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The guided wave propagation in unidirectional plates under gravity, homo-
geneous initial stress in the thickness direction and inhomogeneous initial stress in
the wave propagating direction is investigated in this paper based on the theory of
mechanics of incremental deformations. The Legendre orthogonal polynomial series
expansion method is used to solve the coupled wave equation. Two different wave
propagating directions, the fiber orientation and the vertical fiber orientation, are
discussed respectively. The effects of the initial stresses on the Lamb-like wave and
shear-horizontal (SH) wave are respectively investigated. The effects of the initial
stresses on the dispersion curves and on the displacement and stress distributions are
discussed.
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1. Introduction

In many practical applications, initial stresses are present due to mechan-
ical loads or thermal fields or could arise as residual stresses in casting, forging
or other manufacturing processes. It is well known that an initial stress state in a
body can significantly affect its mechanical behavior. The propagation of elastic
waves in a composite structure with initial stresses has long been of interest, and
some achievements have been reported. Taking into account the effect of initial
stresses and using Biot’s theory of incremental deformations [1], Dey [2] modi-
fied the work of Jones [3]. Roy [4] studied the wave propagation in a thin two-
layered laminated medium with stress couples under initial stresses. Abd-Alla

and Ahmed [5] investigated the Love wave propagation in a non-homogeneous
orthotropic elastic layer under the initial stress overlying semi-infinite medium.
Garg [6] considered the effect of initial stress on harmonic plane homogeneous
waves in viscoelastic anisotropic media. Montanaro [7] studied the wave prop-
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agation along symmetry axes in linearly elastic media with an initial stress.
Guz [8] developed a method to measure the biaxial homogeneous initial stress
field in the elastic body using elastic waves. Akbarov and Ozisik [9] investi-
gated the influence of the third order elastic constants to the generalized Rayleigh
wave dispersion in apre-stressed stratified half-plane. Gupta et al. [10] investi-
gated the torsional surface waves in a homogeneous layer of finite thickness
over an initially stressed heterogeneous half-space. Singh [11] studied the wave
propagation in a pre-stressed piezoelectric half-space. Akbarov and Guliev

[12] studied axisymmetric longitudinal wave in a pre-strained compound cir-
cular cylinder made from compressible materials. Akbarov et al. [13] studied
the torsional wave in a finitely pre-strained hollow sandwich circular cylinder.
Akbarov and Guliev [14] also investigated the influence of the finite initial
strains on the axisymmetric wave dispersion in a circular cylinder embedded in
a compressible elastic medium.

As common structures, initial stressed plates are also given attention in the
wave propagation studies. Kayestha and Wijeyewickrema [15] studied time-
harmonic wave propagation in a pre-stressed compressible elastic bi-material
laminate and obtained dispersion curves. Akbarov et al. [16] and Zamanov

and Agasiyev [17] studied the influence of the initial strains in the wave prop-
agation direction on the Lamb wave dispersion curves. Akbarov et al. [18]
also studied the influence of the initial strains in the thickness direction on the
Lamb wave dispersion curves. In this paper, the guided wave propagation in
unidirectional plates under gravity, initial stresses in the thickness and the wave
propagating directions are studied based on the mechanics of incremental defor-
mations [1]. The coupled wave equation is solved by the Legendre orthogonal
polynomial series expansion method. The effects on the Lamb-like wave and SH
wave are investigated respectively. Two different wave propagating directions,
in fiber orientation and the vertical fiber orientation are discussed respectively.
The numerical results are presented and discussed to illustrate the effects of
the initial stresses on the dispersion curves, displacement and stress distribu-
tions.

2. Theoretical formulation

Consider a unidirectional plate with initial stresses in two directions,

Sxx = −P (z) and Szz = −Q,

as shown in Fig. 1. The plate is infinite horizontally with a thickness h. We
place the horizontal (x,y)-plane of a Cartesian coordinate system on the bottom
surface and let the plate be in the positive z-region.
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Fig. 1. Schematic diagram of wave propagation in a plate under initial stresses and gravity.

