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Receding contact problem for a coated layer and a half-plane

loaded by a rigid cylindrical stamp
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In this study, the frictionless contact problem between a coated layer and
a half-plane is considered when they are pressed by a rigid cylindrical stamp. Upon
loading, two unknown contact widths and contact pressures occur on the contact
areas the advanced contact area between the stamp and the coating; and the receding
contact area between the layer and the half-plane. This problem is reduced to two
singular integral equations by using the Fourier transform and applying the boundary
conditions of the problem. The numerical solution of the system of singular integral
equations is obtained by applying the Gauss–Chebyshev integration formulas.
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1. Introduction

Due to the transmission of loads through contacting components of many
structural and mechanical systems, the problems associated with these loads
have garnered considerable interest of researchers. The contact areas and the
distribution of contact stresses play fundamental role in engineering structures
such as pavements in roads and runways, railway ballast, and foundations.

When two components contact each other without a bond, the applied loads
cause the components to deform and the initial contact area decreases to a finite
size. This type of contact is termed a receding contact, and the contact area
and contact pressures are unknown for this problem. The frictionless receding
contact problem between a layer and a half-plane was investigated with the
theory of elasticity by [1–6]. The contact problem of an elastic layer lying on two
elastic quarter-planes without a bond was solved by [7–9]. The contact problem
of a multilayered medium based on integral transforms and matrix analyses is
investigated by [10]. The frictionless contact between a rigid stamp and a surface
coating-graded interlayer-substrate structure by employing the transfer matrix
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method and the Fourier transform is examined by [11]. The contact problem
between a rigid stamp and a layered composite resting on a simple supports
was studied by [12]. The continuous and discontinuous contact problem of two
elastic layers resting on a half-plane in the presence of body forces is investigated
by [13].

Many studies regarding the receding contact between a layer and a half-plane
or a bonded contact of a layered medium have been reported in the literature.
In contrast, this paper examines the receding contact problem of a coated layer
resting on a half-plane within the framework of linear elasticity theory. A concen-
trated force is applied to the top surface of a coating through a rigid cylindrical
stamp. It is assumed that the effects of friction and the body forces are neglected
and that only compressive normal tractions can be transmitted through the con-
tact interfaces. The problem is reduced to a system of singular integral equations
for which the contact areas and the contact pressures acting on these areas are
unknown given the boundary conditions of the problem and the Fourier integral
transform. The system of singular integral equations is solved numerically with
the Gauss–Chebyshev integration formulas. Numerical results are given for the
contact areas and the contact pressures as a function of various dimensionless
quantities.

2. General expressions

The plane strain contact problem under consideration is shown in Fig. 1.
A concentrated normal force P is applied to the system by means of a rigid
cylindrical stamp of radius R. The elastic layers in the system are dissimilar, the
upper one is termed the coating layer and the lower one is simply termed as the
layer in this paper. The layers are fully bonded to each other, and the contact

Fig. 1. Geometry of the problem.
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between the layer and the half-plane is smooth. Upon loading, the contact half-
width between the rigid stamp and the coating increases to a. On the other hand,
the contact half-width between the layer and the half-plane decreases to a finite
size b.

In the absence of body forces, the two-dimensional Navier equations can be
written in terms of the displacement components as follows:

(2.1)

(λi + µi)
∂

∂x

[

∂ui

∂x
+
∂vi

∂y

]

+ µi∇2vi = 0,

(λi + µi)
∂

∂y

[

∂ui

∂x
+
∂vi

∂y

]

+ µi∇2vi = 0,

where u and v are the x and y components of the displacement vector, respec-
tively, and and µi are the Lamé constants. The subscript i (i = 1, 2, 3) refers
to the coating layer (upper layer), the layer (lower layer) and the half-plane,
respectively.

Observing that x = 0 is a plane symmetry, it is sufficient to consider the
problem in the region 0 ≤ x < ∞ only. Considering the Fourier transformation
of the unknown functions φi and ψi, components of the displacement vector
ui(x, y) , vi(x, y) can be expressed as:

(2.2)

ui(x, y) =
2

π

∞
∫

0

φi(α, y) sin(αx) dα,

vi(x, y) =
2

π

∞
∫

0

ψi(α, y) cos(αx) dα.

