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1. Introduction

In the 1950’s I. Vekua recommended to investigate cusped prismatic
shells, i.e., plates whose thickness vanishes on some part or on the whole bound-
ary of the shell projection. One can find a survey concerning cusped prismatic
shells in [1, 2].

The first proper work concerning classical bending of cusped elastic plates was
conducted by Makhover [3] (see also Mikhlin [4]). Problems for cusped plates
have also been investigated by Khvoles, Jaiani, Tsiskarishvili, Khoma-
suridze, Devdariani, Uzunov, Naguleswaran, Kharibegashvili, Na-
troshvili, Wendland (see, e.g. [1, 2, 5, 10, 11] and references therein).

Vekua’s hierarchical models for elastic prismatic shells are mathematical
models (see, e.g., [1, 6, 7]). They were based on expansions of the three-dimen-
sional displacement vector fields and the strain and stress tensors in linear elas-
ticity into orthogonal Fourier–Legendre series with respect to the variable plate



346 N. Chinchaladze

thickness. By taking only the first r + 1 terms of the expansions, he introduced
the so-called r-th approximation. Each of these approximations for r = 0, 1, . . .
can be considered as an independent mathematical model of plates. For example,
r = 0 approximation coincides with plane stress, generalized plane stress; and
plane deformation r = 1 approximation coincides with Kirchoff–Love plate model
see [2].

Bending of the cusped plates in Vekua’s hierarchical models is considered,
e.g., in [8]–[12]. Non-cusped plates are considered, e.g., by Babuška, Gordeziani,
Meunargia, Vashakmadze, etc.

There were some unstudied areas connected with the study of vibration prob-
lem of cusped plate in case of Vekua’s hierarchical models. Recently, in [13]
and [14] harmonic vibrations of plates were considered in case of zeroth and
first approximations of Vekua’s hierarchical models. In [15], Natroshvili and
Kharibegashvili studied the well-posedness of an initial-boundary value prob-
lem corresponding to the zeroth approximation of Vekua’s hierarchical models
for elastic cusped prismatic shells.

In this paper elastic cusped symmetric prismatic shells (i.e., plates of variable
thickness with cusped edges) in the N -th approximation of Vekua’s hierarchi-
cal models are considered. The well-posedness of the boundary value problems
(BVPs) under the reasonable boundary conditions at the cusped edge and given
displacements at the non-cusped edge is studied in the case of harmonic vibra-
tion. The approach works also for non-symmetric prismatic shells. The classical
and weak setting of the BVPs in the case of the N -th approximation of hierarchi-
cal models is considered. Appropriate weighted functional spaces are introduced.
Uniqueness and existence results for the variational problem are proved. The
structure of the constructed weighted space is described and its connection with
weighted Sobolev spaces is established. Moreover, some sufficient conditions for
a linear functional arising on the right-hand side of the variational equation to
be bounded are given.

2. Fields equations

Let a 3D elastic body occupy a bounded region Ω with boundary ∂Ω:

Ω :=
{

(x1, x2, x3) ∈ R3 : x := (x1, x2) ∈ ω,
(−)

h (x) < x3 <
(+)

h (x)
}

,

where ω = ω ∪ ∂ω is the so-called projection of the plate Ω = Ω ∪ ∂Ω.

In what follows, we assume that
(±)

h (x) ∈ C2(ω) ∩ C(ω) and the thickness is

2h(x) :=
(+)

h (x)−
(−)

h (x) > 0 for x ∈ ω



Harmonic vibration of cusped plates in the N-th approximation. . . 347

and

2h(x) :=
(+)

h (x)−
(−)

h (x) ≥ 0 for x ∈ ∂ω,

i.e., the thickness may vanish on some part of the boundary.
Further, let ∂ω be a Lipschitz curve and

Γ1 :=
{

(x, x3) ∈ R3 : x ∈ ∂ω,
(−)

h (x) < x3 <
(+)

h (x)
}

,

S± :=
{

(x,
(±)

h (x)) ∈ R3 : x ∈ ω
}

;

denote by γ1 the projection of Γ1 onto ∂ω and let γ0 := ∂ω\γ1.
Obviously,

∂Ω = Γ̄1 ∪ S̄+ ∪ S̄−,

where Γ̄1 is a cylindrical lateral surface, while S+ and S− are upper and lower
face surfaces of the shell. Note that, in general, ∂Ω is not a Lipschitz surface.

If S̄+ ∩ S̄− 6= ∅, then a shell is called a cusped shell and the set

Γ0 := S̄+ ∩ S̄− =
{

(x, x3) ∈ R3 : x ∈ ∂ω, x3 =
(−)

h (x) =
(+)

h (x)
}

will be referred to as a cusped edge of a cusped shell.
In what follows, σij and eij are the stress and strain tensors, respectively, ui

are the displacements, Φi are the volume force components, ρ is the density, λ
and µ are the Lamé constants, δij is the Kronecker delta. Moreover, repeated
indices imply summation, bar under one of the repeated indices means that we
do not sum.

By uir, σijr, eijr, Φjr we denote the r-th order moments of the corresponding
quantities ui, σij , eij , Φj as defined below:

(uir, σijr, eijr, Φjr)(x1, x2, t) :=
(+)

h (x1,x2)∫

(−)

h (x1,x2)

(ui, σij , eij , Φj)(x1, x2, x3, t)Pr(a(x1, x2)x3 − b(x1, x2)) dx3, i, j = 1, 3,

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

(+)

h +
(−)

h

2h(x1, x2)
.