According to “Mechanics of Incremental Deformations” [1, 19], the dynamic
equation for the unidirectional plate under gravity and initial stresses is gov-
erned by
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The constitutive equation for the unidirectional plate can be written in the
following form:
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where π (z) is the rectangular window function defined by

π(z) =

{

1, 0 ≤ z ≤ h,
0, elsewhere,

whose derivative is δ(z − 0) − δ(z − h), which is introduced so as to meet the
stress-free boundary conditions (Txz = Tyz = Tzz = 0 at z = 0, z = h).

The relationship between the strain and displacement can be expressed as
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Here ui, Tij , εij are the elastic displacements, stresses and strains; Cij are
the elastic coefficients; ρ is the density of the plate.

For a free harmonic wave being propagated in the x direction, we assume
displacement components to be of the form:

ux(x, y, z, t) = exp(ikx − iωt)U(z),(2.4)

uy(x, y, z, t) = exp(ikx − iωt)V (z),(2.5)

uz(x, y, z, t) = exp(ikx − iωt)W (z).(2.6)

U(z), V (z), W (z) represent the amplitudes of vibration in the x, y, z directions;
k is the magnitude of the wave vector in the propagation direction, and ω is the
angular frequency.

Substituting Eqs. (2.2)–(2.6) into Eq. (2.1), governing differential equations
in terms of displacement components can be obtained:

[C55U
′′ + ik(C13 + C55 + 0.5P + 0.5Q)W ′ + 0.5(P − Q)U ′′(2.7)

+ 0.5P ′U ′ + 0.5ikP ′W − k2(C11 + P )U + ikρgW ]π(z)

+ (δ(z − 0) − δ(z − h))(C55U
′ + ikC55W )

= −ρω2Uπ(z),

[C44V
′′ − 0.5QV ′′ − k2(C66 − 0.5P )V ]π(z)(2.8)

+ (δ(z − 0) − δ(z − h))C44V
′

= −ρω2V π(z),
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[(C33 + Q)W ′′ + ik(C13 + C55 + 0.5P + 0.5Q)U ′(2.9)

− k2(C55 − 0.5P + 0.5Q)W − ikρgU ]π(z)

+ (δ(z − 0) − δ(z − h))[(C33 + Q)W ′ + ik(C13 + Q)U ]

= −ρω2Wπ(z).

Here, Eq. (2.8) is independent of other two equations and represents the prop-
agating SH waves. Equations (2.7) and (2.9) control the propagating Lamb-like
waves; they can be solved respectively. Next, the Lamb-like wave equations are
solved firstly.

To obtain the solutions of the Lamb-like waves controlled by the coupled
Eqs. (2.7) and (2.9), we expand U(z) and W (z) to a Legendre orthogonal poly-
nomial series as

(2.10)

U(z) =

∞
∑

m=0

p1
mQm(z),

W (z) =

∞
∑

m=0

p2
mQm(z),

where pi
m (i = 1, 2) is the expansion coefficients and

Qm(z) =

√

2m + 1

h
Pm

(

2z − h

h

)

,

with Pm being the m-th Legendre polynomial. Theoretically, m runs from 0
to ∞. In practice, the summation over the polynomials in Eq. (2.10) can be
halted at some finite value m = M , when higher order terms become essentially
negligible.

Equations (2.7)–(2.9) are multiplied by Qj(z) with j running from 0 to M .
Then integrating over z from 0 to h gives the following 2(M + 1) equations:

(2.11)
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where Aj,m
αβ (α, β = 1, 2) and M j

m are the elements of a non-symmetric ma-
trix. They can be obtained according to Eqs. (2.7)–(2.9) and are given in the
Appendix.

