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Explicit and exact three-dimensional solutions are derived for the equilib-
rium problem of plate-like bodies with rectangular or circular cross-sections, made
of several layers of transversely isotropic materials, simply supported on the lateral
boundary, and loaded on the end faces. The component-wise representation of equi-
librium displacement fields has the form of a series, whose typical term is the product
of a function of the in-plane coordinates and a function of the transverse coordinate.
Examples are presented to demonstrate, by comparison with finite-element solutions,
the accuracy achieved when solution series are truncated after few terms.
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1. Introduction

A central issue in structure mechanics is to assess how well a lower-
dimensional model approximates the behavior of the three-dimensional bodies
this model is associated with. Explicit solutions of representative three-dimen-
sional problems are rarely available for benchmarking purposes. In the case of
linearly elastic plate theory, such a benchmark solution was offered by Levinson

[1] in 1985.
Levison considered a three-dimensional plate-like body in the form of a right

parallelepiped of rectangular cross-section, comprised of a linearly elastic iso-

tropic material, loaded exclusively on the top and bottom ends and with ho-
mogeneous complementing conditions on the lateral surface, where the author
assumed both the tangential components of displacement and the normal com-
ponent of the applied traction to be null. Levinson’s approach has been ex-
tended to treat piezoelectric plate-like bodies [2], the dynamics of electro-elastic
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plate-like bodies [3], transversely isotropic plate-like bodies with general cross-
section [4] and general edge conditions [5], and simply supported plate-like bod-
ies with circular cross-section, made of isotropic [6] and transversely isotropic
materials [7].

In the present paper, we derive explicit and exact Levinson-type equilibrium
solutions for plate-like bodies composed of several layers of possibly different

linearly elastic transversely isotropic materials, all layers having identical rect-
angular or circular cross-section.

Levinson laid down the following a priori representation for a class of candi-
date solution displacements:

(1.1) u(x1, x2, x3) = −g(x3) w,α (x1, x2)eα + f(x3) w(x1, x2)e3 (α = 1, 2),

parameterized by a function w of the in-plane coordinates and two functions f, g
of the transverse coordinate. With (1.1), Lamé’s equilibrium equations are satis-
fied for w an eigenfunction of the Laplace operator with homogeneous Dirichlet
conditions, and for f, g satisfying a system of two second-order ordinary differ-
ential equations, whose solutions depend on four integration constants that are
determined by the values of the surface loads acting on the end faces of the
body. More precisely, the boundary conditions on the end faces require that the
normal and tangential components of the surface loads be expressible in series
of the eigenfunctions w and their gradients, respectively; then, for each eigen-
function w, a pair of functions f and g is found, with the integration constants
determined by the coefficients of the relative series expansions of the loads.

Our derivation mimics Levinson’s, in that we move by taking his representa-
tion for the displacement in each layer (see Eq. (2.2)), and we require that the
relative triplet of parameter fields satisfies Lamé’s equations at interior points of
the layer, as well as Levinson-type boundary conditions.

The crucial point of our solution method comes when interlayer transmission

conditions for the displacement and the traction vectors are posed. We impose
continuity for both: (i) displacement continuity forbids sliding or detachment of
adjacent layers; (ii) traction continuity is implied by the request that part-wise
equilibrium equations be localizable even for plate-like body parts including one
or more interfaces, that are singular surfaces for the stress field (see, e.g., [8],
Sect. 193). Displacement continuity implies that the eigenfunctions w of different
layers correspond to the same eigenvalues and are therefore proportional; trac-
tion continuity permits to express the integration constants in functions f, g for
a layer in terms of those for one of the adjacent layers, so that, by a process of
elimination, a system of four equations is obtained that determines the integra-
tion constants of one of the layers in terms of the loads acting on the end faces
of the plate-like body; then, an inverse process gives in sequence the integration
constants for functions f, g of all other layers.



Explicit and exact Levinson-type solutions. . . 447

We consider equilibrium of multilayered plate-like bodies with rectangular or
circular cross-section1. Our paper is organized as follows. In Section 2 we deduce
the exact equilibrium solution for multilayered plate-like bodies with rectangular
cross-section, where each layer is subject to tractions on its end faces, while ho-
mogeneous complementing conditions of Levinson type hold at its lateral bound-
ary. In Section 3 we solve the corresponding equilibrium problem of multilayered
plates with circular cross-section, subject to axisymmetric loads on the end faces;
on the lateral boundary, where the transverse and tangential displacements are
taken null as in the case of a rectangular cross-section, a system of radial trac-
tions is applied, to guarantee equilibrium (see [6, 7]). For both rectangular and
circular cross-sections, the solutions are obtained in series form: in Section 4,
we present some examples which, by comparison with finite-element solutions,
demonstrate the remarkable accuracy achieved even if our series solutions are
truncated after few terms. Section 5 contains our conclusions.

2. Plate-like bodies with rectangular cross-section

Consider a plate-like body C which is identified with the cylindrical region of
height 2h it occupies in the three-dimensional space; let (x1, x2, x3) be a Carte-
sian coordinate system with origin on the mid-section S of C and x3-axis parallel
to its generatrix, and denote by (e1,e2,e3) the coordinate base vectors.

