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Smooth elastic contact of cylinders by caustics:

the contact length in the Brazilian disc test
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The smooth contact of two elastic cylinders compressed against each other
along a common generatrix is studied analytically and experimentally. The main ob-
jective is the quantification of the length of the contact arc. For the analytic study, the
complex potentials method is employed while experimentally the contact arc’s length
is determined by extending the reflected caustics technique. A series of experiments
are then carried out using the device suggested by the International Society for Rock
Mechanics for the standardized implementation of the Brazilian test and the typical
set-up of the reflected caustics method. The experimental results are compared to the
analytically determined ones. The agreement is satisfactory especially for low load
levels, ensuring validity of the linear elasticity assumption.
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1. Introduction

The compression of a disc-shaped specimen between the cylindrical jaws
of the device suggested by the International Society for Rock Mechanics (ISRM)
for the standardized execution of the Brazilian disc test is a typical contact prob-
lem of two elastic cylindrical bodies. However, it is rarely studied as a contact
problem since it is considered that the stress field at the disc’s center (which
is supposed to be directly related to the tensile strength of the specimen’s ma-
terial [1]) is more or less insensitive to the exact conditions prevailing in the
immediate vicinity of the load application area [2]. In this context, it is usu-
ally assumed that contact is realized along a “small” arc of arbitrarily predefined
length, equal to a few degrees, while loading is simulated by either a point load [3]
or uniformly distributed radial pressure [1]. Nevertheless, recent studies pointed
out that, in spite of the above insensitivity, the contact conditions strongly in-
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fluence the local stress field around the contact arc which, in turn, may lead to
premature failure undermining the validity of the test results [4, 5].

In this context, the standardized Brazilian disc test configuration was re-
cently studied analytically as a contact problem [6]. Interesting conclusions were
drawn about the contact arc’s length and its dependence on the external load
and also about the distribution of pressure along the contact arc and its in-
fluence on the stress field. The above results were experimentally assessed by
the digital image correlation (DIC) technique and the agreement was satisfac-
tory [7]. However, the experimental data in the specific study were obtained
from the 0 < r/R1 < 0.95 portion of the disc (R1 is the disc’s radius) since
as r/R1 → 1 the accuracy of the DIC technique is downgraded by optical ef-
fects due to the geometric discontinuity at r = R1 (the disc is thinner than the
jaws). On the other hand, the equipment required for the laboratory application
of the DIC technique is expensive, while its use for practical purposes is rather
complicated and time-consuming. In order to minimize the above drawbacks the
experimental technique of caustics is employed here aiming to: (i) a more ac-
curate experimental determination of the contact arc’s length by drawing data
directly from the contact area and (ii) the standardization of a relatively simple
easy-to-use experimental procedure.

The optical method of caustics is a powerful technique highly sensitive to
stress gradients, while the equipment required for its application consists of
a simple He-Ne laser and two lenses. It was Manogg [8–11] who introduced
the method of transmitted caustics in 1964, while a few years later Theocaris

[12, 13] introduced the method of reflected caustics. Since its introduction the
method of caustics was used by many researchers, as it is described analyti-
cally by Kalthoff [14] in his concise review paper. Nowadays, the application
field of the method covers a wide variety of problems ranging from the inten-
sity of stress fields [15, 16], to dynamic loading conditions [17–23] and plas-
ticity problems [24]. It has been used also for determining the J-integral [25],
the stress-optical constants [26] and the crack-tip position [27]. Both traditional
and novel materials are studied using either reflected or transmitted caustics
including birefringent- [28], anisotropic- [29–32], rock-like [33], and even graded-
materials [34]. Moreover, Younis [35] proposed recently an experiment based
on the method of saustics for educational purposes. The use of caustics for the
solution of contact problems dates back to 1978 [36, 37] and since then it has
been uninterruptedly continued [38, 39].

The method of reflected caustics, employed in the present study, is based on
simple principles of geometric optics, as described in Subsection 2.2. The under-
lying principle is that if a light beam (of either parallel, convergent or divergent
rays) impinges on a specimen at the vicinity of an intense stress field, the re-
flected rays received on a reference plane (parallel to the plane of the specimen)
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will concentrate along a strongly illuminated curve, the caustic, due to the spec-
imen’s strong thickness variations resulting from the local intensity of the stress
field. The shape and dimensions of this illuminated locus permit quantitative
investigation of critical features of the stress field and of the geometry of the
deformed area. It is the latter property that will be used in the present study to
determine the contact length developed during the compression of disc-shaped
specimens between the jaws of the ISRM device.

In this manner, the method is here properly adapted for the case of two elastic
cylinders in contact and next it is applied for the study of the Brazilian disc
test given that the specific configuration closely resembles that of two cylinders
in contact along a common generatix pressed against each other. In order to
improve the accuracy of the results the traditional approach for the derivation
of the caustics’ formulae is here optimized by taking into account the actual
shape of the “initial curve”, i.e., the geometric locus of the disc’s points which
under specific conditions [12] provide the set of reflected rays forming the caustic
curve. The “initial curve” depends on the optical constants of the material, the
type of light bundle impinging on the plate (parallel, converging or diverging
light rays), the optical arrangement and the inclination of the rays with respect
to the plate. According to the classic literature the “initial curve” is described in
terms of the undeformed configuration [12], while, on the contrary, the respective
equations are re-derived in the present study with respect to the deformed state.

The improved formulae obtained are applied for the determination of the
contact length between the disc and jaw in the familiar ISRM apparatus and
the results obtained are compared to the ones given by the analytic solution [6]
which is very shortly outlined in Section 2.1 for the sake of completeness of the
paper. As it will be shown, the results are satisfactory as long as the elastic
linearity assumption is valid.