Equation (2.11) can be rewritten compactly as

(2.12) [M−1A]α,β
j,mpβ

m = −ω2pα
j ,
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where the eigenvalue ω2 gives the angular frequency of the guided wave and
eigenvectors pα

j allow the components of the particle displacement to be cal-
culated. Using equation V ph = ω/k, the phase velocity can be obtained. The
complex matrix Eq. (2.12) can be solved numerically by making use of standard
computer programs for the diagonalization of non-symmetric square matrices.
2(M + 1) eigenmodes are generated from the order M of the expansion. Ac-
ceptable solutions are those eigenmodes for which convergence is obtained as
M is increased. It was determined that the obtained eigenvalues are converged
solutions when a further increase in the matrix dimension does not result in
a significant change in the eigenvalue. The computer program was written using
Mathematica.

The procedure of solving the SH wave equation (2.8) is similar to that of
solving Lamb-like waves, but it is simpler and it is not presented here.

3. Numerical results

Based on the foregoing formulation, a computer program has been written
to calculate the dispersion curves, displacement and stress distributions for the
unidirectional plate with initial stresses. In order to illustrate the effect of the
initial stress, two different wave propagating directions in fiber orientation and
the vertical fiber orientation are discussed respectively. The numerical examples
are discussed under four conditions:

(a) x-direction initial stress and wave propagating in fiber orientation;
(b) x-direction initial stress and wave propagating in the vertical fiber orien-

tation;
(c) z-direction initial stress and wave propagating in fiber orientation;
(d) z-direction initial stress and wave propagating in the vertical fiber orien-

tation.
The material properties of the unidirectional plate are given directly accord-

ing to the literature [20], as shown in Table 1.

Table 1. The material properties of the unidirectional plate.

Property C11 C13 C33 C44 C55 C66 ρ

x-direction in fiber orientation 128.2 6.9 14.95 3.81 6.73 6.73 1.58

x-direction in the vertical fiber orientation 14.95 7.33 14.95 6.73 3.81 6.73 1.58

Units: Cij (109 N/m2), ρ (103 kg/m3).
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3.1. Convergence of the polynomial series method

In this section, we firstly make a comparison between the results of the SH
wave obtained by employing the polynomial approach and the corresponding
ones obtained by employing the exact solution to the governing field equation
to illuminate the validity of the polynomial approach. Then, the Lamb-like wave
dispersion curves for the unidirectional plate under homogeneous initial stress
P are calculated for different “M ” to verify the constringency of the polynomial
approach.

Without considering the boundary conditions, Eq. (2.8) can be written as

(3.1) C44V
′′ − 0.5QV ′′ − k2C66V = −ρω2V π(z).

The general solution is

(3.2) V (z) = A sin

[

z
√
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C44 − 0.5Q

]

+ B cos

[

z
√

ρω2 − k2C66√
C44 − 0.5Q

]

,

where A and B are undetermined coefficients.
Substituting Eq. (2.14) into the stress-free boundary condition (Tyz = 0 at

z = 0, z = h), the SH wave dispersion equation can be obtained:

(3.3)
ρω2 − k2C66

C44 − 0.5Q
sin

[

h
√

ρω2 − k2C66√
C44 − 0.5Q

]

= 0.

We use the polynomial method to calculate the SH wave dispersion equation
for the unidirectional plate with the wave propagating in vertical fiber orientation
under homogeneous initial stress Q = −3 GPa and make a comparison with the
exact solutions to the governing field equation, as shown in Fig. 2. It can be seen
that the first four modes are coinciding when M = 7; the first five modes are
coinciding when M = 8 and the first seven modes are coinciding when M = 9.
So, we can conclude that the polynomial method’s results and the exact results
agree very well at at least the first (M + 1)/2 modes.

In order to verify the constringency of the polynomial series method, the
Lamb-like wave dispersion curves for the unidirectional plate with the wave
propagating in fiber orientation under homogeneous initial stress P = −3 GPa
are calculated when M = 7, 8, 9 and 10, respectively, as shown in Fig. 3. It
can be noticed that the first four modes are convergent when M = 7; the first
five modes are convergent when M = 8 and the first six modes are convergent
when M = 9. So, we can think that at least the first (M + 1)/2 modes are
convergent.