The body C is assumed to be composed of n layers of transversely isotropic
materials. The k-th layer (1 ≤ k ≤ n) occupies the sub-region C (k) of C included

between the planes x3 = x
(k−1)
3 and x3 = x

(k)
3 , with x

(0)
3 = −h and x

(n)
3 = h.

The height of the k-th layer is 2h(k) = x
(k)
3 − x

(k−1)
3 , and its mid-section is the

set of points for which x3 = o(k) = (x
(k)
3 + x

(k−1)
3 )/2. The symbols S + and S −

denote the end faces of C , i.e., the cross-sections corresponding to x3 = ±h; ∂C

denotes the boundary of the body C , ∂S that of its mid-section S .

1The case of rectangular cross-section was solved by Pan [9]. Applying a method already
used to study mechanical problems concerning layered bodies, Pan assumes that the displace-
ment field in each layer of the body is composed of (i) a vector in the traversal direction that
has the form of a unit vector e times the product of a function of the transverse coordinate and
a Fourier sine series S of the in-plane coordinates; and (ii) two vectors parallel to the mid-plane,
which are given by the products of functions of the transverse coordinate and, respectively, the
gradient of S and the curl of Se. Such a displacement field is required to satisfy equilibrium
equations, Levinson’s type conditions on the boundary of the plate-like body and, at layer
interfaces, continuity conditions for the field itself and for the tractions. These requirements
reduce the assumed displacement field to that of the Levinson-type equilibrium solution. Our
work is more general than Pan’s, because we also consider plates with circular cross-section
and because we do not pre-assign the form of the dependence of the displacement held on
the in-plane coordinates, but instead deduce it by requiring that the equilibrium equations be
satisfied.
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In this section, we consider the equilibrium of C in the case in which S is
a rectangle with sides of length l1 and l2, parallel to the axes x1 and x2. The
boundary conditions on the lateral surface ∂S × (−h, h) of C are

(2.1) u3 = 0, uτ = 0, tn = 0,

where u3 and uτ are the transverse and tangential components of the displace-
ment u, and tn is the normal component of the traction; surface loads t± are
assigned on the end faces S ± of C .

In each layer C (k), k = 1, . . . , n, the displacement field takes the same form
as the one assumed in the Levinson’s equilibrium solution for a single-layered
plate; namely,

u(k)
α (x1, x2, x3) = −g(k)(x3) w(k)

,α (x1, x2), α = 1, 2,

u
(k)
3 (x1, x2, x3) = f (k)(x3) w(k)(x1, x2),

(2.2)

where u
(k)
i is the restriction of the component ui = u · ei to the k-th layer,

and ( · ),α denotes partial differentiation with respect to xα, for α = 1, 2. To the
displacement (2.2) there corresponds the strain

(2.3) E
(k)
αβ = −g(k)w

(k)
,αβ , E

(k)
α3 =

1

2

(
f (k) −

dg(k)

dx3

)
w(k)

,α , E
(k)
33 =

df (k)

dx3
w(k) .

We express the constitutive equation

(2.4) S
(k) = C

(k)
E

(k),

of the transversely isotropic elastic material comprising the k-th layer in terms
of the moduli λ(k), µ(k), λ̂(k), µ̂(k) and λ̃(k), which are related to the components
of the elasticity tensors C

(k) by

(2.5) λ(k) = C
(k)
1122, µ(k) = C

(k)
1212, λ̃(k) = C

(k)
1133, λ̂(k) = C

(k)
3333, µ̂ = C1313,

with

(2.6) C
(k)
1111 = C

(k)
1122 + 2C

(k)
1212 = λ(k) + 2µ(k).

Accordingly, the stresses are

S
(k)
αβ =

(
λ̃(k) df

(k)

dx3
w(k) − λ(k)g(k)∆w(k)

)
δαβ − 2µ(k)g(k)w

(k)
,αβ ,

S
(k)
α3 = µ̂(k)

(
f (k) −

dg(k)

dx3

)
w(k)

,α ,

S
(k)
33 = −λ̃(k)g(k)∆w(k) + λ̂(k) df

(k)

dx3
w(k),

(2.7)
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where α, β = 1, 2, and ∆ is the Laplace operator. Equations (2.1), (2.2), and (2.7)
imply that, in the k-th layer, the boundary conditions on ∂S × (x(k−1), x(k)) are

w(k)(0, x2) = w(k)(l1, x2) = w(k)(x1, 0) = w(k)(x1, l2) = 0,

u
(k)
2 (0, x2, x3) = u

(k)
2 (l1, x2, x3) = u

(k)
1 (x1, 0, x3) = u

(k)
1 (x1, l2, x3) = 0,

S
(k)
13 (0, x2, x3) = S

(k)
13 (l1, x2, x3) = S

(k)
23 (x1, 0, x3) = S

(k)
23 (x1, l2, x3) = 0.