Vekua’s hierarchical models for elastic prismatic shells are mathematical
models (see [6, 16]). Their constructing is based on the multiplication of the
basic equations of linear elasticity:
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equations of motion

(2.1) σij,i +Φj = ρ
..
uj(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R3, t > t0, j = 1, 3;

generalized Hooke’s law (isotropic case)

(2.2) σij = λθδij + 2µeij , i, j = 1, 3, θ := eii;

kinematic relations

(2.3) eij =
1
2
(ui,j + uj,i), i, j = 1, 3,

by Legendre polynomials Pr(ax3 − b) and then integration with respect to x3

within the limits
(−)

h (x1, x2) and
(+)

h (x1, x2). By constructing Vekua’s hierarchical
models in Vekua’s first version the stress-vectors are assumed to be known on
upper and lower face surfaces. From (2.1)–(2.3), we get, respectively,

σαjr,α +
r∑

s=0

r
aisσijs + Φ

(r)
j = ρ

∂2ujr

∂t2
, j = 1, 3, r = 0, 1, . . . ,(2.4)

σijr(x1, x2, t) = λδijθr(x1, x2, t) + 2µeijr(x1, x2, t),(2.5)
i, j = 1, 3, r = 0, 1, . . . ,

eijr =
1
2

(
uir,j + ujr,i

)
+

1
2

∞∑
s=r

r
bisujs +

1
2

∞∑
s=r

r
bjsuis,(2.6)

i, j = 1, 3, r = 0, 1, . . . ,

where

θr := eiir = uγr,γ +
∞∑

s=r

r
bisuis,

r
bαr := −(r + 1)

h,α
h

,
r
b3r = 0,

r
bjs :=





0, s < r,

− r
aαs = −(2s + 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

, j = α, s > r,

(2s + 1)
1− (−1)s+r

2h
, j = 3, s > r,

α = 1, 2, j = 1, 3, r, s = 0, 1, 2, . . . ;

Φ
(r)
j :=

(+)
σ3j −

(+)
σαj

(+)

h,α + (−1)r
[
− (−)

σ3j +
(−)
σαj

(−)

h,α

]
+ Φjr

= Q(+)
n j

√
1 +

((+)

h,1

)2
+

((+)

h,2

)2
+ (−1)rQ(−)

n j

√
1 +

((−)

h,1

)2
+

((−)

h,2

)2
+ Φjr,

j = 1, 3, r = 0, 1, 2, . . . ;
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Q(+)
n j

and Q(−)
n j

are components of the stress vectors acting on the upper and

lower face surfaces with normals
(+)
n and

(−)
n , respectively. Thus, we get the

infinite system (2.4)–(2.6) with respect to the so-called r-th order moments σijr,
eijr, uir. This system is equivalent to (2.1)–(2.3). Then, substituting (2.6) into
(2.5) and then this result into (2.4), we construct an equivalent infinite system
with respect to the r-th order moments uir ([6]). After this, we assume that the
moments, for which the subscripts indicating order are greater than N , are equal
to zero. Considering only the first N + 1 equations (r = 0, N) in the obtained
infinite system of equations with respect to the r-th order moments uir, we obtain
the N -th order approximation (hierarchical model) governing system consisting

of 3N + 3 equations with respect to 3N + 3 unknown functions
N
uir, i = 1, 3,

r = 0, N (roughly speaking
N
uir is an “approximate value” of uir, since

N
uir are

solutions of the derived finite system). The N -th approximation of the system
reads as (see [7], [17])

(2.7) µ

[(
h2r+1N

vαr,j

)

,α

+

(
h2r+1N

v jr,α

)

,α

]

+ λδαj

(
h2r+1N

v γr,γ

)

,α

+
N∑

s=r+1

(
r

Bαjks hr+s+1N
v ks

)

,α

+

r−1∑

l=0

r
ail

[
λδijh

r+l+1N
v γl,γ + µh

r+l+1

(
N
v il,j +

N
v jl,i

)
+

N∑

s=l+1

l

Bijks h
r+s+1N

v ks

]
+ hr

N

Φr
j

= ρhr ∂2hr+1 N
v jr

∂ t2
, r = 0, N, j = 1, 3,

q−1∑

q

(· · · ) ≡ 0,

where

N
v kr :=

N
ukr

hr+1
, k = 1, 3, r = 0, N

are unknown so-called weighted “moments” of displacements (in what follows,
we omit superscripts like N when it does not lead to misunderstanding). Having
N
ukr, we can calculate

N
eijr and

N
σijr by means of (2.6), (2.5).

3. Harmonic vibration of the cusped plate

We will consider the case of harmonic vibration, i.e.,

vir(x, t) := e−ıνt◦vir(x), Φ
(r)
i (x, t) := e−ıνt

◦

Φ
(r)
i (x),

ν = const > 0, i = 1, 3, r = 0, 1.
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For ◦vir(x), taking into account (2.7), we get the following system:

(3.1) − (2r + 1)
{

ρν2h2r+1◦vjr + µ

[(
h2r+1◦vαr,j

)
,α

+
(
h2r+1◦vjr,α

)
,α

]

+ λδαj

(
h2r+1◦vγr,γ

)
,α

+
N∑

s=r+1

(
r

Bαjks hr+s+1 0
vks

)

,α

+
r−1∑

l=0

r
ail

[
λδijh

r+l+1 ◦
vγ l,γ + µh

r+l+1
(◦
vil,j +

◦
vjl,i

)
+

N∑

s=l+1

l
Bijks h

r+s+1 ◦
vks

]}

= (2r + 1)hr
◦
Φ

(r)
j , r = 0, N, j = 1, 3,

q−1∑
q

(· · · ) ≡ 0.