Upon substituting (2.2) into (2.1), the Navier equations reduce to two ordinary
differential equations. Upon solving the resulting differential equations, the dis-
placements and stresses can be expressed as follows:

(2.3)

ui(x, y) =
2

π

∞
∫

0

[(Ai +Biy)e
−αy + (Ci +Diy)e

αy] sin(αx) dα,

vi(x, y) =
2

π

∞
∫

0

{[

Ai +

(

κi

α
+ y

)

Bi

]

e−αy

+

[

−Ci +

(

κi

α
− y

)

Di

]

eαy

}

cos(αx) dα,
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(2.4)

1

2µi
σxi(x, y) =

2

π

∞
∫

0

{[

α(Ai +Biy) −
3 − κi

2
Bi

]

e−αy

+

[

α(Ci +Diy) +
3 − κi

2
Di

]

eαy

}

cos(αx) dα,

1

2µi
σyi(x, y) =

2

π

∞
∫

0

{

−
[

α(Ai +Biy) +
1 + κi

2
Bi

]

e−αy

+

[

−α(Ci +Diy) +
1 + κi

2
Di

]

eαy

}

cos(αx) dα,

1

2µ i
τxyi(x, y) =

2

π

∞
∫

0

{

−
[

α(Ai +Biy) +
κi − 1

2
Bi

]

e−αy

+

[

α(Ci +Diy) −
κi − 1

2
Di

]

eαy

}

sin(αx) dα,

where κi = 3 − 4vi for plain strain, and vi is Poisson’s ration. Ai, Bi, Ci and
Di (i = 1, 2, 3) are unknown functions that will be determined by applying the
boundary conditions of the problem. Because the stress components vanish at
y → −∞, A3 and B3 (which pertain to the expressions of the half-plane) must
be zero (A3 = B3 = 0).

3. Boundary conditions and singular integral equations

The govering equations of the problem are subjected to the following bound-
ary conditions prescribed at y = 0, y = −h1 and y = −h:

σy1(x, 0) =

{

−p1(x), 0 ≤ x < a,

0, a ≤ x <∞,

τxy1(x, 0) = 0, 0 ≤ x <∞,

σy1(x,−h1) = σy2(x,−h1), 0 ≤ x <∞,

τy1(x,−h1) = τxy2(x,−h1), 0 ≤ x <∞,

u1(x,−h1) = u2(x,−h1), 0 ≤ x <∞,

v1(x,−h1) = v2(x,−h1), 0 ≤ x <∞,

σy2(x, 0) =

{

−p2(x), 0 ≤ x < b,

0, b ≤ x <∞,

τxy2(x,−h) = 0, 0 ≤ x <∞,

τxy3(x,−h) = 0, 0 ≤ x <∞,

σy2(x,−h) = σy3(x,−h), 0 ≤ x <∞,

(3.1)
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∂v1(x, 0)

∂x
= f(x), 0 ≤ x < a,

∂v2(x,−h)
∂x

=
∂v3(x,−h)

∂x
, 0 ≤ x < b,

(3.2)

where a if the half-width of the contact area under the stamp, b is the half-width
of the contact area between the layer and the half-plane, and p1(x) and p2(x) are
the unknown contact pressures om the contact areas a and b, respectively, f(x)
is a known function that gives the derivative of the cylindrical stamp profile:

(3.3) f(x) = x/R.

Upon taking the Fourier transform of the boundary conditions given by (3.1),
the unknown constants Ai, Bi, Ci and Di, (appearing in the displacement and
stress expressions) can be determined in terms of the unknown contact pressures
p1(x) and p2(x). Substituting unknown constants into the mixed boundary con-
ditions (3.2) provides the following system of singular integral equations:

(3.4a)

a
∫

0

p1(t1)

[

1

t1 + x1
− 1

t1 − x1
+ 2K11(x1, t1)

]

dt1

+ 2

b
∫

0

p2(t2)[K12(x1, t2)] dt2 = f(x),

(3.4b)
∂

∂x
[v2(x, y) − v3(x, y)] = 2

a
∫

0

p1(t1)[K21(x2, t1)] dt1

+

b
∫

0

p2(t2)

[

1

t2 + x2
− 1

t2 − x2
+ 2K22(x2, t2)

]

dt2 = 0.