(2.8)

On the end sections x3 = o(k) ± h(k) of C (k) tractions t(k)± = t(k)±(x1, x2) are
applied which, at the interfaces, are the actions exerted by the layer adjacent
to that under consideration and, at the end faces of C , are the external surface
loads t±; thus, we have

(2.9) ±S
(k)
i3 (x1, x2, o

(k) ± h(k))e3 = t
(k)±
i (x1, x2), i = 1, 2, 3,

with t(1)− = t− and t(n)+ = t+. Introduction of stresses (2.7) into three-
dimensional equilibrium equations with null volume forces, followed by sepa-
ration of variables, yields

∆w(k) + (κ(k))2w(k) = 0,

λ̂(k) +
df (k)

dx2
3

+ (κ(k))2(λ̃(k) + µ̂(k))
dg(k)

dx3
− (κ(k))2µ̂(k)f = 0,

µ̂(k) dg(k)

dx2
3

− (κ(k))2(λ(k) + 2µ(k))g(k) − (λ̃(k) + µ̂(k))
df (k)

dx3
= 0,

(2.10)

where κ(k) is a constant. Continuity of the displacement at the interface between

the layers k and (k + 1), where x3 = x
(k)
3 , requires that

g(k)(x
(k)
3 )w(k)

,α (x1, x2) = g(k+1)(x
(k)
3 )w(k+1)

,α (x1, x2), α = 1, 2,

f (k)(x
(k)
3 )w(k)(x1, x2) = f (k+1)(x

(k)
3 )w(k+1)(x1, x2);

(2.11)

Eq. (2.11)3 implies

(2.12)
f (k)(x

(k)
3 )

f (k+1)(x
(k)
3 )

=
w(k+1)(x1, x2)

w(k)(x1, x2)
= κ(k+1,k),

where κ(k+1,k) is a constant. Substitution in Eqs. (2.11) gives

w(k+1)(x1, x2) = κ(k+1,k) w(k)(x1, x2),

f (k+1)(x
(k)
3 ) =

1

κ(k+1,k)
f (k)(x

(k)
3 ),

g(k+1)(x
(k)
3 ) =

1

κ(k+1,k)
g(k)(x

(k)
3 ).

(2.13)
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Equation (2.13)1 shows that both the functions w(k+1) and w(k) must satisfy
Eq. (2.10)1 with the boundary condition (2.8)1, and thus that

(2.14) κ(k+1) = κ(k) = κ.

The functions

(2.15) w(k) = w(k)(x1, x2; p, q) = W (k)(p, q) sin
pπx1

l1
sin

qπx2

l2
,

where W (k)(p, q) is a constant with p and q integers, satisfy the boundary con-
dition (2.8)1; they satisfy also Eq. (2.10)1 provided κ2 has the value

(2.16) κ2 = κ2(p, q) =
p2π2

l21
+

q2π2

l22
.

Equation (2.13)1 then yields

(2.17) W (k+1)(p, q) = κ(k+1,k)W
(k)(p, q),

and for each pair (p, q) there is only one independent constant W (k), which can
be chosen to be that of the layer l containing the mid-section (x3 = 0) of C . The
value of W (l)(p, q) can be determined by requiring that w(l) be the transverse
component of displacement of the points of the mid-plane of C , i.e., in view of
(2.2)2, by the condition

(2.18) f (l)(0) = 1.

For each fixed pair (p, q), and for each fixed layer index k, the functions f (k) =
f (k)(x3; p, q) and g(k) = g(k)(x3; p, q) must satisfy Eqs. (2.10)2,3; equivalently,
f (k) must satisfy the following equation:

(2.19) λ̂(k)µ̂(k) d
4f (k)

dx4
3

− κ2(λ̂(k)(λ(k) + 2µ(k)) − λ̃(k)(λ̃(k) + 2µ̂(k)))
d2f (k)

dx2
3

+ κ4µ̂(k)(λ(k) + 2µ(k))f (k) = 0,

and, once f (k) is known, g(k) is given by

(2.20) g(k) = −

λ̂(k)µ̂(k) d
3f (k)

dx3
3

+ κ2λ̃(k)(λ̃(k) + 2µ̂(k))
df (k)

dx3

κ4(λ(k) + 2µ(k))(λ̃(k) + µ̂(k))
.

The functions f (k) and g(k) can be written in the form

f (k)(x3; p, q) = a
(k)
f (x3; p, q) · c(k)(p, q),

g(k)(x3; p, q) = a
(k)
g (x3; p, q) · c(k)(p, q),

(2.21)
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where, by omitting indication of the dependence on p and q,

c
(k) =




c
(k)
1

c
(k)
2

c
(k)
3

c
(k)
4




, a
(k)
f (x3) =




cosh(β
(k)
1 x3)

sinh(β
(k)
1 x3)

cosh(β
(k)
2 x3)

sinh(β
(k)
2 x3)




,

a
(k)
g (x3) =

1

κ2(λ̃(k) + µ̂(k))




(κ2µ̂(k)/β
(k)
1 − β

(k)
1 λ̂(k)) sinh(β

(k)
1 x3)

(κ2µ̂(k)/β
(k)
1 − β

(k)
1 λ̂(k)) cosh(β

(k)
1 x3)

(κ2µ̂(k)/β
(k)
2 − β

(k)
2 λ̂(k)) sinh(β

(k)
2 x3)

(κ2µ̂(k)/β
(k)
2 − β

(k)
2 λ̂(k)) cosh(β

(k)
2 x3)




.

(2.22)

Here, c(k) = c(k)(p, q) is the vector of the integration constants of Eq. (2.19).