2. Theoretical considerations

2.1. The disc and jaw as cylinders in contact: the contact length
by complex analysis [6]

The ISRM apparatus for the standardized Brazilian disc test (Fig. 1a) con-
sists of two jaws, the inner surface of which is cylindrical of radius R2 = 1.5R1.
As the jaws are smoothly compressed against the disc by a force P0 = Pframe/t
(t is the disc thickness) contact is realized along a finite area which, if pro-
jected on the plane normal to the axial lines, forms an arc of length 2ℓ. The
length of this arc and the respective contact stresses were recently obtained [6]
using complex potentials [40]. The disc (S1) and jaw (S2) are considered in the
z = x+iy = reiϑ plane (Fig. 1b). The parts of their boundaries that will come in
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Fig. 1. a) The device suggested by ISRM for the standardized implementation of the
Brazilian disc test, b) the mathematical problem and the definition of symbols.

contact are denoted by (−ℓ,+ℓ). The reference system’s origin is the mid-point
O of (−ℓ,+ℓ). Since 2ℓ is very small, the disc and jaw are approximated as half-
planes and (−ℓ,+ℓ) lies on x-axis. Any point z within −ℓ,+ℓ) is denoted by τ .
The complex potentials Φj(z), j = 1, 2 characterizing elastic equilibrium of Sj ,
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are analytically continued to the entire plane (through the unloaded boundary
parts of Sj) becoming sectionally holomorphic functions with (−ℓ,+ℓ) being
their common discontinuity line. It holds [40]:

σyyj
− iσxyj

= Φj(z) − Φj(z) + (z − z)Φ′
j(z),(2.1)

2µj(u
′
j + iv′j) = κjΦj(z) + Φj(z) − (z − z)Φ′

j(z),(2.2)

2µj(uj + ivj) = κjϕj(z) + ϕj(z) − (z − z)ϕ′
j(z) + C, j = 1, 2,(2.3)

C corresponds to rigid body displacements. Moreover, ϕ′
j(z) = Φj(z), κj =

(3 − νj)/(1 + νj) for plane stress or κj = 3 − 4νj for plane strain and µj =
Ej/[2(1 + νj)]. Ej and νj are Young’s moduli and Poisson’s ratios, respectively.
Over-bar denotes conjugate complex value and prime first-order derivative. For
the specific problem, the boundary conditions are

σ∓xyj
= 0, on the entire x-axis,

σ∓yyj
= 0, on x-axis except (−ℓ,+ℓ)

σ∓yyj
= −P (τ), along (−ℓ,+ℓ), j = 1, 2,

(2.4)

v−′
1 − v+′

2 = f ′(τ), on (−ℓ,+ℓ).(2.5)

P (τ) > 0 denotes the normal stresses and f(τ) = f1(τ) − f2(τ) (y = f1(τ),
y = f2(τ) are the boundaries of Sj before deformation). Superscripts (−), (+)
refer to values for z tending to τ on (−ℓ,+ℓ) from the lower and upper half-
planes, respectively. For j = 1, 2 and τ on (−ℓ,+ℓ) Eqs. (2.1) yield:

(2.6) −σ−yy1
= P (τ) = Φ+

1 (τ) − Φ−
1 (τ) and − σ+

yy2
= P (τ) = Φ−

2 (τ) − Φ+
2 (τ).

Hence, Φ1(z)+Φ2(z) is holomorphic in the entire plane and assuming it vanishes
at infinity Φ2(z) = −Φ1(z). On the other hand, Eqs. (2.2) for j = 1 and τ on
(−ℓ,+ℓ) yields

2µ1(u
−′

1 + iv−′
1 ) = κ1Φ

−
1 (τ) + Φ+

1 (τ),(2.7)

2µ1(u
−′
1 − iv−′

1 ) = κ1Φ
−
1 (τ) + Φ+

1 (τ).(2.8)

For smooth contact and Φ1(z) vanishing at infinity Φ1(z) = −Φ1(z). Then
Eq. (2.8) becomes:

(2.9) 2µ1(u
−′
1 − iv−′

1 ) = −κ1Φ
+
1 (τ) − Φ−

1 (τ).

By subtracting Eq. (2.9) from Eq. (2.7) the following is obtained:

(2.10) iv−′
1 =

κ1 + 1

4µ1
[Φ+

1 (τ) + Φ−
1 (τ)].
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Adding Eq. (2.10) to the one similarly obtained for the jaw it is found using
Eq. (2.5) that

(2.11) Φ+
1 (τ) + Φ−

1 (τ) = if ′(τ)/K with K = (κ1 + 1)/4µ1 + (κ2 + 1)/4µ2.

Considering function
√
ℓ2 − z2 = −iX(z), the solution of Eq. (2.11) reads as

(2.12) Φ1(z) =
1

2πK
√
ℓ2 − z2

+ℓ∫

−ℓ

f ′(τ)
√
ℓ2 − τ2dτ

τ − z
+

P0

2π
√
ℓ2 − z2

.

Introducing Eq. (2.12) into the first of Eqs. (2.6) and using Plemelj formulae
the pressure distribution at any point τ0 ∈ [−ℓ,+ℓ] becomes

(2.13) P (τ0) =
1

πK
√

ℓ2 − τ2
0

+ℓ∫

−ℓ

f ′(τ)
√
ℓ2 − τ2dτ

τ − τ0
+

P0

π
√

ℓ2 − τ2
0

.

Demanding that P (τ) must remain bounded at points ±ℓ [40] it can be written:

Φ1(z) =

√
ℓ2 − z2

2πK

+ℓ∫

−ℓ

f ′(τ)dτ√
ℓ2 − τ2(τ − z)

,

P (τ0) =

√

ℓ2 − τ2
0

πK

+ℓ∫

−ℓ

f ′(τ)dτ√
ℓ2 − τ2(τ − τ0)

,

(2.14)

+ℓ∫

−ℓ

f ′(τ)dτ√
ℓ2 − τ2

= 0,

+ℓ∫

−ℓ

f ′(τ)τdτ√
ℓ2 − τ2

= KP0.(2.15)

Assuming that fj(τ) = −(τ2/2Rj), i.e., the boundaries of the two circular bodies
approximate along (−ℓ,+ℓ) two parabolas of the same curvature at the vertex
point O, Eqs. (2.14) and (2.15) yield:

(2.16)

Φ1(z) =
1

6R1K
(
√

ℓ2 − z2 + iz),

P (τ) =
1

3R1K

√

ℓ2 − τ2,

ℓ =

√

6R1KP0

π
.
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2.2. The disc-jaw contact length by the reflected caustics method

2.2.1. Adopting the classic approach. A parallel light beam impinges normally
on a disc in equilibrium under the action of the force Pframe (Fig. 2a). Reflected
light rays are received on a screen parallel to the disc at a distance Z0. In case
light is reflected from the points P with severe lateral deformation, a strongly

Fig. 2. a) The principles of the reflected caustics method, b) the formation of the reflected
caustic curve according to the traditional approach.
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illuminated locus of points Q, the caustic, is formed on the screen. A Carte-
sian reference system {O;x, y, z} is considered at the apex O and a second one
{O′;x′, y′, z′} (obtained from {O;x, y, z} by simple translation equal to Z0) is
considered on the screen. If P ′ is the projection of P on the screen, then the
caustic is described by the vector:

(2.17)
−→
W =

−−→
O′P ′ + −→w .

|
−−→
O′P ′| = |−−→OP | and −→w define the deviation of light at P . According to Snell’s
law this deviation corresponds to an angle 2ω where ω is the angle subtended
by the incident light ray and the normal −→np to the distorted surface at P . For
small angles of deflection ω it holds:

(2.18) −→w = Z0
−→∇ [∆t (x, y)] = Z0

−→∇
[
ν1t

E1
(σ1 + σ2)

]

,

where ∆t(x,y) is the thickness change due to Poisson’s effects and

−→∇ =
∂

∂x

−→
i +

∂

∂y

−→
j .