Denoting by L(N)(x, ∂) the (3N + 3)× (3N + 3) matrix differential operator
generated by the left-hand side expressions of system (3.1), we can rewrite (3.1)
in the following vector form:

(3.2) L(N)(x, ∂)v(x) = F (x), x ∈ ω,

where

v := (
◦
v10,

◦
v20,

◦
v30, . . . ,

◦
v1N ,

◦
v2N ,

◦
v3N )>,

F := (
◦
Φ

(0)
1 ,

◦
Φ

(0)
2 ,

◦
Φ

(0)
3 , 3h

◦
Φ

(1)
1 , 3h

◦
Φ

(1)
2 , 3h

◦
Φ

(1)
3 , . . . ,

(2N + 1)hN
◦
Φ

(N)
1 , (2N + 1)hN

◦
Φ

(N)
2 , (2N + 1)hN

◦
Φ

(N)
3 ),

the symbol (·)> means transposition.
Let

v, v∗ ∈ c2(ω) ∩ c1(ω), v∗ := (
◦
v∗10,

◦
v∗20,

◦
v∗30, ...,

◦
v∗1N ,

◦
v∗2N ,

◦
v∗3N )>,

where v and v∗ are arbitrary vectors of the above class. After multiplication (3.2)
by v∗ and integration by parts we obtain the following Green‘s formula:

(3.3)
∫

ω

L(N)v · v∗dω = B(N)(v, v∗)−
∫

∂ω

Tnv · v∗d∂ω =
∫

ω

F · v∗dω.

Here and in what follows, the · denotes the scalar product of two vectors, n :=
(n1, n2) is the inward normal to ∂ω,
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(3.4) B(N)(v, v∗) :=
∫

ω

N∑

r=0

(2r + 1)
{

ρν2h2r+1◦vjr
◦
v∗jr

+ h2r+1(
◦
vαr,β

◦
v∗βr,α + µ

◦
vjr,α

◦
v∗jr,α + λ

◦
vαr,α

◦
v∗βr,β −

N∑

s=r+1

( r
Bαjks hr+s+1 ◦vks

)
,α

◦
v∗jr

−
r+1∑

s=0

r
ais

[
λδijh

r+s+1 ◦
vαs,α + µh

r+s+1
(◦
vis,j +

◦
vjs,i

)
+

N∑

l=s+1

s
Bijkl h

r+l+1 ◦
vkl

]
◦
v
∗
jr

}
dω,

Tn := {σn10, σn20, σn30, 3hσn11, 3hσn21, 3hσn31, . . . ,

(2N + 1)hNσn1N , (2N + 1)hNσn2N , (2N + 1)hNσn3N},
with

σnir = σijrnj = {λδij(
N∑

s=r

r
bks

◦
vks +

◦
vkr,k)}nj

+
{

µ
[ 1∑

s=r

hs+1(
r
bir

◦
vjs +

r
bjs

◦
vis) +

◦
vir,j +

◦
vjr,i

]}
nj , i = 1, 2, 3, r = 0, 1,

where σnir, i = 1, 2, 3, denote the rth moments of the corresponding components
of the 3D stresses σni, i = 1, 2, 3.

From now on, throughout the paper we assume that the plate is symmetric,
i.e.,

(−)

h = −
(+)

h , 2h = h0x
κ
2 , h0 = const > 0, κ = const ≥ 0, x2 ≥ 0.

If we consider BVPs for system (3.2) with homogeneous boundary conditions
for which the curvilinear integral along ∂ω in (3.3) disappears, we arrive at the
equation

B(N)(v, v∗) =
∫

ω

F · v∗dω.

Let us consider the following Dirichlet problem in the classical setting: find
a 3N + 3-dimensional vector

v = (
◦
v10,

◦
v20,

◦
v30, . . . ,

◦
v1N ,

◦
v2N ,

◦
v3N )>,

in ω satisfying the system of differential equations (3.2) in ω and the homoge-
neous Dirichlet boundary condition on

(3.5) [v(x)]+ = 0, x ∈ ∂ω.
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Note that throughout the paper, for smooth classical solutions, equation (3.2)
and boundary condition (3.5) are understood in the classical pointwise sense,
while for generalized weak solutions of equation (3.2) is understood in the dis-
tributional sense and boundary condition (3.5), understood in the usual trace
sense. To derive the weak setting of the above problem, we have to apply Green‘s
formulas (3.3). We arrive at the variational equation:

(3.6) B(N)(v, v∗) = 〈F, v∗〉,

where the bilinear form B(N)(v, v∗) is defined by (3.4) and

(3.7) 〈F, v∗〉 =
∫

ω

N∑

r=0

(2r + 1)hr
◦
Φ

(r)
j

◦
v∗jrdω.