The vectors a
(k)
f = a

(k)
f (x3; p, q) and a

(k)
g = a

(k)
g (x3; p, q) are functions of the x3-

coordinate and the integers p and q; the quantities β
(k)
1 and β

(k)
2 are the absolute

values of the roots ±β
(k)
1 , ±β

(k)
2 of the algebraic equation associated with the

differential equation (2.19),

β
(k)
1 = β

(k)
1 (p, q) = κ(p, q)

√
−b(k) +

√
b(k)2 − 4a(k)c(k)

2a(k)
,

β
(k)
2 = β

(k)
2 (p, q) = κ(p, q)

√
−b(k) −

√
b(k)2 − 4a(k)c(k)

2a(k)
,

(2.23)

where a(k), b(k), and c(k) depend on the elastic moduli of the material comprising
the layer and are defined as

a(k) = λ̂(k)µ̂(k), b(k) = −λ̂(k)(λ(k) + 2µ(k)) + λ̃(k)(λ̃(k) + 2µ̂(k)),

c(k) = µ̂(k)(λ(k) + 2µ(k)).
(2.24)

Clearly, β
(k)
1 and β

(k)
2 also depend on the material of which the layer is formed,

and Eqs. (2.23)–(2.24) show that they assume the same values in layers whose

elastic moduli are proportional. In terms of the vectors c(k), a
(k)
f , and a

(k)
g ,

kinematical conditions (2.11), for k = 1, . . . , n − 1, are

a
(k)
f (x

(k)
3 ) · c(k) = κ(k+1,k) a

(k+1)
f (x

(k)
3 ) · c(k+1),

a
(k)
g (x

(k)
3 ) · c(k) = κ(k+1,k) a

(k+1)
g (x

(k)
3 ) · c(k+1),

(2.25)

where the dependence of all the vectors on the pair (p, q) is assumed known.
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The form of the functions w(k) in Eq. (2.15) and that of the stresses S
(k)
i3

in constitutive equations (2.7) show that, in order to make possible that the
boundary conditions (2.9) be satisfied, the surface loads applied on the end faces
of C must be expressible in appropriate series of trigonometric functions. In this
case, the applied loads, for each pair (p, q), are

(2.26) t
±(x1, x2) = τ±∇

(
sin

pπx1

l1
sin

qπx2

l2

)
+ σ± sin

pπx1

l1
sin

qπx2

l2
e3,

where τ± = τ±(p, q), σ± = σ±(p, q), ∇ is the gradient operator, and the depen-
dence of t± on (p, q) is understood.

In view of (2.17) and (2.7), the instance when the traction vector t = Se3

be continuous at the interfaces between adjacent layers is expressed by the con-
ditions

µ̂(k)

(
f (k) −

dg(k)

dx3

)
w(k)

,α eα

= µ̂(k+1)

(
f (k+1)(x

(k)
3 ) −

dg(k+1)

dx3

)
κ(k+1,k)w

(k)
,α eα,

(
κ2λ̃(k)g(k) + λ̂(k) df

(k)

dx3

)
w(k)

=

(
κ2λ̃(k+1)g(k+1) + λ̂(k+1) df

(k+1)

dx3

)
κ(k+1,k)w

(k),

(2.27)

for k = 1, . . . , n − 1.
In order to write Eqs. (2.9) and (2.27) in a more concise form, we intro-

duce the vectors a
(k)
σ = a

(k)
σ (x3; p, q) and a

(k)
τ = a

(k)
τ (x3; p, q). By leaving out

dependence on p and q, the definitions of these vectors are

(2.28) a
(k)
σ (x3) =

µ̂(k)

λ̃(k) + µ̂(k)




(κ2λ̃(k)/β
(k)
1 + β

(k)
1 λ̂(k)) sinh(β

(k)
1 x3)

(κ2λ̃(k)/β
(k)
1 + β

(k)
1 λ̂(k)) cosh(β

(k)
1 x3)

(κ2λ̃(k)/β
(k)
2 + β

(k)
2 λ̂(k)) sinh(β

(k)
2 x3)

(κ2λ̃(k)/β
(k)
2 + β

(k)
2 λ̂(k)) cosh(β

(k)
2 x3)




,

(2.29) a
(k)
τ (x3) =

µ̂(k)

κ2(λ̃(k) + µ̂(k))




(κ2λ̃(k) + (β
(k)
1 )2λ̂(k)) cosh(β

(k)
1 x3)

(κ2λ̃(k) + (β
(k)
1 )2λ̂(k)) sinh(β

(k)
1 x3)

(κ2λ̃(k) + (β
(k)
2 )2λ̂(k)) cosh(β

(k)
2 x3)

(κ2λ̃(k) + (β
(k)
2 )2λ̂(k)) sinh(β

(k)
2 x3)




.



Explicit and exact Levinson-type solutions. . . 453

Taking (2.26) into account, for each pair (p, q) conditions (2.9) and (2.27) can
be written

a
(n)
σ (+h) · c(n) =

σ+

W (n)
, a

(n)
τ (+h) · c(n) =

τ+

W (n)
,

a
(1)
σ (−h) · c(1) = −

σ−

W (1)
, a

(1)
τ (−h) · c(1) = −

τ−

W (1)
,

(2.30)

a
(k)
σ (x

(k)
3 ) · c(k) = κ(k+1.k)a

(k+1)
σ (x

(k)
3 ) · c(k+1),

a
(k)
τ (x

(k)
3 ) · c(k) = κ(k+1.k)a

(k+1)
σ (x

(k)
3 ) · c(k+1).

