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A two-dimensional unsteady cascade aeroelasticity is introduced for the in-
vestigation of flow fields of turbomachines (gas or steam). Especially, the velocity
field around a cascade of airfoils is determined, while such a problem is reduced to
the solution of a non-linear multidimensional singular integral equation when con-
sidering harmonic time dependence between the motions of adjacent blades of the
turbine. Consequently, a general non-linear model is investigated by proposing an
“innovative” and “groundbreaking” method. An application is finally presented by
considering a special description of the velocity field and therefore such a field is
determined for arbitrary geometry and arbitrary interblade phase angle.
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Notations

Λ strength of vortices,
ζn location of the n-th airfoil,
t time,
a cascade spacing,
c length of wake,
Z point on the zeroth blade,
τ time lag,

λa(x) vortex strength distribution,
v, u unsteady velocities,

δ phase angle.

1. Introduction

Over the last years the big evolution of the jet engine and the high per-
formance axial-flow compressor increased too much the possibilities of turbo-
machines applied in aircrafts. Also, the turbojet engines were found to expe-
rience severe vibration of the rotor blades and part-speed operation. The in-
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creasing evolution of aeroelasticity in aircraft turbomachines continues to be un-
der active investigation, driven by the needs of aircraft powerplant and turbine
designers.

When considering an airfoil or blade in an axial- flow turbine or compressor
which is running at some rotational speed, the blade, because of the aerody-
namic and structural performance, has certain geometric properties defined by
its length, root and tip fixation, possible mechanical attachment to other blades
and by the chord, camber, thickness, stagger and profile shape which are func-
tions of the radial coordinate. Moreover, the blade can be constructed in such
a manner that the line of centroids and the line of shear centers are neither radial
nor straight, but are defined by schedules of axial and tangential coordinates as
functions of radius.

Two- and three-dimensional cascade flow was already formulated in the 1970s
by Smith [1], Namba [2], Salan [3], Goldstein [4], Platzer [5], Adamczyk

and Goldstein [6], Fleeter [7] and others. In order to apply two-dimensional
theory to the aeroelastic problems of real blade systems they used either a repre-
sentative section analysis or they applied the strip hypothesis; the aerodynamics
at one radius is uncoupled from the aerodynamics at any other radius.

In addition to the above references, during the 1980s the methods of two-
dimensional unsteady incompressible flow were further extended by Kaza and
Kielb [8], Verdon and Caspar [9], Spalart [10], Crawley and Hall [11],
Speziale, Sisto and Jonnavithula [12], Platzer and Carta [13], Sisto,
Wu, Thangam and Jonnavithula [14] and others. Subject areas which re-
ceived attention include such topics as finite shock motion, variable shock
strength of thick and highly cambered blades, and the effects of curvilinear wakes
and vorticity transport.

On the other hand, Ladopoulos [15] proposed a finite-part singular integro-
differential equations method arising in two-dimensional aerodynamics and ex-
tended his non-linear method [16, 17] for the solution of some important prob-
lems of solid mechanics theory. Furthermore, Ladopoulos [18, 19] introduced
a two-dimensional fluid mechanics representation analysis for the investigation of
inviscid flowfields of unsteady airfoils. More precisely, the velocity and pressure
coefficient field around a NACA airfoil was determined, while such a problem
was reduced to the solution of a non-linear multidimensional singular integral
equation, when the form of the source and vortex strength distribution are de-
pendent on the history of the vorticity and source distribution on the NACA
airfoil surface. This method was applied to determine the velocity field around
the blades of a vertical axis wind turbine.

Beyond the above sources, Ladopoulos and Zisis [20, 21] applied the non-
linear singular integral equations to determine the form of the profiles of a tur-
bomachine in two-dimensional steady flow of an incompressible fluid. On the
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other hand, in the present investigation the speed field is determined around
a cascade of airfoils of a turbomachine (gas or steam) in two-dimensional un-
steady and incompressible flow. Such a problem is reduced to the solution of
a non-linear multidimensional singular integral equation, when considering har-
monic time dependence between the motions of adjacent blades of the turbine.
As an application of the proposed method the velocity field of a turbomachine
is considered, and therefore this field is determined for arbitrary geometry and
arbitrary interblade phase angle.

2. Non-linear unsteady cascade aeroelasticity

The aeroelastic problems of the axial flow turbine (gas or steam) are of in-
creasing interest over the last years. In the turbomachine, the angle of attack
of each rotor airfoil at each radius r is compounded of the tangential veloci-
ties of the airfoil section due to rotor rotation and through the flow velocity as
modified in direction by the upstream stator row (Fig. 1).