Assume now that the in-plane undeformed disc’s front face lies in the com-
plex plane z = x + iy = re−iϑ, ϑ ∈ [0, π] (Fig. 2b). The origin of the Cartesian
reference is again (as in Fig. 2a) at the apex O and now the complex variable
z should not be confused with the z-coordinate axis. Let the points P , pro-
viding the caustic curve, correspond to points z = r0e

−iϑ (the subscript at r0
distinguishes the specific points from any other arbitrary point z on the disc). In
Fig. 2b, the translation of P (or z = r0e

−iϑ) to Pp due to the ∆t(x, y)/2 change
of thickness is also shown. According to the classic approach, the points P , which
refer to the in-plane undeformed disc, belong to the “initial curve” denoted in
the figure by A. Introducing in Eq. (2.18) the familiar formula [40]:

(2.19) σ1 + σ2 = 4ℜΦ1(z),

ℜ is the real part and introducing also the magnification factor of the set-up
λm = (Z0±Zi)/Zi (+/− for divergent/convergent light beams, respectively, and
Zi the distance of the focus of the respective light bundle from the front face of
the disc), Eq. (2.17) is written in complex form as

(2.20) W = λmz + 4Z0t

cf
︷︸︸︷
ν

E
︸ ︷︷ ︸

C

Φ′
1(z) = λmz + CΦ′

1(z).
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Separating in Eq. (2.20) real from imaginary ℑ parts, the caustic is written in
parametric form as

(2.21) Wx′ = λmx+ Cℜ{Φ′
1(z)}, Wy′ = λmy + Cℑ{Φ′

1(z)}.

Zeroing the Jacobian determinant of the above transformation leads to

(2.22) C

∣
∣
∣
∣

Φ′′
1 (z)

λm

∣
∣
∣
∣
= 1

(double prime denotes second order derivative) which represents the “initial
curve”. Substituting Φ1(z) from Eqs. (2.16) into Eq. (2.22) and introducing the
complex variables z1 = z− ℓ = r1e

−iϑ1 and z2 = z+ ℓ = r2e
−iϑ2 (ϑ1, ϑ2 ∈ [0, π])

(Fig. 1b), one obtains

(2.23) r1r2 =

(

2 · C

12|λm|KR1
︸ ︷︷ ︸

C∗

) 2

3

ℓ
4

3 = (2|C∗|) 2

3 ℓ
4

3 .

In addition, it holds that r1,2 =
√

r20 + ℓ2 ∓ 2r0ℓ cosϑ (Fig. 1b) and therefore
Eq. (2.23) yields

(2.24) r40 − 2r20ℓ
2 cos 2ϑ+ ℓ4 − (2|C∗|ℓ2) 4

3 = 0.

Hence, for 2|C∗| ≥ ℓ the radius of the “initial curve” reads as

(2.25) r0 = ℓ

√

cos 2ϑ+

√

cos2 2ϑ− 1 + (2|C∗|/ℓ) 4

3 .

In addition, Eqs. (2.21) provide the classic parametric equations of the caustic
as

(2.26)

Wx′ = λm

[

r0 cosϑ− r0

(
2|C∗|
ℓ

) 2

3

sin

(

ϑ− ϑ1 + ϑ2

2

)]

,

Wy′ = λm

[

−r0 sinϑ− 2C∗ + r0

(
2|C∗|
ℓ

) 2

3

cos

(

ϑ− ϑ1 + ϑ2

2

)]

.

The “initial curve” and the respective caustic according to Eqs. (2.25) and
(2.26) are plotted in Fig. 3 for a relatively low external load level (as it will
be shown later for high loads or equivalently for long contact arcs, the “initial
curve” tends to split into two independent curves). For plotting Fig. 3, plane
stress conditions were assumed for a disc made of PMMA (elastic modulus Ep =
3.2 GPa, Poisson’s ratio νp = 0.38 and yield stress equal to about σy = 28 MPa)



322 S. K. Kourkoulis, Ch. F. Markides, G. Bakalis

Fig. 3. The “initial curve” and the respective caustic due to the disc-jaw contact for
a relatively low load level according to the traditional approach.

and steel jaws (Es = 210 GPa and νs = 0.30). The diameter of disc was D =
100 mm and its thickness (length) was t = 10 mm. An overall external load
equal Pframe = 30 kN was assumed creating at the disc’s center a stress equal
to about 19 MPa, well below the yield stress. λm was set equal to 2. It is seen
from Fig. 3 that the “radius” of the “initial curve” is more than two times the
contact semi-length while for the specific load the caustic is of almost cyclic
shape.

For {ϑ, ϑ1, ϑ2} = 0, π the coordinates (xα, yα), (xβ , yβ) and (x′a, y
′
a), (x′b, y

′
b)

of the end-points, (α, β) and (a, b) of the “initial curve” and the caustic, respec-
tively (Figs. 2b and 3), are given as

xα

xβ

}

= ±r0(α) = ±ℓ

√

1 +

(
2|C∗|
ℓ

)2/3

, yα = yβ = 0,(2.27)

x′a = Wx′(α) = −x′b = −Wx′(β) = λmr0(α),(2.28)

y′a = Wy′(α) = y′b = Wy′(β) = λm

[

r0(α)

(
2|C∗|
ℓ

)2/3

− 2C∗

]

.(2.29)
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Combination of Eqs. (2.27)–(2.29) yields the contact length ℓ, in terms of the
distance 2ε = (ab) = 2Wx′(α) or of the elevation η = Wy′(α) = Wy′(β) of points
a and b, respectively, as

ℓ2 + 2|C∗|2/3ℓ4/3 − [2Wx′(α)]4

4λ2
m

= 0,(2.30)

ℓ = 2C∗

[(
Wy′(α)

2|C∗|λm
+ 1

)2

− 1

]3/2

.(2.31)

In other words, by employing the method of caustics the contact length can be de-
termined in terms of quantities experimentally measurable. Although Eq. (2.31)
is simpler than Eq. (2.30), it is rarely used in practice since it is difficult to
determine experimentally the y′ = 0 line.

2.2.2. An improved approach. The main limitation of the analysis in Subsection
2.2.1 is that the components of the displacement field were assumed negligi-
bly small in comparison to the “initial curve” itself. As a result, the size and
shape of the “initial curve” were determined ignoring disc’s in-plane deforma-
tion. Although such an assumption is quite acceptable for discs made of brittle
materials it could lead to erroneous results in case the disc is made of materials
of reduced brittleness.