Note that the bilinear form (3.4) can be represented as follows:

(3.8) B(N)(v, v∗) :=
∫

ω

N∑

r=0

(2r + 1)ρν2h2r+1◦vjr
◦
v∗jrdω

+
∫

ω

N∑

r=0

(
r +

1
2

)
a[λδijekkr(v)eijr(v∗) + 2µeijr(v)eijr(v∗)]dω

=
∫

ω

N∑

r=0

(2r + 1)ρν2h2r+1◦vjr
◦
v∗jrdω

+
N∑

r=0

(
r +

1
2

) ∫

ω

a[λ ekkr(v)eiir(v∗) + 2µeijr(v)eijr(v∗)] dω,

where eijr and σijr are given by (2.6) and (2.5).
Further, we construct the vectors in Ω := {(x, x3) : x∈ω, −h(x)<x3 <h(x)}:

wi(x, x3) =
N∑

r=0

(
r +

1
2

)
hr ◦vir(x) Pr(ax3), i = 1, 2, 3,(3.9)

w∗i (x, x3) =
N∑

r=0

(
r +

1
2

)
hr ◦v∗jr(x) Pr(ax3), i = 1, 2, 3.(3.10)

It can be shown that

(3.11) B(w, w∗) :=
∫

Ω

(2ρν2wiw
∗
i + σij(w) eij(w∗)) dΩ = B(N)(v, v∗),
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where w(x, x3) := (w1, w2, w3) and w∗(x, x3) := (w∗1, w
∗
2, w

∗
3) are vectors. Indeed,

B(w,w∗) :=
∫

Ω

(2ρν2wiw
∗
i + σij(w) eij(w∗)) dΩ

=
∫

ω

2ρν2dω

(+)

h∫

(−)

h

N∑

r=0

N∑

s=0

(
r +

1
2

)(
s +

1
2

)
hr+1hs+1a2◦v∗ir

◦
v∗jsPr(ax3)Ps(ax3)dx3

+
∫

ω

dω

(+)

h∫

(−)

h

N∑

r=0

N∑

s=0

(
r +

1
2

)(
s +

1
2

)
a2σijr(v)eijs(v∗)Pr(ax3)Ps(ax3)dx3

=
∫

ω

N∑

r=0

(
r +

1
2

) (
2ρν2h2r+2a

◦
v∗ir

◦
v∗jr + aσijr(v)eijr(v∗)

)
dω

=
N∑

r=0

(
r +

1
2

)∫

ω

(
ρν2h2r+1◦v∗ir

◦
v∗jr + a[λekkr(v)eiir(v∗) + 2µeijr(v)eijr(v∗)]

)
dω

= B(N)(v, v∗),

B(w,w∗) is bilinear form corresponding to the 3D potential energy for the dis-
placement vector w.

Due to positive definiteness of the potential energy for 2λ+3µ > 0 and µ > 0
we get (see, e.g., [11], proof of Theorem 3.8; [18], proof of Theorem 3.8)

B(w, w) ≥ 2ρν2
3∑

i=1

∫

Ω

w2
i dΩ + C1

3∑

i,j=1

∫

Ω

[eij(w)]2dΩ(3.12)

= 2ρν2
3∑

i=1

∫

Ω

w2
idΩ + C1

∫

ω

dω

h∫

−h

N∑

r=0

(
r +

1
2

)
aeijr(v) Pr(ax3)

×
N∑

s=0

(
s +

1
2

)
a eijs(v) Ps(ax3) dx3

= ρν2

∫

ω

3∑

i=1

N∑

r=0

(2r + 1)h2r+1◦v2
irdω

+ C1

∫

ω

3∑

i,j=1

N∑

r=0

(
r +

1
2

)
e2
ijr(v)

dω

h
,
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where the positive constant C1 depends only on the material parameters λ and µ.
Here we applied the orthogonality of the Legendre polynomials

h∫

−h

Pk(ax3) Pl(ax3)a dx3 =
2δkl

2k + 1
, k, l = 0,∞.

After denoting by C0 := min{1, C1}, (3.11) and (3.12) imply

(3.13) B(N)(v, v) ≥

C0

∫

ω

{ 3∑

i=1

N∑

r=0

(2r + 1)h2r+1◦v2
ir +

3∑

i,j=1

N∑

r=0

(
r +

1
2

)
e2
ijr(v)

}
dω

h
.

Remark 3.1. In view of relations (3.11)–(3.13) we conclude that B(N)(v, v)
= 0 yields v = 0. Indeed, if B(N)(v, v) = 0 then B(w, w) = 0 by (3.11). In turn,
the latter equality for the strain tensor eij corresponding to the displacement
vector w implies that eij(w) = 0, i, j = 1, 2, 3, i.e., w is a rigid displacement.
Since w vanishes on the part of the lateral boundary Γ1 of Ω (which contains at
least three points not belonging to a straight line) it follows that w(x, x3) = 0
in Ω. Therefore, ◦vir(x) = 0, due to formulas (3.9) and (3.13).

Denote by D(ω) the space of infinitely differentiable functions with compact
support in ω and introduce the linear form in [D(ω)]3N+3 by the formula

(v, v∗)Xk
N,ν

=
N∑

r=0

(2r + 1)
∫

ω

hrρν2◦vir
◦
v∗ir dω(3.14)

+
N∑

r=0

(
r +

1
2

)∫

ω

eijr(v)eijr(v∗)
dω

h

=
N∑

r=0

(2r + 1)
∫

ω

hrρν2◦vir
◦
v∗ir dω

+
1
4

3∑

i,j=1

N∑

r=0

(
r +

1
2

) ∫

ω

[
hr+1(

◦
vir,j +

◦
vjr,i)

+
N∑

s=r+1

hs+1(br
js
◦
vis + br

is
◦
vjs)

]

×
[
hr+1(

◦
v∗ir,j +

◦
v∗jr,i) +

N∑

s=r+1

hs+1(br
js
◦
v∗is + br

is
◦
v∗js)

]dω

h
.
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Owing to Remark 3.1 it is easy to verify that (3.14) is an inner product
defined on the set of vector-functions [D(ω)]3N+3.