(2.31)

Boundary conditions (2.30) and continuity conditions (2.25) and (2.31), for k =
1, . . . , n − 1, form a system of 4n equations for the 4n unknown components of
the n vectors c(k). Let A(k) = A(k)(x3; p, q) be the matrices whose rows are the
components of the vectors (2.22)2,3, (2.28), and (2.29),

A
(k) =




a
(k)
f

a
(k)
g

a
(k)
σ

a
(k)
τ




.

In terms of these matrices, the continuity conditions (2.25) and (2.31) are written
as

(2.32) A
(k)(x

(k)
3 ) c

(k) = κ(k+1,k)A
(k+1)(x

(k)
3 ) c

(k+1).

For each (p, q), Eqs. (2.32) can be solved to obtain c(k+1) in terms of c(k). Then,
by substitution, Eqs. (2.30) are reduced to a system of four equations for the
components of c(1) and, when these are known, the c(k), for k = 2, . . . , n, are
obtained in sequence from (2.32).

Finally, we observe that, in the displacement components (2.2), the constants
W (k) in the expression (2.15) of the function w(k) cancel with the constants
1/W (k) which, in view of Eqs. (2.17) and (2.32), appear in the expressions of
the functions f (k) e g(k). Thus, the displacement components are independent of
W (k) and κ(k+1,k).

3. Plate-like bodies with circular cross-section

We now deduce a Levinson-type solution for multilayered plate-like bodies
with circular cross-sections, subject to axisymmetric deformations.
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An explicit Levinson-type solution for the equilibrium of a simply-supported
circular cylinder made of an isotropic material and subject to axisymmetric
deformations was given in [6]. The solution was extended in [7] to the case of
a circular cylinder made of a transversely isotropic material.

It was shown in [4] that, for a simply-supported plate-like body C of general
cross-section, a Levinson-type equilibrium solution requires the presence, on the
lateral surface, of normal tractions which are proportional to the curvature of the
cross-sectional contour ∂S . Such tractions are null when C has a rectangular
cross-section and have magnitude that varies along the thickness but is inde-
pendent of the position on ∂S in axisymmetric deformations of a plate with
a circular cross-section.

Consider a multilayered plate-like body C , and let (r, θ, z) and (er,eθ,ez) be
the coordinates and the base vectors of a cylindrical system with origin at the
center of the mid-section S of C and z-axis orthogonal to S . In axisymmet-
ric deformations and for null volume forces, the three-dimensional equilibrium
equations reduce to

(3.1) Srr,r + Srz,z +
1

r
(Srr − Sθθ) = 0, Szr,r + Szz,z +

1

r
Szr = 0.

It is assumed that the body C is acted upon by tractions t±(r) applied at the
end faces,

(3.2) Sez = ±t
±, on S

±;

and that the boundary conditions on the lateral surface are

(3.3) uz = 0, Srr = t̂r(z), on ∂S × (−h, h),

where uz is the transverse component of the displacement and t̂r is the applied
radial traction, needed for the equilibrium in a Levinson-type solution.

In view of the symmetry, in each layer C (k), that is included between the
cross-sections at z = z(k−1) and z = z(k), the displacement field is assumed to
be in the form

(3.4) u(k)
r (r, z) = −g(k)(z)w(k)

,r (r), u(k)
z (r, z) = f (k)(z)w(k)(r),

to which there correspond the nonzero strains

E(k)
rr = −g(k)w(k)

,rr , E
(k)
θθ = −

1

r
g(k)w(k)

,r ,

E(k)
zz =

df (k)

dz
w(k), E(k)

rz =
1

2

(
f (k) −

dg(k)

dz

)
w(k)

,r ,

(3.5)
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and, for layers composed of transverse isotropic materials, the stresses

S(k)
rr = −(λ(k) + 2µ(k))g(k)w(k)

,rr − λ(k) 1

r
g(k)w(k)

,r + λ̃(k) df
(k)

dz
w(k),

S
(k)
θθ = −λ(k)g(k)w(k)

,rr − (λ(k) + 2µ(k))
1

r
g(k)w(k)

,r + λ̃(k) f
(k)

dz
w(k),

S(k)
zz = −λ̃(k)g(k)

(
w(k)

,rr +
1

r
w(k)

,r

)
+ λ̂(k) df

(k)

dz
w(k),

S(k)
rz = µ̂(k)

(
f (k) −

dg(k)

dz

)
w(k)

,r .

(3.6)

A development similar to the one previously performed for the plate-like body
with rectangular cross-section shows that the following results hold. The function
w(k) must satisfy the equation

(3.7) w(k)
,rr +

1

r
w(k)

,r + (κ(k))2w(k) = 0,

with the boundary condition

(3.8) w(k)(R) = 0,

where R is the radius of S . The continuity of the displacement at the interfaces
between layers implies that, for k = 1, . . . , n − 1,

w(k+1)(r) = κ(k+1.k)w
(k)(r),

f (k+1)(z(k)) =
1

κ(k+1.k)
f (k)(z(k)),

g(k+1)(z(k)) =
1

κ(k+1.k)
g(k)(z(k)),

(3.9)

where κ(k+1.k) is a constant; it follows from (3.7) and (3.9)1 that

(3.10) κ(k+1) = κ(k) = κ.