In this direction, the problem of determining the contact length by caustics
is reconsidered according to an improved procedure taking into account the com-
ponents of the displacement field. Consider the in-plane deformed front face of
the disc in the z = x + iy = re−iϑ, ϑ ∈ [0, π] complex plane (Fig. 4). Omitting
rigid body displacements, a Cartesian reference {O;x, y, z} is attached to the in-
plane deformed disc at the apex O. In addition, as in Subsection 2.2.1, another
reference system {O′;x′, y′, z′} obtained from {O;x, y, z} by simple translation
equal to Z0 is considered on the screen. Therefore, the transformation considered
previously between the in-plane undeformed disc and the screen will be realized
now between the in-plane deformed disc and the screen. According to this line of
thought, the locus of points, A of the undeformed disc (drawn with thin line in
Fig. 4) does not any longer represent the “initial curve”. It rather represents a set
of points P (or z = r0e

−iϑ) which after adding to them the in-plane displacement
field {u, v} (colored green in Fig. 4) yield the locus Pd forming the actual “initial
curve” Ad. In turn, Pd shifts to Pp due to the out-of-plane deformation ∆t/2.
Then, impinging light is reflected on Pp and its image Q on the screen belongs
to the actual caustic curve. Strictly speaking the actual “initial curve” is not
a plane curve due to the out-of-plane deformation ∆t(x, y)/2. However, in a first
approximation (recall that ∆t(x, y)/2 is too small compared to Z0) the points
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Fig. 4. The formation of the caustic curve according to the improved approach.

Pd can accurately enough stand for Pp and, accordingly, Ad can stand as the
actual “initial curve”.

It can be easily seen (from the zeroing of the determinant of the transforma-
tion between the in-plane deformed disc and the screen) that according to the
present approach the points P providing the “initial curve” are still given ap-
proximately by Eq. (2.22) due to the assumption of small deformations adopted.
However, the “initial curve” itself is more accurately described. On the other
hand, the parametric equations of the caustic become

(2.32)
Wx′ = λm[x+ u(x, y)] + Cℜ{Φ′

1(z)},

Wy′ = λm[y + v(x, y)] + Cℑ{Φ′
1(z)}.

Eqations (2.32) differ from Eqs. (2.21) of the classic approach since now the
displacement components have been included in the respective expressions. It
is thus imperative to determine the displacements of points P (or z = r0e

−iϑ)
providing the “initial curve”. Thus, ϕ1(z) is firstly obtained by integrating Φ1(z)
from Eqs. (2.16), as follows:

(2.33) ϕ1(z) =
1

12R1K

(

z
√

ℓ2 − z2 + ℓ2Arc tan
z√

ℓ2 − z2
+ iz2

)

.
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Substituting ϕ1(z) into Eqs. (2.3) for j = 1 and taking under consideration
Eq. (2.23), the displacement components of any point on the A locus are ob-
tained as

u(r0, ϑ) =
1

24µR1K

{

(κ− 1)

[

r20 sin 2ϑ− r0(2|C∗|) 1

3 ℓ
2

3 sin

(

ϑ+
ϑ1 + ϑ2

2

)

(2.34)

+
ℓ2

2

(

tan−1 r0 sinϑ+ (2|C∗|) 1

3 ℓ
2

3 sin ϑ1+ϑ2

2

r0 cosϑ+ (2|C∗|) 1

3 ℓ
2

3 cos ϑ1+ϑ2

2

− tan−1 r0 sinϑ− (2|C∗|) 1

3 ℓ
2

3 sin ϑ1+ϑ2

2

r0 cosϑ− (2|C∗|) 1

3 ℓ
2

3 cos ϑ1+ϑ2

2

)]

+ 4r0 sinϑ

[

r0 cosϑ− (2|C∗|) 1

3 ℓ
2

3 cos
ϑ1 + ϑ2

2

]}

,

v(r0, ϑ) =
1

24µR1K

{

(κ+ 1)

[

r20 cos 2ϑ− r0(2|C∗|) 1

3 ℓ
2

3 cos

(

ϑ+
ϑ1 + ϑ2

2

)

(2.35)

+
ℓ2

4
ℓn
r20 + (2|C∗|) 2

3 ℓ
4

3 + 2r0(2|C∗|) 1

3 ℓ
2

3 cos(ϑ− ϑ1+ϑ2

2 )

r20 + (2|C∗|) 2

3 ℓ
4

3 − 2r0(2|C∗|) 1

3 ℓ
2

3 cos(ϑ− ϑ1+ϑ2

2 )

]

+ 4r0 sinϑ

[

r0 sinϑ− (2|C∗|) 1

3 ℓ
2

3 sin
ϑ1 + ϑ2

2

]}

.

Clearly, the coordinates of points Pd on the “initial curve” Ad are obtained
by adding to the points P (or z = r0e

−iϑ; r0 is given by Eq. (2.25)) of A, the
above determined displacement field u(r0, ϑ) + iv(r0, ϑ). Finally, substitution of
Eqs. (2.34), (2.35) in Eqs. (2.32) gives the new improved version of Eqs. (2.26)
for the parametric equations of caustics as

Wx′ = λm

[

r0 cosϑ− r0

(
2|C∗|
ℓ

) 2

3

sin

(

ϑ− ϑ1 + ϑ2

2

)]

(2.36)

+
λm

24µR1K

{

(κ− 1)

[

r20 sin 2ϑ− r0(2|C∗|) 1

3 ℓ
2

3 sin

(

ϑ+
ϑ1 + ϑ2

2

)

+
ℓ2

2

(

tan−1 r0 sinϑ+ (2|C∗|) 1

3 ℓ
2

3 sin ϑ1+ϑ2

2

r0 cosϑ+ (2|C∗|) 1

3 ℓ
2

3 cos ϑ1+ϑ2

2

− tan−1 r0 sinϑ− (2|C∗|) 1

3 ℓ
2

3 sin ϑ1+ϑ2

2

r0 cosϑ− (2|C∗|) 1

3 ℓ
2

3 cos ϑ1+ϑ2

2

)]

+ 4r0 sinϑ

[

r0 cosϑ− (2|C∗|) 1

3 ℓ
2

3 cos
ϑ1 + ϑ2

2

]}

,
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Wy′ = λm

[

− r0 sinϑ− 2C∗ + r0

(
2|C∗|
ℓ

) 2

3

cos

(

ϑ− ϑ1 + ϑ2

2

)]

(2.37)

+
λm

24µR1K

{

(κ+ 1)

[

r20 cos 2ϑ− r0(2|C∗|) 1

3 ℓ
2

3 cos

(

ϑ+
ϑ1 + ϑ2

2

)

+
ℓ2

4
ℓn

r20 + (2|C∗|) 2

3 ℓ
4

3 + 2r0(2|C∗|) 1

3 ℓ
2

3 cos(ϑ− ϑ1+ϑ2

2 )

r20 + (2|C∗|) 2

3 ℓ
4

3 − 2r0t(2|C∗|) 1

3 ℓ
2

3 cos(ϑ− ϑ1+ϑ2

2 )

]

+ 4r0 sinϑ

[

r0 sinϑ− (2|C∗|) 1

3 ℓ
2

3 sin
ϑ1 + ϑ2

2

]}

.