For all the undermentioned calculations, the series expansion is truncated at
M = 12.
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Fig. 2. Dispersion curves for SH wave under homogeneous initial stress Q = −3 GPa;
dots: the exact results, lines: polynomial method’s results; a) M = 7, b) M = 8, c) M = 9.
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Fig. 3. Dispersion curves for Lamb-like wave under homogeneous initial stress P = −3 GPa
for various “M ”.

3.2. Effects of the gravity and initial stresses
on the Lamb-like wave dispersion curves

Figure 4 shows the phase velocity dispersion curves of the unidirectional
plate with the wave propagating in fiber orientation and the vertical fiber ori-
entation under gravity and different homogeneous initial stresses P . It can be
seen that the gravity has no influence on the Lamb-like wave dispersion curves.
A stretch stress always makes the wave speed higher at low frequencies (ex-
cept for the first mode). In most cases, the effect of the compressive stress is
contrary to that of the stretch stress. Comparing Fig. 4a and Fig. 4b, we can
see that when the wave propagates in fiber orientation, the effect of the ini-
tial stress P on the anti-symmetrical modes is more significant than that on
the symmetrical modes at low frequencies which is more obvious at low order
modes. But when the wave propagates in the vertical fiber orientation, the effects
on the symmetrical modes and the anti-symmetrical modes have no significant
differences.

Figure 5 shows the phase velocity dispersion curves of the unidirectional
plate under different initial stresses Q. It can be seen that the effect of the initial
stress Q is very different from that of the initial stress P . For the first three
modes, the effect of the initial stress Q is almost entirely contrary to that of
initial stress P . Moreover, the effect of the initial stress Q on the symmetrical
modes is contrary to that on the anti-symmetrical modes at low frequencies when
the wave propagates in fiber orientation. But the effect on the symmetrical modes
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Fig. 4. Phase velocity spectra for the unidirectional plate under different homogeneous
initial stresses P : a) wave propagating in fiber orientation, b) wave propagating in the

vertical fiber orientation.

is similar to that on the anti-symmetrical modes when the wave propagates in
the vertical fiber orientation.

Figure 6 shows the phase velocity dispersion curves of the unidirectional plate
with the wave propagating in fiber orientation under two different initial stresses
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Fig. 5. Phase velocity spectra for the unidirectional plate under different homogeneous
initial stresses Q: a) wave propagating in fiber orientation, b) wave propagating in the

vertical fiber orientation.

P = −3 GPa and P = −6(1 − z) GPa, of which the latter is inhomogeneous.
The total stress of each case is equal to each other. It can be seen that the effect
of the inhomogeneous initial stress is similar to that of the homogeneous initial
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Fig. 6. Phase velocity spectra for the unidirectional plate with the wave propagating in fiber
orientation under homogeneous and inhomogeneous initial stresses P .

stress at low order modes. However, as the mode order increases, the effect of
the inhomogeneous initial stress becomes more significant.

Figures 7 and 8 illustrate the curves of frequency-initial stress P for the
unidirectional plate with the wave respectively propagating in fiber orientation
and the vertical fiber orientation.
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Fig. 7. Curves of frequency vs homogeneous initial stresses P for the unidirectional plate
with the wave propagating in fiber orientation at: a) kh = 3, b) kh = 5.
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Fig. 8. Curves of frequency vs homogeneous initial stresses P for the unidirectional plate
with the wave propagating in the vertical fiber orientation at: a) kh = 3, b) kh = 5.

Figures 9 and 10 are the curves of frequency-initial stress Q. It can be seen
that the relations of frequency-initial stresses are approximately linear with the
increasing of the initial stresses in both directions when the wave propagates in
fiber orientation. But these relations are nonlinear and become more complicated
when the wave propagates in the vertical fiber orientation. The varying trends of
each mode are different. For different wavenumbers, the frequency varying curves
are also different. The effects of the compressive stress and stretch stress are not
always contrary. Like the second mode in Fig. 10c, the highest frequency is at
about the initial stress Q = 0; both the compressive stress and stretch stress
make the wave speed and frequency lower.
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Fig. 9. Curves of frequency vs homogeneous initial stresses Q for the unidirectional plate
with the wave propagating in fiber orientation at: a) kh = 3, b) kh = 5.
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Fig. 10. Curves of frequency vs homogeneous initial stresses Q for the unidirectional plate
with the wave propagating in the vertical fiber orientation: a) at kh = 3, b) at kh = 5,

c) the second mode at kh = 3.