The solution of (3.7)–(3.8) is

(3.11) w(k)(r;m) = W (k)(m)J0(κ(m)r/R), m = 1, 2, . . . ,

where W (k)(m) is a constant, J0 is the Bessel function of the first kind and
order 0, and for each m, the number κ(m) is the m-th positive zero of J0,

(3.12) J0(κ(m)) = 0, m = 1, 2, . . . .
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In view of (3.9)1, it is

(3.13) W (k+1)(m) = κ(k+1.k)W
(k)(m);

hence, for each m, there is only one independent constant W (k), whose value can
be fixed by the condition

(3.14) f (l)(0) = 1,

corresponding to the request that w(l)(m) be the transverse displacement of the
points of the mid-section of C , assumed to be in the layer C (l).

For each layer index k and for each m, the functions f (k) = f (k)(z;m) and
g(k) = g(k)(z;m) are such that

λ̂(k)µ̂(k) d
4f (k)

dz4
− κ2(λ̂(k)(λ(k) + 2µ(k)) − λ̃(k)(λ̃(k) + 2µ̂(k)))

d2f (k)

dz2

+κ4µ̂(k)(λ(k) + 2µ(k))f (k) = 0,

g(k) = −
λ̂(k)µ̂(k) d

3f (k)

dz3
+ κ2λ̃(k)(λ̃(k) + 2µ̂(k))

df (k)

dz

κ4(λ(k) + 2µ(k))(λ̃(k) + µ̂(k))
.

(3.15)

The functions f (k) and g(k) can be written as

(3.16)
f (k)(z;m) = a

(k)
f (z;m) · c(k)(m),

g(k)(z;m) = a
(k)
g (z;m) · c(k)(m),

where, with the dependence on m agreed upon known,

c
(k) =




c
(k)
1

c
(k)
2

c
(k)
3

c
(k)
4




, a
(k)
f (z) =




cosh(β
(k)
1 z)

sinh(β
(k)
1 z)

cosh(β
(k)
2 z)

sinh(β
(k)
2 z)




,

a
(k)
g (z) =

1

κ2(λ̃(k) + µ̂(k))




(κ2µ̂(k)/β
(k)
1 − β

(k)
1 λ̂(k)) sinh(β

(k)
1 z)

(κ2µ̂(k)/β
(k)
1 − β

(k)
1 λ̂(k)) cosh(β

(k)
1 z)

(κ2µ̂(k)/β
(k)
2 − β

(k)
2 λ̂(k)) sinh(β

(k)
2 z)

(κ2µ̂(k)/β
(k)
2 − β

(k)
2 λ̂(k)) cosh(β

(k)
2 z)




.

(3.17)
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In these equations the quantities β
(k)
1 and β

(k)
2 are the absolute values of the

roots ±β
(k)
1 , ±β

(k)
2 of the algebraic equation associated with (3.15)1,

β
(k)
1 = β

(k)
1 (m) = κ(m)

√
−b(k) +

√
b(k)2 − 4a(k)c(k)

2a(k)
,

β
(k)
2 = β

(k)
2 (m) = κ(m)

√
−b(k) −

√
b(k)2 − 4a(k)c(k)

2a(k)
,

(3.18)

with a(k), b(k), b(k) defined as in Eq. (2.24). In terms of the vectors (3.17) the
displacement continuity conditions (3.9)2,3 become

a
(k)
f (z(k)) · c(k) = κ(k+1,k) a

(k+1)
f (z(k)) · c(k+1),

a
(k)
g (z(k)) · c(k) = κ(k+1,k) a

(k+1)
g (z(k)) · c(k+1).

(3.19)

The expressions of w(k) in Eq. (3.11) and of the stresses in equations (3.6)3,4

show that, in order the boundary conditions (3.2) on the end faces S ± of C can
be satisfied, the surface loads t± = t±(r;m) must be expressible in Bessel series
and, for each m, they must have the form

(3.20) t
±(r) = −τ±J0, r(κr/R)er + σ±J0(κr/R)ez,

where the dependence on m of t±, τ±, σ±, and κ is known. By (3.9)1 and (3.6)3,4,
the continuity conditions of the traction vector t = Sez at the interfaces between
layers can be expressed as

µ̂(k)

(
f (k)(z(k)) −

dg(k)

dz
(z(k))

)
w(k)

,r =

= κ(k+1.k)µ̂
(k+1)

(
f (k+1)(z(k)) −

dg(k+1)

dz
(z(k))

)
w(k)

,r ,

λ̃(k)g(k)(z(k))
1

r

d

dr
(rw(k)

,r ) + λ̂(k) df
(k)

dz
(z(k))w(k) =

= κ(k+1.k)

(
λ̃(k+1)g(k+1)(z(k))

1

r

d

dr
(rw(k)

,r ) + λ̂(k) df
(k)

dz
(z(k))w(k))

)
.