For {ϑ, ϑ1, ϑ2} = 0, π the coordinates (xαd
, yαd

), (xβd
, yβd

) and (x′ad
, y′ad

),
(x′bd

, y′bd
) of the end-points (αd, βd) and (ad, bd) of the “initial curve” and caustic,

respectively (Figs. 4, 5 and 8), are given as

xαd

xβd

}

= ± ℓ

√

1 +

(
2 |C∗|
ℓ

) 2

3

= ±r0(α),(2.38)

yαd
= yβd

=
κ+ 1

24µR1K

[

r20(α) − r0(α)(2|C∗|) 1

3 ℓ
2

3(2.39)

+
ℓ2

2
ℓn
r0(α) + (2|C∗|) 1

3 ℓ
2

3

r0(α) − (2|C∗|) 1

3 ℓ
2

3

]

,

x′ad
= Wx′(αd) = −x′bd

= −Wx′(βd) = λmr0(α),(2.40)

y′ad
= Wy′(αd) = y′bd

= Wy′(βd)(2.41)

= λm

{

r0(α)

(
2|C∗|
ℓ

) 2

3

− 2C∗+
κ+1

24µR1K

[

r20(α) − r0(α)(2|C∗|) 1

3 ℓ
2

3

+
ℓ2

2
ℓn
r0(α) + (2|C∗|) 1

3 ℓ
2

3

r0(α) − (2|C∗|) 1

3 ℓ
2

3

]}

.

Notice that Eq. (2.38) and Eq. (2.40), providing the distance between the
end-points of the “initial”- and the caustic-curves, are identical to the respec-
tive expressions Eqs. (2.27) and (2.28) of the classic approach. This should be
expected since in the case of the Brazilian disc analyzed here it holds that
u(r0, ϑ = 0) = u(α) = 0 = u(r0, ϑ = π) = u(β), i.e., because points α and
β (of A) yielding the actual “initial curve” Ad remain stationary along the xd-
direction.
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Combination of Eqs. (2.38)–(2.41) yields the contact length ℓ, in terms of
the distance 2ε = (adbd) = 2Wx′(αd) between points ad and bd, and of the
elevation η = Wy′(αd) = Wy′(βd) of points ad and bd, respectively, through the
relations

(2.42) ℓ2 + 2|C∗| 23 ℓ 4

3 − [2Wx′(αd)]
4

4λ2
m

= 0,

Wy′(αd) = λm

{

ℓ

√

1 + (2|C∗|/ℓ) 2

3 (2|C∗|/ℓ) 2

3 − 2C∗(2.43)

+
κ+ 1

24µR1K

[

ℓ2
(

1 + (2|C∗|/ℓ) 2

3 )

− ℓ

√

1 + (2|C∗|/ℓ) 2

3 (2|C∗|) 1

3 ℓ
2

3

+
ℓ2

2
ℓn
ℓ

√

1 + (2|C∗|/ℓ) 2

3 + (2|C∗|) 1

3 ℓ
2

3

ℓ

√

1 + (2|C∗|/ℓ) 2

3 − (2|C∗|) 1

3 ℓ
2

3

]}

.

Equation (2.42) is identical to Eq. (2.30). Since 2ε = (adbd) = 2Wx′(αd) or
η = Wy′(αd) are directly measured from the caustic curve, the above relations,
if solved numerically, provide the contact length ℓ. Again for practical reasons
Eq. (2.42) is the one used mainly.

The improved approach introduced here is compared to the classic one in
Fig. 5 where both the “initial curve” and the respective caustic as obtained by
the two approaches are plotted for a PMMA disc (D = 100 mm, t = 10 mm)
compressed between the steel jaws of the ISRM suggested device. The material
properties and the magnification factor are those mentioned in Subsection 2.2.1.
The externally applied load is now equal to 40 kN generating at the disc’s center
a tensile stress equal to about 25 MPa, again below the yield stress of PMMA.
It is recalled here that for low load levels the “initial curve” according to the
classic approach is of cyclic shape (see Fig. 3) while according to the present
approach it is of elliptic shape (due to the type of the displacements added).
However, for increased load levels the initial curve for both the classic and
the improved approaches is depressed and tends to split into two symmetric
parts, as it is seen in Fig. 5. From the same figure it is seen that the contact
length is again well comparable to the characteristic dimension of the “initial
curve”.

On the other hand, the difference δ in the elevations η as obtained by the
two approaches exceeds well 15% and the difference when calculating the contact
length using Eq. (2.31) and Eq. (2.43) is of the same order. It is recalled here
that Wx′(α) remains uninfluenced as already explained.
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Fig. 5. Comparison of the caustic curves according to the traditional and the improved
approach.

3. Experimental procedure and results

3.1. The experimental arrangement

The experimental set-up consisted of a He-Ne laser and two collimating lenses
as it is shown schematically in Fig. 6. Lens L1 transformed the diverging beam
emitted from the laser to a collimated one. A second lens L2 transformed the
collimated beam into a converging one with its focal point in front of the spec-
imen in order to better control the magnification factor λm of the set-up. The
beam impinges on the loaded specimen and the reflected rays are driven with
the aid of a semi-reflector, placed at an angle equal to 45◦ with respect to the
specimen’s plane, towards a screen forming the caustic curve. The use of the
semi-reflector greatly improves the quality of the experimental results since op-
timum placement of the screen and normal incidence of the rays on the disc [41]
are achieved (recall that using the semi-reflector the distance Z0 becomes the
sum of the specimen-semi-reflector and the semi-reflector-screen distances). The
caustic curve formed on the screen was photographed at predefined load inter-
vals. The critical quantities of the caustic curves were then measured from these
photos with the aid of a standard optical arrangement and suitable commercial
software.
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Fig. 6. Schematic representation of the experimental set-up.