Fig. 1. Velocity triangle in an axial turbine.

Materials of which the blades are made are conventionally aluminum alloys,
steel or stainless steel (high nickel and/or chromium content). On the other hand,
in some recent applications titanium and beryllium were used too. Moreover,
blades of turbomachines can be made of laminated materials such as glass cloth,
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graphite or metal oxide fibers present in polymeric or metal matrix materials
and modeled under pressure to final airfoil contours.

When considering a cascade of airfoils, the fact that the flexible blades may
be vibrating means that the relative pitch and stagger may be functions of time
and also position in the cascade (Fig. 2).

Fig. 2. A lattice of airfoils in an axial turbine.

The velocities induced by an infinite column of vortices of equal strength Λ
are given by the relation [20, 21]

(2.1) δ[u(z) − iv(z)] =
iΛ

2π

∞
∑

n=−∞

1

Z − ζn
,

where ζn denotes the location of the n-th airfoil

(2.2) ζn = ξ + inae−iβ + iYn(ξn, t) + Xn(t)

in which t is the time and Yn ≪ a, Xn ≪ c, with a the pitch (see Fig. 2) and c
the length of the wake (Fig. 2). Also, the point Z is on the zeroth blade:

(2.3) Z = x + iY (x, t) + X(t)

and the points ξn in Eq. (2.2) are equal to

(2.4) ξn = ξ + na sin β.
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Beyond the above, the harmonic time dependence between the motions of
adjacent blades is given by the relation

(2.5) Υn(ξn, t) = eiπωτY (ξ, t)

with τ the time lag.
Therefore, the singular kernel in Eq. (2.1) takes the form

(2.6)
1

Z − ζn
=

1

[x − ξ − inae−iβ + i[Y (x, t) − Yn(ξn, t)] + X(t) − Xn(t)]

and for infinite number of blades it is

(2.7)
∞
∑

n=−∞

1

Z − ζn
=

1

x − ξ + i[Y (x, t) − Y (ξ, t)]
+

∞
∑∗

n=−∞

1

Z − ζn
.

For the thin-airfoil theory the first term in Eq. (2.7) is conventionally ignored,
and therefore the remaining term can be written as follows:

∞
∑∗

n=−∞

1

Z − ζn
≈

∞
∑∗

n=−∞

1

x − ξ − inae−iβ
+ i

∞
∑∗

n=−∞

Yn(ξn, t) − Y (x, t)

(x − ξ − inae−iβ)2
(2.8)

+

∞
∑∗

n=−∞

Xn(t) − X(t)

(x − ξ − inae−iβ)2
+ . . . .

By combining Eqs. (2.1) and (2.8) and denoting by λa(x) (a is a cascade
spacing) the vortex strength distribution, we obtain for the unsteady induced
velocities

δ[u∗(x′) − iv∗(x′)] ≈ − λα(ξ′)δξ′

2πc
R2

[ ∞
∑∗

n=−∞

einωτΥ (ξ′, t) − Υ (x′, t)

(S − inπ)2
(2.9)

+
1

i

∞
∑∗

n=−∞

einωτX(t) − X(t)

(S − inπ)2

]

,

where the variables R and S are equal to

(2.10)
R = πeiβ(c/a),

S = R(x′ − ξ′)

and u∗, v∗ are time dependent parts of u and v.
Furthermore, let us replace by Q

(2.11) Q = 1 − ωτ

π
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and let the special case when the blades move perpendicular to their chord lines
with the same amplitude along the chord:

(2.12) Υ = −c∗1e
iωt = −c2.

Furthermore, by integrating over the chord in Eq. (2.9) we obtain the follow-
ing non-linear multidimensional singular integral equation:

(2.13) u∗(x′) − iv∗(x′) =
R2

2πc

1
∫

0

λa(ξ
′)

∞
∑∗

n=−∞

einωτc2(t) − c2(t)

(S − inπ)2

which further takes the form

(2.14)

u∗(x′) = − c2

2πc

1
∫

0

λa(ξ
′)[F − iI]dξ′,

v∗(x′) =
c2

2πc

1
∫

0

λa(ξ
′)[G + iH]dξ′,

where

(2.15)

F + iG = R2 Q sinh S sinhQS − cosh S cosh QS + 1

sinh2 S
,

H + iI = R2 Q sinh S coshQS − coshS sinh QS

sinh2 S
.