(3.21)

In view of writing boundary and continuity conditions in a more concise form,

we introduce the vectors a
(k)
σ = a

(k)
σ (z;m) and a

(k)
τ = a

(k)
τ (z;m), which, for

each m, are defined by

(3.22) a
(k)
σ (z) =

µ̂(k)

λ̃(k) + µ̂(k)




(κ2λ̃(k)/β
(k)
1 + β

(k)
1 λ̂(k)) sinh(β

(k)
1 z)

(κ2λ̃(k)/β
(k)
1 + β

(k)
1 λ̂(k)) cosh(β

(k)
1 z)

(κ2λ̃(k)/β
(k)
2 + β

(k)
2 λ̂(k)) sinh(β

(k)
2 z)

(κ2λ̃(k)/β
(k)
2 + β

(k)
2 λ̂(k)) cosh(β

(k)
2 z)




,
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(3.23) a
(k)
τ (z) =

µ̂(k)

κ2(λ̃(k) + µ̂(k))




(κ2λ̃(k) + (β
(k)
1 )2λ̂(k)) cosh(β

(k)
1 z)

(κ2λ̃(k) + (β
(k)
1 )2λ̂(k)) sinh(β

(k)
1 z)

(κ2λ̃(k) + (β
(k)
2 )2λ̂(k)) cosh(β

(k)
2 z)

(κ2λ̃(k) + (β
(k)
2 )2λ̂(k)) sinh(β

(k)
2 z)




.

Making use of these definitions and taking (3.20) into account the boundary
conditions (3.2) and the continuity conditions (3.21) are

a
(n)
σ (+h) · c(n) =

σ+

W (n)
, a

(n)
τ (+h) · c(n) =

τ+

W (n)
,

a
(1)
σ (−h) · c(1) = −

σ−

W (1)
, a

(1)
τ (−h) · c(1) = −

τ−

W (1)
,

(3.24)

a
(k)
σ (z(k)) · c(k) = κ(k+1.k)a

(k+1)
σ (z(k)) · c(k+1),

a
(k)
τ (z(k)) · c(k) = κ(k+1.k)a

(k+1)
σ (z(k)) · c(k+1).

(3.25)

For each m, boundary conditions (3.24) and continuity conditions (3.19) and
(3.25) written for k = 1, . . . , n − 1, form a system of 4n equations for the 4n un-
known components of the n vectors c(k). The solution of this system is obtained
in the same way as in the case of plate-like bodies with rectangular cross-sections
examined in the previous section.

The expression (3.6)1 of the stress Srr shows that the radial tractions, that
must be applied at the mantle to assure the equilibrium of C , are

(3.26) t(k)(z) = −2µ(k)g(k)(z)w,rr(R) = −
2

R
µ(k)κW (k)J1(κ)g(k)(z),

z(k) ≤ z ≤ z(k+1), k = 1, . . . , n − 1.

When the layers forming C are symmetric with respect to the mid-plane, the
tractions (3.26) have a zero resultant on the segments of the lateral surface
parallel to the z-axis.

4. Comparison with finite-element solutions

The exact solutions derived in previous sections for equilibrium problems
of multilayered plate-like bodies, are expressed as series of products of a func-
tion of the in-plane coordinates and a function of the transverse coordinate.
The functions expressing dependence on the in-plane coordinates are the terms
of a trigonometric and a Bessel series, respectively for plate-like bodies with
rectangular and circular cross-sections. In this section we make a comparison
between the results given by the solution series truncated after a few terms,
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and the results obtained from a finite-element three-dimensional analysis of the
equilibrium problems.

We consider plate-like bodies symmetric with respect to the mid-section, that
are formed of three layers having the same thickness 2h/3, and assume that the
total thickness of the bodies is 2h = 200 mm.

We use technical elastic moduli to characterize the mechanical properties
of the transversely isotropic materials forming the layers, and we denote by E
the Young modulus for the directions x1 and x2, by E the Young modulus for
the direction x3, by ν and ν the Poisson ratios relative to the pairs of directions
(x2, x1) and (x3, x1), respectively; finally we denote by G the tangential modulus
for the directions x1 and x3. The relationships between the technical moduli and
the components of the elasticity tensor C are

C1111 =
E(E − Eν2)

(1 + ν)(E(1 − ν) − 2Eν2)
, C1122 =

E(Eν + Eν2)

(1 + ν)(E(1 − ν) − 2Eν2)
,

C1133 =
EEν

E(1 − ν) − 2Eν2
, C1212 =

E

2(1 + ν)
,(4.1)

C1313 = G, C3333 =
EE(1 − ν)

E(1 − ν) − 2Eν2
.

In all the examples, the outer layers, labelled with the number 2, are made of
the same material whose moduli are

E(2) = 1.7 × 105 N/mm2, G(2) = 0.25 × E(2),

E
(2)

= 0.75 × E(2), ν(2) = ν(2) = 0.25,

and the inner layer, labelled with the number 1, is made of a material whose
moduli are

E(1) =
1

25
E(2), G(1) = 0.25 × E(1),

E
(1)

= 0.75 × E(1), ν(1) = ν(1) = 0.25.

