper is in the O(1) term of Eq. (3.16).

4. Numerical results

For general post-buckling, analytic solution does not exist and numerical
integration is necessary. For given c, m, p > pcr Eq. (2.3) is integrated as an
initial value problem using θ(0) = γ and a guessed normalized base moment
M0 = θ′(0). At s = 1 we check whether θ′(1) is zero. If not, M0 is adjusted.

We compare our results with the limited previous literature. Raju and
Rao [5] studied the m = 4, γ = 0 case, with small taper (c < 0.34) and
light loads (p < 3.2) while Lee et al [6] have data only for the m = 1, γ = π/2,
c = 0.667 and p = 1.667 case. The results of Holland et al. [7] are presented
as graphs, and cannot be accurately compared. Some authors also included the
self weight of the cantilever, which complicates the effects and does not apply to
the present study. Table 3 shows a comparison.

Table 3. Comparison with previous works.

m γ c p M0

4 0 0.3333 1.5872 0.5581 (present)
0.5581 [5]

4 0 0.3333 1.9020 1.1728 (present)
1.1737 [5]

1 π/2 0.6667 1.6667 1.3882 (present)
1.3870 [6]

We see that our results agree with previous literature. In the following, we
shall present more comprehensive results, especially for large deformations.

First take the originally vertical cantilever (γ = 0). Only this case, with
a vertical compressive load, is susceptible to buckling. Tables 4–7 show the
results.
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Table 4. Base moment M0 for γ = 0 and m = 1. Zero entries denote buckling load
has not been reached. Values in parenthesis are obtained from Eq. (3.16).

p\c 0.1 0.3 0.5 0.7 0.9

2 0 0 0 0.816 1.184

5 3.937 3.843 3.727 3.583 3.399

10 6.144 5.964 5.771 5.564 5.338

20 8.836 8.635 8.427 8.212 7.990
(8.84) (8.64) (8.64) (8.64) (8.64)

50 14.042 13.839 13.633 13.423 13.210
(14.04) (13.84) (13.64) (13.44) (13.24)

100 19.900 19.698 19.494 19.287 19.078
(19.90) (19.70) (19.50) (19.30) (19.10)

Table 5. Base moment M0 for γ = 0 and m = 2. Zero entries denote buckling load
has not been reached. Values in parenthesis are obtained from Eq. (3.16).

p\c 0.1 0.3 0.5 0.7 0.9

2 0 0 1.144 1.342 1.255

5 3.895 3.692 3.440 3.145 2.821

10 6.059 5.708 5.348 4.986 4.628

20 8.739 8.350 7.966 7.588 7.217
(8.74) (8.74) (7.94) (7.94) (7.94)

50 13.943 13.547 13.156 12.769 12.387
(13.94) (13.54) (13.14) (13.14) (13.14)

100 19.800 19.403 19.010 18.619 18.232
(19.80) (19.40) (19.00) (18.60) (18.20)

Table 6. Base moment M0 for γ = 0 and m = 3. Zero entries denote buckling load
has not been reached. Values in parenthesis are obtained from Eq. (3.16).

p\c 0.1 0.3 0.5 0.7 0.9

2 0 0.975 1.353 1.271 0.525

5 3.851 3.531 3.151 2.755 2.389

10 5.975 5.464 4.968 4.503 4.077

20 8.644 8.081 7.548 7.0458 6.572
(8.64) (8.04) (7.44) (6.84) (6.24)

50 13.845 13.266 12.708 12.171 11.653
(13.84) (13.24) (12.64) (12.04) (11.44)

100 19.702 19.117 18.547 17.992 17.451
(19.70) (19.10) (18.50) (17.90) (17.30)
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Table 7. Base moment M0 for γ = 0 and m = 4. Zero entries denote buckling load
has not been reached. Values in parenthesis are obtained from Eq. (3.16).

p\c 0.1 0.3 0.5 0.7 0.9

2 0 1.239 1.339 1.109 0.874

5 3.805 3.367 2.882 2.438 2.070

10 5.892 5.233 4.630 4.100 3.637

20 8.550 7.827 7.168 6.569 6.025
(8.54) (7.74) (6.94) (6.14) (5.34)