3.2. The material and the specimens

The specimens of the experimental protocol were cylindrical discs of diameter
D = 100 mm and length (thickness) t = 10 mm. They were cut from the same
PMMA plate to avoid any variability of their mechanical properties. The choice
of PMMA was based on the fact that its mechanical behaviour approaches in
a satisfactory manner that of a linear elastic material (at least for stress levels
not approaching the failure stress) fulfilling the main assumption adopted during
the development of the caustics theory. The values of the mechanical constants
adopted were EP = 3.2 GPa for the modulus of elasticity and νP = 0.38 for
Poisson’s ratio. The yield stress and the tensile strength were equal to about
28 MPa and 38 MPa, respectively [42]. The optical constant cf , required for
the application of the reflected caustics formula, was calculated equal to cf =
νP /EP = 1.18 × 10−10 m2/N.

Special attention was given to the lateral surfaces to be as smooth as possi-
ble. The specimens were placed within the jaws of the apparatus standardized
by ISRM for the implementation of the Brazilian disc test. The apparatus was
mounted on an electromechanical INSTRON 1125 loading frame of capacity
50 kN. The upper jaw of the apparatus was compressed by the movable traverse
of the frame against the specimen under a displacement-control loading mode at
a rate equal to 0.1 mm/min. A semi-spherical head interposed between the upper
jaw and the moving traverse of the frame ensured further normality of the load
axis versus the upper jaw. The resulting compressive force was measured using
a 50 kN load cell calibrated with a verified Wykeham Farrance compression ring
of sensitivity 10.62 N. The response of the cell was linear throughout the whole
load range of interest and the deviation was lower than 0.2%. The displacement
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rate was calibrated also using a verified high-magnification micrometric calibra-
tor. Again, the response was linear and the deviation did not exceed 0.4%.

3.3. Experimental results

A series of photos showing the caustic curves, at various load levels, as
obtained from two typical experiments are shown in Fig. 7. It is emphasized
that due to the transparency of the specimen’s material two caustics are in-
evitably formed on the screen: one from the optical rays reflected on the front
face of the specimen (the continuous external bright curve of Fig. 7) and one
from the rays reflected on the rear face (the bright curve encompassed in the

Fig. 7. The caustics for two typical tests at load levels equal to 3 (a1, b1), 6 (a2, b2),
9 (a3, b3) and 12 (a4, b4) kN.
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previous one). For the purpose of the present study, only the caustic formed
from the rays reflected on the front face of the disc was considered since it has
the advantage to be determined with the aid of a single stress-optical constant
which is moreover directly obtained from the mechanical properties of the disc’s
material.

According to the analysis in Subsection 2.2.2 measuring the distance 2ε =
2Wx′(αd) between the extreme points ad and bd of the caustic curves from re-
flection on the front face of the specimens (Fig. 8, embedded photo), one obtains
directly the contact length by solving numerically Eq. (2.42). The reason for
choosing the quantity 2Wx′(αd) instead of Wy′(αd) is clear from the photo em-
bedded in Fig. 8: there is not a standardized technique to determine the y′ = 0
line, in other words, to locate the center of the “initial curve”.

The results of the previous procedure for the determination of the contact
angle 2ψ corresponding to contact length 2ℓ (Fig. 1b) are plotted in Fig. 8

Fig. 8. Characteristic experimental (empty symbols) vs. analytic results (continuous line)
for the contact length (each type of empty symbol corresponds to a single test). In the
embedded figure the measure of the caustic’s “characteristic dimension” required for

determining the contact length is shown.
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together with the theoretical predictions according to the present analysis (Sub-
section 2.1). It is concluded from Fig. 8 that for relatively low load levels (be-
low 10 kN) the theoretical predictions are in very good agreement with the
experimental results. For higher loads, the agreement is not satisfactory and
the experimental data start exceeding systematically those of the theoretical
analysis. This deviation is attributed to the gradual deviation of the mate-
rial from its linear behavior; although, the stress at the disc’s center is well
below the linearity limit. Indeed, the stress field components at the immedi-
ate vicinity of the contact length (the area from which caustics pump data)
increase abruptly, independently from the load distribution considered (uni-
form or parabolic or sinusoidal [43]), exceeding obviously the linearity limit
of PMMA.

4. Discussion

The determination of the contact arc’s length developed during the standard-
ized execution of the Brazilian disc test is not a trivial experimental project. The
techniques proposed are neither practical nor very accurate. For example, inter-
posing a carbon paper between the disc and the jaw provides a rough estimation
of the final length of the contact arc after the completion of the test. Neverthe-
less, the contact arc is gradually developed from (almost) zero (point contact
when the load is zero) to its final extent. On the other hand, traditional opti-
cal techniques, like for example photoelasticity, can only be applied for a class
of materials with special stress-optical properties. Moreover, due to high stress
gradients in the immediate vicinity of the contact length [4, 43], the density of
fringes unavoidably reduces the accuracy of these techniques.

On the contrary, the method of caustics can be applied for almost all ma-
terials either transparent or opaque. This is true even for rock-like materials or
concrete (the materials usually examined using the Brazilian disc test) assum-
ing that one of their lateral surfaces is covered (or painted) by a suitable light
reflecting “skin”. Of course, it should be mentioned that in case of construction
materials, which are stiffer from the material used in the present experimental
protocol, the magnitude of light deviation (and therefore of the caustic) be-
comes smaller downgrading perhaps the accuracy of the method (although for
such materials the gradients of the stress field components are expected to be
higher counterbalancing things). Clearly this point should be further studied
in conjunction perhaps to modified experimental set-ups that increase magni-
fication. Moreover for construction materials it is expected that the correction
introduced in Subsection 2.2.2 becomes smaller (or even insignificant) consid-
ering that the magnitude of the displacement field’s components is now too
small.
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Finally, the simplicity of the experimental set-up and also of the patterns
obtained on the screen makes the method of reflected caustics a unique tool for
exploring contact problems in general and the Brazilian disc test in particular.
Moreover, the method of caustics is very sensitive to even the slightest variations
of the contact arc. This is extremely important taking into account that, espe-
cially for brittle materials, the contact arc is very small. For example in case of
a marble disc of diameter D = 100 mm the contact length just before fracture
is estimated to about only 3.7 mm [43].

The demand for increased sensitivity and accuracy (recall that the majority of
materials tested using the Brazilian disc test are of brittle nature and inevitably
the contact arc is always very small) was the main reason for introducing here
an improved version of the caustics method, the equations of which are derived
with respect to the deformed disc’s configuration.

Applying the reflected caustics method permits determination of the contact
length during the experimental procedure without any intervention at the disc-
jaw interface. Such an intervention may drastically influence the local stress field
since interposing any material alters the boundary conditions by changing the
coefficient of friction. In addition, knowledge of the contact length as a function
of the external load permits determination of the actual profile of the radial
pressure exerted by the jaw on the disc relieving the analysis from an additional
arbitrary hypothesis concerning the load distribution.