3. Non-linear unsteady aerodynamics application

As an application of the previous outlined theory, consider the case where
the velocity field is described as follows, on y = 0 for 0 < x < c, with c the
length of the wake:

v1(x) + v2(x) + v3(x) =
1

2π

∞
∫

0

[λ1(ξ) + λ2(ξ) + λ3(ξ)]K(ξ − x)dξ(3.1)

+
1

2π

∞
∫

c

[λ1(ξ) + λ2(ξ) + λ3(ξ)]K(ξ − x)dξ,

where λa(ξ) (a = 1, 2, 3) denotes the vortex strength distribution.
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Beyond the above, in Eq. (3.1) v1 denotes the unsteady upstream velocity
convected as a gust with the mean flow and v2 the unsteady upstream velocity
attributable to vibratory displacement of all the blades in the cascade. Also,
v3 is the unsteady upstream velocity relative to the zeroth airfoil occasioned by
its harmonic vibration. Furthermore, the vortex distributions λ1, λ2, λ3, which
represent the lift distributions on the cascade chord lines, are unsteady; hence,
they must give a rise to distributions of free vortices in the wake of each airfoil
of the cascade.

The kernel K(ξ − x) in Eq. (3.1) may be written as follows:

(3.2)
1

2π
K(ξ − x) =

1

2π

∞
∑

n=−∞

einωτ

ξ − x + inae−iβ

which further takes the form

(3.3)
1

2π
K(ξ − x)

=
ei

2a

cosh[(1 − δ/π)πeiβ(ξ − x)/a] + i sinh[(1 − δ/π)eiβ(ξ − x)/a]

sinh[πeiβ(ξ − x)/a]
,

where δ denotes the interblade phase angle.
From the previous analysis, it is obvious that the parameters β, a/c and δ

are strong determinants of the unsteady aerodynamic reactions. Consequently, in
the following Table 1 the values of u(x) and v(x)are given for arbitrary geometry
(β and a/c) and arbitrary interblade phase angle δ.

Table 1. Velocity values for the airfoils cascade of a turbomachine.

Case No. a/c β δ u(x) v(x)

1 1 0 0.4π −0.6004 −0.0580

2 1 0.25π 0 −0.4261 −0.2267

3 1 0.25π 0.4π −0.7318 −0.1558

4 1 0.42π 0.4π −0.7606 −0.5298

5 1 0.25π 0.8π −0.8734 −0.0232

6 2 0.25π 0.4π −0.6903 −0.0991

7 ∞ — — −0.6963 −0.4343

From Table 1, it follows that the values of speeds are increasing when the
angle β is increasing as well and furthermore speeds u(x) are again increasing,
when the interblade phase angle δ is increasing. On the other hand, there is a
decreasing in the values of the velocity field when increasing the pitch to chord
ratio a/c, while βand δ are remaining the same (see Cases 3 and 6).
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4. Conclusions

A general non-linear model was proposed, for the determination of the veloc-
ity field around a cascade of airfoils of a turbomachine. Such a problem was re-
duced to the solution of a non-linear multidimensional singular integral equation,
when considering harmonic time dependence between the motions of adjacent
blades of the turbine.

Such non-linear singular integral equation methods will be of increasing in-
terest in the future, as these methods are very important for the solution of gen-
eralized solid mechanics and fluid mechanics problems. Modern problems of fluid
and solid mechanics are much more simplified when solved by general non-linear
singular integral equation methods.

Beyond the above, the field of aeroelasticity in turbomachines, continues
to be under active investigation, driven by the needs of aircraft powerplant, gas
turbine and steam turbine designers. Especially, the design of the new generation
turbomachines for the next generation aircrafts will be made possible by highly
sophisticated non-linear computational methods.

Consequently, the non-linear singular integral equations method which was
successfully used over the last years for the solution of problems of aerodynamics,
fluid mechanics, hydraulics, structural analysis and fracture mechanics, etc. will
be further used for the design of the next generation turbomachines.

As a future research we propose the extension of the current non-linear
method of incompressible flows to compressible flows too. Thus, in such case the
Mach number should be used together with other parameters of the compressible
flows. As complicated turbomachines for next generation aircraft and spacecraft
[22–25] work with very high speeds in compressible flows, our “groundbreaking”
non-linear method should be extended to compressible flows too.
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