50 13.748 12.995 12.287 11.621 10.995
(13.74) (12.94) (12.14) (11.34) (10.54)

100 18.907 18.838 18.104 17.401 16.728
(19.60) (18.80) (18.00) (17.20) (16.40)

The numerical integration however, becomes very sensitive to the initial guess
of M0 for large p. At p = 100, eight or nine correct digits are needed for a satis-
factory solution. But for large p our asymptotic solution becomes accurate and
thus can be utilized.

If γ 6= 0, there is no buckling load. The abridged results are shown in
Tables 8–11. Values in parenthesis are from the asymptotic formula Eq. (3.16).

Table 8. Base moment M0 for m = 1. Values in parenthesis are obtained
from Eq. (3.16).

γ = π/4 γ = π/2 γ = 3π/4

p\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

1 0.881 0.897 0.915 0.941 0.901 0.941 0.565 0.551 0.531

2 1.896 1.873 1.804 1.668 1.616 1.537 0.944 0.911 0.867

5 3.881 3.695 3.456 3.033 2.906 2.754 1.655 1.592 1.518
(3.80) (3.53) (3.12) (2.96) (2.79) (1.69) (1.61) (1.53)

10 5.739 5.484 5.202 4.412 4.253 4.080 2.393 2.316 2.233
(5.78) (5.51) (5.24) (4.43) (4.27) (4.10) (2.40) (2.32) (2.24)

20 8.193 7.921 7.637 6.281 6.113 5.939 3.402 3.322 3.239
(8.20) (7.93) (7.66) (6.28) (6.12) (5.95) (3.40) (3.32) (3.24)

50 13.00 12.73 12.45 9.959 9.791 9.620 5.392 5.312 5.230
(13.00) (12.73) (12.46) (9.96) (9.79) (9.63) (5.39) (5.31) (5.23)

100 18.41 18.14 17.87 14.10 13.93 13.76 7.634 7.554 7.472
(18.41) (18.14) (17.88) (14.10) (13.94) (13.77) (7.63) (7.55) (7.48)
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Table 9. Base moment M0 for m = 2. Values in parenthesis are obtained
from Eq. (3.16).

γ = π/4 γ = π/2 γ = 3π/4

p\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

1 0.885 0.914 0.892 0.938 0.904 0.825 0.562 0.532 0.482

2 1.893 1.817 1.595 1.657 1.544 1.370 0.937 0.870 0.780

5 3.840 3.469 3.047 3.004 2.757 2.492 1.640 1.518 1.389

(3.90) (3.46) (2.93) (3.08) (2.75) (2.42) (1.67) (1.51) (1.35)

10 5.680 5.197 4.723 4.375 4.073 3.780 2.374 2.229 2.088

(5.71) (5.18) (4.64) (4.39) (4.06) (3.73) (2.38) (2.22) (2.06)

20 8.128 7.613 7.119 6.241 5.921 5.616 3.383 3.229 3.083

50 12.93 12.41 11.90 9.917 9.593 9.278 5.372 5.217 5.065

(12.93) (12.40) (11.86) (9.92) (9.59) (9.25) (5.37) (5.21) (5.05)

100 18.34 17.82 17.30 14.06 13.73 13.41 7.614 7.457 7.304

(18.34) (17.81) (17.28) (14.06) (13.73) (13.40) (7.61) (7.46) (7.30)

Table 10. Base moment M0 for m = 3. Values in parenthesis are obtained
from Eq. (3.16).