Another advantage of the method is that it permits detection of the ex-
istence of shear stresses along the contact length. Indeed, as it is proved by
Theocaris [36], the elevations of the two end-points ad and bd of the caus-
tic curve must be equal to each other and their value must be given through
Eq. (2.31). If this condition were not satisfied, shear stresses would have been
developed violating the initial conditions considered.

The last point that should be carefully addressed is the dependence of the
shape of the caustic on the extent of the contact arc or, in other words, on
the external load. To highlight this point, the “initial curves” and the respective
caustics are plotted in Fig. 9 for various load levels equal to 5, 15 and 40 kN.
The figure was drawn for the material and set-up characteristics described in
Subsection 2.2.2. It is seen from this figure that as the load increases the “initial
curve” is transformed from a convex curve to a non-convex one. If the load is
increased further the central point G of the “initial curve” will coincide with the
origin of the reference system. This is the terminal value of load for which the
critical condition 2|C∗| ≥ ℓ required for the existence of real roots of Eq. (2.24)
is valid. From this point on, complex roots are obtained and the single “initial
curve” splits into two independent loci. Concerning the caustic curves as the
load increases they are gradually depressed until the “initial curve” ceases being
a unique curve. The analysis of such caustics, i.e., in case the condition 2|C∗| < ℓ
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Fig. 9. The influence of the load level on the shape of the “initial curve” and the caustic.

is fulfilled, and the relation of their shape with the contact length are well beyond
the scope of the present paper.

5. Conclusions

The contact length, 2ℓ at the disc-jaw interface in a standardized Brazilian
disc test was determined both analytically and experimentally. From the ana-
lytic point of view 2ℓ was calculated according to a recently introduced method
based on complex analysis [6]. For the experimental estimation of 2ℓ the method
of reflected caustics was employed (properly adapted for the specific problem),
mainly due to its increased accuracy and also due to its simple and easy-to-use
experimental equipment. The accuracy of the method was improved by consid-
ering the actual shape of the corresponding “initial curve”.

The agreement between theory and experiment is quite satisfactory for low
load levels. As the load increases the experimentally obtained values for the
contact length exceed those obtained analytically. Indeed, while for Pframe = 5 kN
the difference between theory and experiment is almost negligible (less than 3%)
for Pframe = 15 kN the deviation exceeds 15%. This is obviously due to the non-
linear behavior of the material at the immediate vicinity of the contact arc since
the local stress field is strongly amplified [43] even when the respective equivalent
stress at the disc’s center is below the critical value according to any failure
criterion. The results of the present analysis can potentially advance a confusing
point concerning the analysis of results obtained from the Brazilian disc test.
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Indeed, with the aid of a preliminary test one can determine the ℓ = ℓ(Pframe)
function. Then, employing the second of Eqs. (2.16) one obtains the variation of
radial pressure P (τ) along the contact arc and moreover the actual stress field in
the immediate vicinity of the disc-jaw interface. Nevertheless, it could be argued
that such a complicated procedure is not worth the money. Such an aphorism
could be acceptable as long as one considers only the stress field at the disc’s
center. However, it is known that for specific combinations of the disc’s and jaw’s
stiffness fracture may originate far from the disc’s center, in fact very close to the
end points of the contact arcs [44] thus rendering knowledge of 2ℓ indispensable.

Before concluding it should be mentioned that reflected caustics are appli-
cable only in case the lateral surface of the disc is seriously deformed. In the
present study, plane stress conditions were assumed. The respective problem,
i.e., the relation between the caustic and the contact length for plane strain con-
ditions, is far more difficult. Perhaps in such a case solution could be given by
employing the transmitted caustics method. However, transmission caustics pre-
suppose transparent materials, which unfortunately is not the case of rock-like
materials or concrete usually studied by the Brazilian disc test. In any case the
specific problem should be studied further.

Acknowledgements

This research is co-financed by the EU (European Social Fund-ESF) and
Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) – Research
Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-
institutional research and innovation.

The authors express their gratitude to Professor Dimitrios N. Pazis of the
Department of Mechanics of the National Technical University of Athens. His
deep knowledge on the founding principles of the caustics method and his unique
experience with its laboratory application were unsparingly offered and greatly
contributed to the final outcome of the present research. The help of Mr Alexan-
dros Levantis during the execution of the tests is also acknowledged.

Finally the valuable comments of the reviewers of the initial version of the
manuscript are kindly acknowledged.

References

1. G. Hondros, The evaluation of Poisson’s ratio and the modulus of materials of a low ten-
sile resistance by the Brazilian (indirect tensile) test with particular reference to concrete,
Aust. J. Appl. Sci., 10, 243–268, 1959.

2. M. Mellor, I. Hawkes, Measurement of tensile strength by diametral compression of
discs and annuli, Engineering Geology 5, 173–225, 1971.



336 S. K. Kourkoulis, Ch. F. Markides, G. Bakalis

3. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd edition, McGraw-Hill, New
York 1970.

4. Ch.F. Markides, D.N. Pazis, S.K. Kourkoulis, Closed full-field solutions for stresses
and displacements in the Brazilian disc under distributed radial load, Int. J. Rock Mech.
Min. Sci., 47, 227–237, 2010.

5. F. Lanaro, T. Sato, O. Stephensson, Microcrack modelling of Brazilian tensile tests
with the boundary element method, Int. J. Rock Mech. Min. Sci., 46, 450–461, 2009.

6. S.K. Kourkoulis, Ch.F. Markides, P.E. Chatzistergos, The standardized Brazilian
disc test as a contact problem, Int. J. Rock Mech. Min. Sci., 57, 132–141, 2012.

7. S.K. Kourkoulis, Ch.F. Markides, P.E. Chatzistergos, The Brazilian disc under
parabolically varying load: Theoretical and experimental study of the displacement field,
Int. J. Solids and Structures, 49, 959–972, 2012.

8. P. Manogg, Anwendung der Schattenoptik zur Untersuchung des Zerreissvongangs von
Platten, Dissertation, Freiburg, Germany, 1964.

9. P. Manogg, Schattenoptische Messung der spezifischen Bruchenergie waehrend des
Bruchvorgangs bei Plexiglas, in: Proceedings of the International Conference on Physics
of Noncrystalline Solids, J.A. Prins [ed.], Delft, The Netherlands, 481–490, 1964.

10. P. Manogg, Investigation of the rupture of a plexiglas plate by means of an optical method
involving hoigh speed filming of the shadows originating around holes drilled in the plate,
Int. J. Fracture, 2, 604–613, 1966.