We use accurate finite element solutions as reference to evaluate the approxima-
tion given by the Levinson-type solutions truncated after the first term, after
the terms whose indices p and q (see (2.15)) or m (see (3.11)) are not greater
than 3, and after the terms whose indices p and q (see (2.15)) or m (see (3.11))
are not greater than 5. In the figures we use the following conventions:

— ≡ 3D FE solution (by COMSOL Multiphysics);

△ ≡ Levinson-type solution truncated after the first term;

© ≡ Levinson-type solution truncated after the terms whose

indices p, q or m are not greater than 3;
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� ≡ Levinson-type solution truncated after the terms whose

indices p, q or m are not greater than 5.

For a sake of simplicity, we will denote by w the transverse displacement at the

mid-plane, i.e., the values of functions u
(1)
3 (x1, x2, 0) or u

(1)
z (r, 0).

In the first example, we consider a plate with rectangular cross-section whose
sides have length l1 = 1500 and l2 = 2000 mm, and are parallel to the x1 and x2

axes, respectively. We consider three loading conditions in which on the upper
end face S + of the body acts: (i) a uniform load σ = 10 MPa; (ii) a force
Q = 25 kN applied at the centre P1 of the section; (iii) a force Q = 25 kN
applied at the point P2, which is on a diagonal of the section at the distance of
one quarter of the diagonal length from the corner. In Figures 1, 2 and 3, for the
three loading conditions, we plot:

— the transverse displacement over the thickness of the plate versus the
adimensional abscissa, xα/lα, along lines, through the center of the mid-section,
parallel to its sides;

— the stress S11 over E(1) versus the adimensional abscissa x3/(2h), along
a transverse fibre that, in the undeformed configuration, intersects the upper end
face at the point P2 for the first two loading conditions, and at the point P1 for
the third loading condition.

In the second example, we consider a plate with circular cross-section, whose
radius is R = 1000 mm, under the action of a uniform load σ = 10 MPa. The
Bessel series expression of σ is

(4.2) σ(r) =
∞∑

m=1

σ+
m J0(κm r/R),

where κm is the m-th positive root of the Bessel function J0, and the coefficients
σ+

m are

(4.3) σ+
m =

2σ

(R J1(κm))2

R∫

0

J0(κm r/R) r dr.

The load σ is accompanied by radial tractions on the lateral surface of the
plate-like body that, for each term of the Bessel series expansion (4.2), have
the expression (3.26). In the finite-element analysis, the tractions corresponding
to the whole load σ are assumed to be those given by the Levinson-type series
solution truncated after the tenth term.

For the circular plate, we plot in Fig. 4, the transverse displacement over the
thickness of the plate versus the adimensional abscissa r/R, along a diameter of
the mid-section, and the stress Srr over E(1) versus the adimensional abscissa
z/(2h) along a transverse fibre which intersects the mid-section at a point having
distance 3R/4 from the centre.
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Fig. 1. Uniform load.
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Fig. 2. Force applied at the centre of the upper end face.
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Fig. 3. Force applied at a quarter of the length of a diagonal on the upper end face.
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Fig. 4. Uniform load.

The figures show that, although the accuracy of the truncated solutions is
better when the body is subject to a uniform load, the solutions truncated after
the terms whose indices are not greater than 3 give a good approximation of the
reference results in all the considered cases.

5. Conclusions

We derived explicit and exact three-dimensional equilibrium solutions for
plate-like bodies consisting of several layers of transversely isotropic materials,
with both rectangular and circular cross-sections.

Under the assumption that each layer deforms as a Levinson plate, and that
displacement and tractions are continuous across the interfaces between layers,
we obtained equilibrium displacement fields in the form of series of products of
a function of the in-plane coordinates and a function of the transverse coordinate.

To test the convergence of such series solutions, we compared the approximate
values for displacement and stress they deliver under truncation after a few terms
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with the values given by accurate three-dimensional finite-element analyses. Lay-
ered plates with both rectangular and circular cross-sections were considered,
subject to either a uniform load or a force concentrated at the center of the
upper end-face. In all cases, we found that retaining the first three terms of the
series is sufficient to guarantee a satisfactory approximation.

A reviewer of a former version of our present work raised two interesting
questions: the one, as to what changes would ensue from letting the layer thick-
ness vary; the other, as to what would happen if the number of layers were made
larger and larger. We plan to take up these issues in a future paper. For the mo-
ment, we are only able to offer some numerical results concerning a preliminary
sampling of the effects of having five instead of three layers of different thick-
ness. With reference to Fig. 5, we plot the maximum deflection of the mid-section
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Fig. 5. Force applied at the centre of the upper end face. Maximum deflection at the
mid-plane cross-section. Three-layer plate-like body.
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Fig. 6. Force applied at the centre of the upper end face. Maximum deflection at the
mid-plane cross-section. Five-layer plate-like body.
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of the same (2h-thick) rectangular plate-like body analyzed before, subject to
a force applied at the center of the upper end face, by varying the thickness 2ξh
of the central (stiffest) layer.

We then consider a five-layer plate-like body that can be thought of as ob-
tained by cutting the body of the previous example at the mid-plane and insert-
ing an additional layer made of the same material as that of external (less stiff)
layers. We denote again by 2h the body thickness and by ξh the thickness of each
of the two (stiffest) intermediate layers. In Fig. 6 we plot the same quantities of
the previous example.

Both tests show that solutions truncated after order-5 terms approximate
well the reference solution, to which they get closer and closer as the thickness
of the stiffest layers becomes larger.
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