Denote by Xκ
N,ν := Xκ

N,ν(ω) the completion of the space [D(ω)]3N+3 with
respect to the norm

‖v‖2
Xκ

N,ν
= (v, v)Xκ

N,ν
(3.15)

=
N∑

r=0

(2r + 1)ρν2

∫

ω

h2r+1
3∑

i=1

◦
v2

irdω

+
N∑

r=0

(
r +

1
2

) ∫

ω

3∑

i,j=1

e2
ijr(v)

dω

h

=
N∑

r=0

(2r + 1)ρν2

∫

ω

h2r+1
3∑

i=1

◦
v2

irdω

+
1
4

N∑

r=0

3∑

i,j=1

(
r +

1
2

)

×
∫

ω

[
hr+1(

◦
vir,j +

◦
vjr,i) +

N∑

s=r+1

hs+1(br
js
◦
vis + br

is
◦
vjs)

]2 dω

h

corresponding to the inner product (3.14). It is evident that Xκ
N,ν is a Hilbert

space.
Now, we can formulate the weak setting of the homogeneous Dirichlet prob-

lem (3.2), (3.5): find a vector v = (
◦
v10,

◦
v20,

◦
v30, . . . ,

◦
v1N ,

◦
v2N ,

◦
v3N )> ∈ Xκ

N,ν

satisfying the equality

(3.16) B(N)(v, v∗) = 〈F, v∗〉 for all v∗ ∈ Xκ
N,ν .

Here, the vector F belongs to the adjoint space [Xκ
N,ν ]

∗, in general, and 〈·, ·〉
denotes duality brackets between the spaces [Xκ

N,ν ]
∗ and Xκ

N,ν .
Now, we have to establish well-posedness of the weak formulation to (3.16)

for the Dirichlet homogeneous problem. We start with the following proposition
which is very essential for our further analysis.

Lemma 3.2. The bilinear form B(N)(·, ·) is bounded and strictly coercive in
the space Xκ

N,ν(ω), i.e., there are positive constants C0 and C1 such that

|B(N)(v, v∗)| ≤ C1‖v‖Xκ
N,ν
‖v∗‖Xκ

N,ν
,(3.17)

B(N)(v, v) ≥ C0‖v‖2
Xκ

N,ν
,(3.18)

for all v, v∗ ∈ Xκ
N,ν .
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P r o o f. Since [D(ω)]3N+3 is dense in Xκ
N,ν it suffices to show the inequali-

ties (3.17) and (3.18) for v, v∗ ∈ [D(ω)]3N+3. By the 3N+3 dimensional vectors v
and v∗ defined in ω, we construct the three-dimensional vectors (3.9) and (3.10)
defined in Ω. Due to (3.11) and (3.12), and Hooke’s law (2.2) we have

|B(N)(v, v∗)|2 = |B(w, w∗)|2

=
[ ∫

Ω

2ρν2wiw
∗
i dΩ +

∫

Ω

(
2µeij(w) + λδijekk(w)

)
eij(w∗) dΩ

]2

≤
∫

Ω

2ρν2w2
i dΩ

∫

Ω

2ρν2w∗2i dΩ + C2

3∑

i,j=1

∫

Ω

e2
ij(w)dΩ

3∑

i,j=1

∫

Ω

e2
ij(w

∗)dΩ

=
∫

ω

3∑

i=1

N∑

r=0

2(2r + 1)h2r+1ρν2◦v2
irdω

∫

ω

3∑

i=1

N∑

r=0

2(2r + 1)h2r+1ρν2(
◦
v∗ir)

2dω

+ C2

∫

ω

3∑

i,j=1

N∑

r=0

(
r +

1
2

)
e2
ijr(v)

dω

h

∫

ω

3∑

i,j=1

N∑

r=0

(
r +

1
2

)
e2
ijr(v

∗)
dω

h

= C3‖v‖2
Xκ

N,ν
‖v∗‖2

Xκ
N,ν

,

where
C3 := max{2;C2}.

Whence (3.17) follows. The inequality (3.18) immediately follows from (3.11)
and (3.12).

Now, we can formulate the following existence and uniqueness results.
Theorem 3.3. Let F ∈ [Xκ

N,ν ]
∗. Then the variational problem (3.16) has a

unique solution v ∈ Xκ
N,ν for arbitrary value of the parameter κ and

‖v‖Xκ
N,ν

≤ 1
C0
‖F‖[Xκ

N,ν ]∗ .

P r o o f. It is direct consequence of Lemma 3.2 and the Lax–Milgram theo-
rem.