3.3. Effects of the initial stresses on the Lamb-like wave displacement
and stress distributions

Figures 11 and 12 illustrate the displacement and stress distributions of the
first three modes for the unidirectional plate with the wave propagating in fiber
orientation under homogeneous initial stress P = −3 GPa and inhomogeneous
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Fig. 11. Displacement and stress distributions for the unidirectional plate with the wave
propagating in fiber orientation under different initial stresses P at kh = 3; a) the first mode,

b) the second mode, c) the third mode.

initial stress P = −6(1 − z) GPa at kh = 3 and kh = 7, respectively. It can be
seen that the effects of the inhomogeneous initial stress are more significant both
on the displacement distributions and on the stress distributions. The effect of
the initial stress is strong on the Txx stress distributions and weak on the Txz
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Fig. 12. Displacement and stress distributions for the unidirectional plate with the wave
propagating in fiber orientation under different initial stresses P at kh = 7; a) the first mode,

b) the second mode, c) the third mode.

and Tzz stress distributions. As the wavenumber increases, the effect of the initial
stress becomes more significant.

Figure 13 illustrates the displacement and stress distributions of the first
three modes for the unidirectional plate with the wave propagating in fiber ori-
entation under homogeneous initial stress Q = −3 GPa at kh = 3. It can be
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Fig. 13. Displacement and stress distributions for the unidirectional plate with the wave
propagating in fiber orientation under initial stress Q at kh = 3; a) the first mode, b) the

second mode, c) the third mode.

seen that the effect of the initial stress Q is strong on the Txx and Txz stress
distributions and weak on the Tzz stress distributions. Comparing Fig. 13 with
Fig. 11, we can see that the effects of the homogeneous initial stresses in different
directions are different. In some cases, their effects are even contrary, such as the
Txx stress distributions at the first mode in Fig. 13a and Fig. 11a.
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3.4. Effects of the initial stresses on the SH wave dispersion curves
and displacement and stress distributions

Figures 14 and 15 show the dispersion curves for the unidirectional plate
with the wave respectively propagating in fiber orientation and the vertical fiber
orientation under different homogeneous initial stresses P . It can be seen that
the effect of initial stress P is very regular. A compressive stress always makes
the wave speed lower and a stretch stress makes the wave speed higher. The
effect is weak at a little wavenumber and strong at a big wavenumber. The effect
of initial stress P on the SH waves with the wave propagating in fiber orientation
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Fig. 14. Dispersion curves for the unidirectional plate with the wave propagating in fiber
orientation under homogeneous initial stress P : a) frequency spectra, b) phase velocity

spectra.
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vertical fiber orientation under homogeneous initial stress P : a) frequency spectra, b) phase

velocity spectra.
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is similar to that with the wave propagating in the vertical fiber orientation. So,
just the wave propagation in fiber orientation is discussed.

Figure 16 shows the dispersion curves for the unidirectional plate under ho-
mogeneous initial stress P = −3 GPa and inhomogeneous initial stress P =
−6(1− z) GPa. It can be seen that the effect of inhomogeneous initial stress has
little difference to that of homogeneous initial stress at high order modes, but the
difference is significant at low order modes. As the wavenumber and frequency
increase, the difference becomes more obvious.
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Fig. 16. Dispersion curves for the unidirectional plate under inhomogeneous initial stress P :
a) frequency spectra, b) phase velocity spectra.

Figure 17 shows the dispersion curves for the unidirectional plate with
the wave propagating in fiber orientation under different homogeneous initial
stresses Q. It can be seen that the effect of initial stress Q is of some difference
from that of initial stress P except that a compressive stress still makes the wave
speed lower. The initial stress Q has almost no effect on the first mode, and for
the other modes, the influence manner of the initial stress Q is different from
that of the initial stress P .