γ = π/4 γ = π/2 γ = 3π/4

p\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

1 0.888 0.922 0.790 0.935 0.875 0.735 0.559 0.511 0.432

2 1.889 1.733 1.392 1.645 1.466 1.227 0.929 0.827 0.706

5 3.799 3.255 2.732 2.976 2.618 2.285 1.626 1.449 1.287

(3.93) (3.46) (3.04) (2.54) (1.65) (1.41) (1.17)

10 5.621 4.938 4.339 4.338 3.909 3.533 2.357 2.149 1.967

(5.64) (4.84) (4.35) (3.85) (2.36) (2.12) (1.88)

20 8.064 7.331 6.679 6.201 5.746 5.338 3.364 3.144 2.948

(8.06) (7.26) (6.20) (5.70) (5.21) (3.36) (3.12) (2.89)

50 12.87 12.11 11.40 9.877 9.406 8.968 5.353 5.126 4.915

(12.87) (12.06) (11.26) (9.88) (9.38) (8.88) (5.35) (5.11) (4.88)

100 18.28 17.51 16.78 14.02 13.54 13.09 7.614 7.457 7.304

(18.28) (17.48) (16.67) (14.02) (13.52) (13.02) (7.59) (7.36) (7.12)
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Table 11. Base moment M0 for m = 4. Values in parenthesis are obtained
from Eq. (3.16).

γ = π/4 γ = π/2 γ = 3π/4

p\c 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

1 0.892 0.911 0.698 0.932 0.839 0.661 0.556 0.488 0.392

2 1.883 1.632 1.240 1.634 1.386 1.115 0.922 0.785 0.648

5 3.757 3.060 2.486 2.947 2.491 2.185 1.612 1.387 1.203
(3.86) (3.00) (1.63) (1.31)

10 5.564 4.705 4.022 4.301 3.762 3.326 2.339 2.077 1.865
(5.58) (4.31) (3.64) (2.34) (2.02)

20 8.001 7.073 6.297 6.162 5.563 5.094 3.345 3.065 2.828

(8.00) (6.93) (6.16) (5.50) (3.34) (3.03) (2.71)

50 12.80 11.83 10.96 9.837 9.228 8.684 5.334 5.044 4.778
(12.80) (11.73) (10.66) (9.83) (9.17) (8.51) (5.33) (5.01) (4.70)

100 18.21 17.21 16.29 13.98 13.36 12.78 7.575 7.275 6.997
(18.21) (17.14) (16.07) (13.98) (13.31) (12.65) (7.57) (7.26) (6.94)

Figure 3 shows some typical deformations due to tip load p.

Fig. 3. Effect of tip load on deformation (m = 4, c = 0.5, γ = 0).
From top: p < 1.029, 1.5, 2, 10, 50.

5. Discussion

This paper presents the complete characteristics of the large deformations of
a tapered cantilever. Unlike uniform cantilevers, where exact solutions in terms
of elliptic functions exist, tapered cantilevers have no analytic solutions.

In comparison to the heavy tapered cantilever described in [4], there are some
similarities but also many differences. The governing equations, stability criteria,
and asymptotic forms are all different. Even the geometry of the heavy elastica
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is governed by two exponents while the tip loaded elastica only one. Also, exact
stability criteria exist only for the pointy heavy elastica, while the tip loaded
elastica has exact stability solutions only for the blunt tip. The post-buckling
results show similar trends, but the numerical values are different.

In this paper, all important cross sectional shapes, deformation axes, ta-
pers, base inclinations and end loads are studied. Explicit stability characteristic
equations are given. Our asymptotic analysis is especially useful, since it gives
accurate solutions for large tip loads (p > 20), for which the numerical scheme
becomes too sensitive due to the stiffness of the nonlinear governing equation.

Our results are given in the base moment M0, which serves as an initial value
for integrating the deformed profiles. The lateral reach of the cantilever is M0/p.

For buckling of the vertical cantilever, the critical load pcr decreases for in-
creased taper c and increase cross section factor m. Remember however, the
critical load is normalized with respect to the base rigidity EI0 which differs for
each cross section.

For post buckling, holding other parameters fixed, the base moment increases
with increased tip load p. When the taper c is increased, the base moment
decreases for large p, but the base moment first increases then decreases for low p.
The base moment also decreases for increased m and increases base inclination γ.

Instead of graphs, our tables would be useful in the design of load carrying
tapered cantilevers.
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