It can be easily shown that if F ∈ [L(ω)]3N+3 and suppF ∩ γ0 = ∅, then
F ∈ [Xκ

N,ν ]
∗ and

〈F, v∗〉 =
∫

ω

F (x)v∗(x) dω,

since v∗ ∈ [H1(ωε)]3N+3, where ε is sufficiently small positive number such that
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suppF ⊂ ωε = ω ∩ {x2 > ε}. Therefore,

|〈F, v∗〉| =
∣∣∣∣
∫

ω

F (x)v∗(x) dω

∣∣∣∣ ≤ ‖F‖[L2(ω)]3N+3‖v∗‖[L2(ωε)]3N+3

≤ ‖F‖[L2(ω)]3N+3‖v∗‖[H1(ωε)]3N+3 ≤ Cε‖F‖[L2(ω)]3N+3‖v∗‖Xκ
N

.

In this case we obtain the estimate

‖v‖Xκ
N,ν

≤ Cε

C0
‖F‖[L2(ω)]3N+3 .

Now we establish a representation of the space Xκ
N,ν as a weighted Sobolev

space. To this end, we introduce the following space:

(3.19) Y κ
N := [

◦
W 1

2,κ(ω)]3 × [
◦

W 1
2,3κ(ω)]3 × · · · × [

◦
W 1

2,(2N+1)κ(ω)]3,

where
◦

W 1
2,ν(ω) is a completion of D(ω) by means of the norm

(3.20) ‖f‖2
◦

W 1
2,ν(ω)

:=
∫

ω

xν
2 |∇ f(x)|2 dω, ∇ f = (f,1, f,2).

The norm in the space Y κ
N for a vector (

◦
v10,

◦
v20,

◦
v30, · · · ,

◦
v1N ,

◦
v2N ,

◦
v3N ) reads as

(3.21) ‖v‖2
Y κ

N
:=

N∑

r=0

∫

ω

x
(2r+1)κ
2

3∑

j=1

|∇◦
vjr|2 dω.

Theorem 3.4. Let

(3.22)
κ < 1, κ 6= 1

2r + 1
, ν2 ≤ 1

h2ρl2
,

h2 := max{(2r + 1)(h0/2)2r+1}, r = 1, N.

Then the linear spaces Xκ
N,ν and Y κ

N as sets of vector functions coincide and the
norms ‖ · ‖Xκ

N,ν
and ‖ · ‖Y κ

N
are equivalent.

P r o o f. Rewrite formula (3.15) in the form

‖v‖2
Xκ

N,ν
=

N∑

r=0

(2r + 1)ρν2

∫

ω

h2r+1
1 x

(2r+1)κ
2

3∑

i=1

◦
v2

ir dω

+
1
4

N∑

r=0

(
r +

1
2

)∫

ω

{
h2r+1

1 x
(2r+1)κ
2 4

◦
v2

1r,1
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+ 2h2r+1
1 x

(2r+1)κ
2

[
◦
v1r,2+

◦
v2r,1+

N∑

s=r+1

hs−r
1 x

(s−r)κ−1
2

(2s+1)κ
2

((−1)s+r+1−1)
◦
v1s

]2

+ h2r+1
1 x

(2r+1)κ
2

[
2
◦
v2r,2 +

N∑

s=r+1

hs−r
1 x

(s−r)κ−1
2 (2s + 1)κ((−1)s+r+1 − 1)

◦
v2s

]2

+ 2h2r+1
1 x

(2r+1)κ
2

[◦
v3r,1+

N∑

s=r+1

hs−r−1
1 x

(s−r−1)κ
2

(2s + 1)
2

(1− (−1)s+r)
◦
v1s

]2

+ 2h2r+1
1 x

(2r+1)κ
2

[
◦
v3r,2 +

N∑

s=r+1

hs−r−1
1 x

(s−r−1)κ
2

2s + 1
2

(1− (−1)s+r)
◦
v2s

+
N∑

s=r+1

hs−r
1 x

(s−r)κ−1
2

(2s + 1)κ
2

((−1)s+r+1 − 1)
◦
v3s

]2

+
1

h1 xκ
2

[ N∑

s=r+1

hs
1x

sκ
2 2s + 1(1− (−1)s+r)

◦
v3s

]2}
dω =: I1 + I2,

where h1 = h0/2 > 0,

I1 :=
N∑

r=0

(2r + 1)ρν2

∫

ω

h2r+1
1 x

(2r+1)κ
2

3∑

i=1

◦
v2

ir dω.

Let v ∈ Xκ
N,ν and show that v ∈ Y κ

N . We have to prove that

(3.23) ‖v‖2
Y κ

N
≤ C(N)‖v‖2

Xκ
N,ν

.

Denote by Xκ
N := Xκ

N (ω) the completion of the space of infinity differentiable
functions with compact support in ω, and with the help of the norm:

‖v‖2
Xκ

N
= (v, v)Xκ

N
(3.24)

=
N∑

r=0

(
r +

1
2

)∫

ω

3∑

i,j=1

e2
ijr(v)

dω

h

=
1
4

N∑

r=0

3∑

i,j=1

(
r +

1
2

)

×
∫

ω

[
hr+1(

◦
vir,j +

◦
vjr,i) +

N∑

s=r+1

hs+1(br
js
◦
vis + br

is
◦
vjs)

]2 dω

h
= I2
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corresponding to the inner product

(v, v∗)Xκ
N

=
N∑

r=0

(
r +

1
2

)∫

ω

eijr(v)eijr(v∗)
dω

h

=
1
4

3∑

i,j=1

N∑

r=0

(
r+

1
2

)∫

ω

[
hr+1(

◦
vir,j +

◦
vjr,i) +

N∑

s=r+1

hs+1(br
js
◦
vis + br

is
◦
vjs)

]

×
[
hr+1(

◦
v∗ir,j +

◦
v∗jr,i) +

N∑

s=r+1

hs+1(br
js
◦
v∗is + br

is
◦
v∗js)

]dω

h
.