Figure 18 illustrates the curves of frequency-initial stress P for the uni-
directional plate with the wave propagating in fiber orientation. Figure 19 is
the curves of frequency-initial stress Q. Comparing the two figures, we can see
that the curves of frequency-initial stress P are sharp at low modes. With the
wavenumber increasing, the curves become sharper for all modes. The effect of
the compressive stress is entirely contrary to that of the stretch stress. With
the increasing of the initial compressive stress, the frequencies approximately
linearly become small. The curves of frequency-initial stress Q are sharp at high
modes, which is very different from the curves of frequency-initial stress P . In
particular, the frequency does not change with the variation of the initial stress
at the first mode.
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Figure 20 illustrates the displacement and stress distributions of the lower
modes for the unidirectional plate with the wave propagating in fiber orientation
under homogeneous initial stress P = −3 GPa and inhomogeneous initial stress
P = −6(1 − z) GPa at kh = 5. It can be seen that the homogeneous initial
stress has almost no effect on the displacement and stress distributions. The
inhomogeneous initial stress has significant effects on the displacement and stress
distributions, which is more obvious at the first order mode.
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Fig. 20. Displacement and stress distributions of the unidirectional plate under different
initial stresses P at kh = 5; a) the second mode, b) the third mode, c) the fourth mode.
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4. Conclusions

In this paper, we use the Legendre polynomial series method to solve the
guided wave propagation in unidirectional plates under gravity, homogeneous
initial stresses in the thickness direction and inhomogeneous initial stresses in
the wave propagating direction. The effects of the initial stress on the disper-
sion curves, displacement and stress distributions are illustrated. Based on the
calculated results, the following conclusions can be drawn:

1. The effect of the initial stress on the Lamb-like waves is quite different
from that on the SH waves. The effect on SH waves is very regular.

2. For Lamb-like waves, the effect of the initial stress in the thickness direction
on the symmetrical modes is different from that on the anti-symmetrical
modes when the wave propagates in fiber orientation.

3. For Lamb-like waves, the effect of the initial stress in the thickness direction
is usually different from that in the wave propagation direction.

4. For Lamb-like waves, the relations of frequency-initial stresses are nonlinear
when the wave propagates in the vertical fiber orientation.

5. For Lamb-like waves, the effect of the compressive stress is not always
contrary to that of the stretch stress. For SH waves, the effect of the com-
pressive stress is entirely contrary to that of the stretch stress except for
the first mode.

6. For Lamb-like waves, the effects of the initial stresses in different directions
on the displacement and stress distributions are different and are even
contrary in some cases. For SH waves, the homogeneous initial stresses
have very weak effects on the displacement and stress distributions.
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Appendix

The elements of the matrices in Eq. (2.11) are given by

Aj,m
11 = [C55 + 0.5(P − Q)]U(m, j, 0, 2) + 0.5P ′u(m, j, 0, 1)

− k2(C11 + P )u(m, j, 0, 0) + C55k(m, j, 0, 1),
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Aj,m
12 = ik[(C55 + C13 + 0.5(P + Q))u(m, j, 0, 1)

+ (0.5P ′ + ρg)u(m, j, l, 0) + C55k(m, j, 0, 0)],

Aj,m
21 = ik[(C55 + C13 + 0.5(P + Q))u(m, j, 0, 1)

− ρgu(m, j, 0, 0) + (C13 + Q)k(m, j, 0, 0)],

Aj,m
22 = (C33 + Q)u(m, j, 0, 2) − k2(C55 − 0.5P + 0.5Q)u(m, j, 0, 0)

+ (C33 + Q)k(m, j, 0, 1),

M j
m = u(m, j, 0, 0),

where

u(m, j, n, l) =

h
∫

0

Q∗
j (z)zn ∂lQm(z)

∂zl
dz,

k(m, j, n, l) =

h
∫

0

Q∗
j (z)zn ∂π(z)

∂z

∂lQm(z)

∂zl
dz.
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