11. P. Manogg, Die Lichtablenkung durch eine elastisch beanspruchte Platte und die Schat-
tenfiguren yon Kreis- und Risskerbe, Glastechnische Berichte 39, 323–329, 1966.

12. P.S. Theocaris, Local yielding around a crack tip in plexiglas, J. Applied Mechanics,
37, 409–415, 1970.

13. P.S. Theocaris, E.E. Gdoutos, An optical method for determining opening-mode and
edge sliding-mode stress intensity factors, J. Applied Mechanics 39, 91–97, 1972.

14. J.F. Kalthoff, S. Winkler, J. Beinert, Dynamic stress intensity factors for arresting
cracks in DCB specimens, Int. J. Fracture 12, 317–319, 1976.

15. P.S. Theocaris, Elastic Stress Intensity Factors Evaluated by Caustics, in: Mechanics
of Fracture, Vol. 7, Chapter 3, G.C. Sih [ed.], Sijthoff and Noordhoff, Amsterdam, The
Netherlands, 1981.

16. G.A. Papadopoulos, New formula of experimental stress intensity factor evaluation by
caustics, Int. J. Fracture, 171, 79–84, 2011.

17. P.S. Theocaris, N.P. Andrianopoulos, Dynamic three-point bending of short beams
studied by caustics, Int. J. Solids and Structures, 17, 707–715, 1981.

18. G.A. Papadopoulos, Dynamics caustics and its applications, Optics and Lasers in En-
gineering, 13, 211–249, 1990.

19. H.G. Georgiadis, G.A. Papadopoulos, On the method of dynamic caustics in crack
propagation experiments, Int. J. Fracture, 54, R19–R22, 1992.

20. X. Chunyang, Y. Xuefeng, F. Jing, A study of dynamic caustics around running
interface crack tip, Acta Mechanica Sinica, 15, 182–192, 1999.



Smooth elastic contact of cylinders by caustics. . . 337

21. Y. Xuefeng, X. Wei, J.G. Chang, Y.H. Yang, Low velocity impact study of laminate
composites with Mode I crack using dynamic optical caustics, J. Reinforced Plastics and
Composites, 23, 1833–1844, 2004.

22. Y. Xuefeng, Z.H. Ping, Y. Hsien-Yang, Dynamic caustic analysis of propagating
Mode II cracks in transversely isotropic material, J. Reinforced Plastics and Composites,
24, 657–667, 2005.

23. Y. Xuefeng, X. Wei, Recent application of caustics on experimental dynamic fracture
studies, Fatigue & Fracture of Engineering Materials & Structures, 34, 448–459, 2011.

24. A.J. Rosakis, L.B. Freund, Optical measurements of the plastic strain concentration
at a tip in a ductile steel plate, J. Engineering Materials Technology, 104, 115–125, 1982.

25. M. Kikuchi, S. Hamanaka, Evaluation of the J-Integral by the caustics method, Trans-
actions of the Japan Society of Mechanical Engineers A, 56 (532), 2581–2587, 1990.

26. N.T. Younis, L.W. Zachary, A new technique for the determination of stress-optical
constants using the shadow spot method, Experimental Mechanics, 29, 75–79, 1989.

27. P.S. Theocaris, D.N. Pazis, Some further properties of caustics useful in mechanical
applications, Applied Optics, 20, 4009–4018, 1981.

28. G.A. Papadopoulos, D.N. Pazis, The non-linear solution of the mixed-mode caustics
in birefringent materials, Int. J. Fracture, 119, L35–L40, 2003.

29. K. Gong, Z. Li, Caustics method in dynamic fracture problem of orthotropic materials,
Optics and Lasers in Engineering, 46, 614–619, 2008.

30. H.P. Rossmanith, R.E. Knasmillner, D. Semenski, Crack-tip caustics in mechani-
cally anisotropic materials, Experimental Mechanics, 35, 31–35, 1995.

31. D. Semenski, Method of caustics in fracture mechanics of mechanically anisotropic ma-
terials, Engineering Fracture Mechanics, 58, 1–10, 1997.

32. D. Semenski, S. Jecić, Experimental caustics analysis in fracture mechanics of aniso-
tropic materials, Experimental Mechanics, 39, 177–183, 1999.

33. R. Yang, Z. Yue, Z. Sun, T. Xiao, D. Guo, Dynamic fracture behavior of rock under
impact load using the caustics method, Mining Science and Technology, 19, 79–83, 2009.

34. Y. Xuefeng, X. Wei, B. Shulin, Y. Hsien-Yang, Caustics analysis of the crack
initiation and propagation of graded materials, Composites Science and Technology, 68,
953–962, 2008.

35. N.T. Younis, Designing an optical mechanics experiment, World Transactions on Engi-
neering and Technology Education, 9, 137–144, 2011.

36. P.S. Theocaris, The load distribution in the generalized contact problem by caustics, in:
Proceedings of the 3rdNational Congress on Theoretical and Applied Mechanics, Varna,
Bulgaria, 13–16 September 1977, Vol. III, 105–143, 1978.

37. P. S. Theocaris, Experimental study of plane elastic contact problems by the pseudo-
caustics method, J. Mechanics and Physics of Solids, 27, 15–32, 1979.

38. D. Semenski, Optical method of caustics – Fulfilled experimental application to the con-
tact problem, in: Proceedings of the XVII IMEKO World Congress Metrology in the 3rd
Millennium, Dubrovnik, Croatia, June 22–27, 2003, 1952–1955, 2003.



338 S. K. Kourkoulis, Ch. F. Markides, G. Bakalis

39. K. Raptis, G.A. Papadopoulos, T.N. Costopoulos, A.D. Tsolakis, Experimental
study of load sharing in roller bearing contact by caustics and photoelasticity, American
J. Engineering and Applied Sciences, 4, 294–300, 2011.

40. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity,
Noordhoff, Groningen, The Netherlands, 1963.

41. I. R. Wallhead, S. Güngör, L. Edwards, Optimization of the optical method of caus-
tics for the determination of stress intensity factors, Opt. Laser Eng., 20, 109–133, 1994.

42. D.N. Pazis, Z. Agioutantis, S.K. Kourkoulis, The optical method of reflected caustics
applied for a plate with a central hole: critical points and limitations, Strain, 47, 6, 489–
498, 2011.

43. Ch.F. Markides, S.K. Kourkoulis, The stress field in a standardized Brazilian disc:
the influence of the loading type acting on the actual contact length, Rock Mechanics and
Rock Engineering, 45, 145–158, 2012.

44. L. Diyuan, L.N.Y. Wong, The Brazilian disc test for rock mechanics applications:
Review and new insights, Rock Mechanics and Rock Engineering, 46, 269–287, 2013.

Received April 2, 2013; revised version June 2, 2013.