Xκ
N is a Hilbert space (see [9]).
Evidently,

‖v‖2
Xκ

N

≤ C9‖v‖2
Xκ

N,ν

.(3.25)

Now we will prove
‖v‖2

Y κ
N

≤ C10‖v‖2
Xκ

N

.

We prove this inequality in several steps.

Step 1. Denote by Ir the summand corresponding to r in the norm expression
(3.24):

Ir :=
1
4

3∑

i,j=1

(
r +

1
2

) ∫

ω

[
hr+1(vir,j + vjr,i) +

N∑

s=r+1

hs+1
1 (br

jsvis + br
isvjs)

]2 dω

h
.

Therefore, the summand corresponding to r = N in (3.24) reads as

(3.26) IN =
2N + 1

8

×
∫

ω

2h2N+1
1 x

(2N+1)κ
2

{
2v2

1N,1 + (v1N,2 + v2N,1)2 + 2v2
2N,2 + v2

3N,1 + v2
3N,2

}
dω.

Evidently, IN ≤ ‖v‖2
Xκ

N
.

Note that the summands Ir, r = 0, N − 1, do not contain the derivatives
of the weighted moments vjN , j = 1, 2, 3. From (3.26) by Korn’s inequality (see
Appendix) we derive

(3.27)
∫

ω

x
(2N+1)κ
2

3∑

j=1

|∇vjN |2 dω ≤ C
(N)
0 IN ≤ C

(N)
0 ‖v‖2

Xκ
N

,
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which estimates the term corresponding to r = N in the norm (3.21); here and
in the sequel C

(k)
p denote positive constants independent of v.

Step 2. Due to Hardy’s and Korn’s inequalities (see Appendix) we get

(3.28)
3∑

j=1

∫

ω

x
(2N+1)κ−2
2 v2

jN dω

≤ C
(N)
1

∫

ω

x
(2N+1)κ
2 |∇vjN |2 dω

≤ C
(N)
2

∫

ω

x
(2N+1)κ
2 [2v2

1N,1 + 2 v2
2N,2 + (v1N,2 + v2N,1)2 + v2

3N,1 + v2
3N,2]

2 dω

≤ C
(N)
3 ‖v‖2

Xκ
N

for (2N + 1)κ 6= 1.

Step 3. Here we prove that

(3.29)
3∑

j=1

∫

ω

x
(2N−1)κ−2
2 |vj N−1|2 dω ≤ C

(N−1)
1 ‖v‖2

Xκ
N

for (2N − 1)κ 6= 1, κ < 1.

Indeed, we have

IN−1 =
2N − 1

8

∫

ω

2h2N−1
1 x

(2N−1)κ
2

{
2v2

1 N−1,1 + (v1 N−1,2 + v2 N−1,1)2

+2v2
2 N−1,2 + [ v3 N−1,1 + (2N + 1)v1N ]2 + [ v3 N−1,2 + (2N + 1)v2N ]2

+4h2N−1
1 x

(2N−1)κ
2 (2N + 1)2 v2

3N

}
dω ≤ ‖v‖2

Xκ
N

.

Hence,
∫

ω

x
(2N−1)κ
2 [2v2

1 N−1,1+(v1 N−1,2+v2 N−1,1)2+2v2
2 N−1,2] dω ≤ C

(N−1)
2 ‖v‖2

Xκ
N

,(3.30)

∫

ω

x
(2N−1)κ
2 [v3 N−1,α + (2N + 1)vαN ]2 dω ≤ C

(N−1)
3 ‖v‖2

Xκ
N

, α = 1, 2.(3.31)

From (3.31), in view of (3.28), we get

(3.32)
∫

ω

x
(2N−1)κ
2 v2

3 N−1,α dω ≤ C
(N−1)
4 ‖v‖2

Xκ
N

since (2N − 1)κ > (2N + 1)κ− 2 for κ < 1.



Harmonic vibration of cusped plates in the N-th approximation. . . 361

Now, applying again Hardy’s and Korn’s inequalities with the help of (3.30)
and (3.32) we arrive at the relation:

(3.33)
3∑

j=1

∫

ω

x
(2N−1)κ−2
2 v2

j N−1 dω

≤ C
(N−1)
5

∫

ω

x
(2N−1)κ
2 |∇vj N−1|2 dω

≤ C
(N−1)
6

∫

ω

x
(2N−1)κ
2 [2v2

1 N−1,1 + 2 v2
2 N−1,2 + (v1 N−1,2 + v2 N−1,1)2

+ v2
3 N−1,1 + v2

3 N−1,2]
2 dω ≤ C

(N−1)
7 ‖v‖2

Xκ
N

.

Step 4. Taking into account that Ir does not contain the derivatives of the
moments vj r+1, . . . , vjN , j = 1, 2, 3, and employing arguments similar to Step 3,
we derive

(3.34)
3∑

j=1

∫

ω

x
(2r+1)κ−2
2 v2

jr dω ≤ C
(r)
1 ‖v‖2

Xκ
N

, r = N − 2, . . . , 0,

for κ < 1, (2l + 1)κ 6= 1, l = r, r + 1, . . . , N.

Therefore, by (3.28), (3.29) and (3.34) we obtain

(3.35)
N∑

r=0

3∑

j=1

∫

ω

x
(2r+1)κ−2
2 v2

jr dω ≤ C
(N)
4 ‖v‖2

Xκ
N

for κ satisfying the conditions (3.22).

Step 5. With the help of Korn’s inequality we get

‖v‖2
Y κ

N
=

N∑

r=0

∫

ω

x
(2r+1)κ
2

[ 2∑

α=1

|∇vαr|2 + |∇v3r|2
]
dω(3.36)

≤ C
(N)
5

N∑

r=0

∫

ω

x
(2r+1)κ
2 [2v2

1r,1+2v2
2r,2+(v1r,2+v2r,1)2+v2

3r,1+v2
3r,2] dω

≤ C
(N)
6

1
4

N∑

r=0

(
r +

1
2

)∫

ω

h2r+1
1 x

(2r+1)κ
2 [4v2

1r,1 + 4v2
2r,2

+ 2 (v1r,2 + v2r,1)2 + v2
3r,1 + v2

3r,2] dω := I∗.
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As we can easily check I∗ −C
(N)
6 ‖v‖2

Xκ
N

contains only the moments vjr without
derivatives and can be estimated as

(3.37) | I∗ − C
(N)
6 ‖v‖2

Xκ
N
| ≤ C

(N)
7

N∑

r=0

3∑

j=1

∫

ω

(
x

(2r+1)κ−2
2 + x

(2r−1)κ
2

)
v2
jr dω.

Since (2r + 1)κ− 2 < (2r − 1)κ for κ < 1, from (3.37) and (3.35) we conclude

I∗ ≤ C
(N)
8 ‖v‖2

Xκ
N

,

which by (3.36) and (3.25) leads to the inequality (3.23).
Now we should show the inverse inequality

(3.38) ‖v‖Xκ
N,ν

≤ C0 ‖v‖Y κ
N

,

where the positive constant C0 does not depend on v.
The inequality,

(3.39) I2 ≤ C4‖v‖2
Y κ

N
, κ < 1, κ 6= 1

2r + 1
, r = 1, N

is a trivial consequence of Hardy’s inequality (see [9]).
Let us now consider

|I1| ≤
N∑

r=0

(2r + 1)h2r+1
1 ρν2

∣∣∣
∫

ω

x2
2x

(2r+1)κ−2
2 (

◦
v2

1r +
◦
v2

2r +
◦
v2

3r)dω
∣∣∣

≤
N∑

r=0

(2r + 1)h2r+1
1 ρν2l2

∫

ω

x
(2r+1)κ−2
2 (

◦
v2

1r +
◦
v2

2r +
◦
v2

3r)dω

≤
N∑

r=0

cr(2r + 1)h2r+1
1 ρν2l2

∫

ω

x
(2r+1)κ
2 (|∇◦

v1r|2 + |∇◦
v2r|2 + |∇◦

v3r|2)dω

≤ C5

N∑

r=0

∫

ω

x
(2r+1)κ
2

3∑

j=1

|∇◦
vjr|2 dω = C5 ‖v‖Y κ

N
,

if ν2 ≤ 1/h2ρl2, h2 := max{(2r + 1)(h0/2)2r+1}, C5 := max{cr}, r = 0, . . . , N,
which by (3.39) leads to inequality (3.38).

Corollary 3.5. Let the conditions (3.22) be satisfied. Then the components
◦
vjr of the vector v ∈ Xκ

N,ν have zero traces on ∂ω if (2r + 1)κ < 1.
P r o o f. It follows directly from the trace theorems in the Appendix.
Remark 3.6. From Theorem 3.4 by Hardy’s inequality it follows that for

κ < 1 and κ 6= 1
2r+1 , r = 1, N, the linear functional defined by (3.7) is bounded

if
x

1−κ
2

2 Φ
(r)
j ∈ L2(ω), j = 1, 2, 3, r = 0, N .
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4. Appendix

Let ω be as in Section 1 and let D(ω) be the space of infinitely differentiable
functions with compact support in ω.

A.1. Hardy’s inequality. For every f ∈ D(ω) and ν 6= 1 there holds the
inequality

(A.1)
∫

ω

xν−2
2 f2(x) dω ≤ Cν

∫

ω

xν
2 f2

,2(x) dω ≤
∫

ω

xν
2 |∇f(x)|2 dω,

where the positive constant Cν is independent of f .
Using a completion argument with respect to the norm (see (3.20))

‖f‖2
◦

W 1
2,ν(ω)

:=
∫

ω

xν
2 |∇ f(x)|2 dω,

we conclude that the inequality (A.1) holds for arbitrary f ∈
◦

W 1
2,ν(ω).

For proof see [19].

A.2. Weighted Korn’s inequality. Let ϕ = (ϕ1, ϕ2) ∈ [
◦

W 1
2,ν(ω)]2 and

ν 6= 1. Then

∫

ω

xν
2 [|∇ϕ1(x)|2 + |∇ϕ2(x)|2 ] dω

≤ Cν

∫

ω

xν
2 [ϕ

2
1,1(x) + ϕ2

2,2(x) + (ϕ1,2(x) + ϕ2,1(x))2] dω,

where the positive constant Cν is independent of ϕ.
The proof can be found in [19] and [20].

A.3. Trace theorem. Let 0 < ν < 1 and f ∈
◦

W 1
2,ν(ω). Then the trace of

the function f equals to zero on ∂ω.

For proof see [19] and [21].
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