Observing that the contact stress functions are double functions p1(t1) =
p1(−t1) and p2(t2) = p2(−t2), Eqs. (3.4a) and (3.4b) can be written as Eqs.
(3.4c) and (3.4d):

1

π

a
∫

−a

p1(t1)

[

1

t1 − x1
+K11(x1, t1)

]

dt1 +
1

π

b
∫

−b

p2(t2)[K12(x1, t2)] dt2,(3.4c)

=
4µ1

κ1 + 1

x1

R
,

1

π

a
∫

−a

p1(t1)[K21(x2, t1)] dt1 +
1

π

b
∫

−b

p2(t2)

[

1

t2 − x2
+K22(x2, t2)

]

dt2 = 0.(3.4d)
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The expressions for K11(x1, t1), K12(x1, t2), K21(x2, t1) and K22(x2, t2) from
Eq. (3.4) are given in Appendix A.

The solution of the system of singular integral equations must satisfy the
following equilibrium conditions:

(3.5)

a
∫

0

p1(t1) dt1 =
P

2
,

b
∫

0

p2(t2) dt2 =
P

2
.

4. Numerical solution of the system of singular integral equations

By introducing the following normalizations:

(4.1)

x1 = as1, t1 = ar1,

x2 = bs2, t2 = br2,

G1(r1) =
p1(r1)

P/h2
, G2(r2) =

p2(r2)

P/h2
,

the singular integral equations (3.4c, d) may be expressed in the following form:

(4.2)

1

π

1
∫

−1

G1(r1)

[

1

r1 − s1
+K∗

11(s1, r1)

]

dr1

+
1

π

1
∫

−1

G2(r2)[K
∗

12(s1, r2)] dr2 = f(s1),

1

π

1
∫

−1

G1(r1)[K
∗

21(s2, r1)] dr1

+
1

π

1
∫

−1

G2(r2)

[

1

r2 − s2
+K∗

22(s2, r2)

]

dr2 = 0,

where

K∗

11(s1, r1) =
a

h2
K11(x1, t1), K∗

12(s1, r2) =
b

h2
K12(x1, t2),

K∗

21(s2, r1) =
a

h2
K21(x2, t1), K∗

22(s2, r2) =
b

h2
K22(x2, t2),

(4.3)

f(s1) =
4

κ1 + 1

µ1

P/h2

1

R/h2

a

h2
s1.(4.4)

Similarly, the equilibrium conditions (4.2) become
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(4.5)
a

h2

1
∫

−1

G1(r1)dr1 = 1,
b

h2

1
∫

−1

G2(r2)dr2 = 1.

The singular integral equations have an index −1 due to the smooth contact at
the end points a and b [14, 15]. The solution of the integral equations may be
expressed as

(4.6) Gη(rη) = gη(rη)wη(rη), η = 1, 2,

where gη(rη) is an unknown function that is bounded and continuous in the
intervals −1 ≤ rη ≤ 1 and where wη(rη) is the corresponding weight function:

(4.7) wη(rη) = (1 − r2η)
1/2.

If one considers the Gauss–Chebyshev integration formulas [14] for the bounded
functions gη(rη), then the integral equations and the equilibrium conditions be-
come:

N
∑

j=1

WN
1j

[

1

r1j − s1k
+K∗

11(s1k, r1j)

]

g1(r1j)

+
N

∑

j=1

WN
1jK

∗

12(s1k, r2j) g2(r2j) = f(s1k), k = 1, 2, . . . , N + 1,

N
∑

j=1

WN
2jK

∗

21(s2k, r1j)g1(r1j)

+

N
∑

j=1

WN
2j

[

1

r2j − s2k
+K∗

22(s2k, r2j)

]

g2(r2j) = 0, k = 1, 2, . . . , N + 1,

(4.8)

a

h2

N
∑

j=1

WN
1j g1(r1j) = 1,

b

h2

N
∑

j=1

WN
2j g2(r2j) = 1,(4.9)

where rηj and sηk are the collocation points and WN
ηj is the weighting constant,

which can be determined as follows:

(4.10)

rηj = cos

(

jπ

N + 1

)

, k = 1, 2, . . . , N,

sηk = cos

(

π
2k − 1

2N + 2

)

, k = 1, 2, . . . , N + 1,

WN
ηj =

1 − r2ηj

N + 1
.

Because there are 2N + 2 equations in (4.8) to determine only 2N unknowns
gη(rη), (N/2 + 1)-th equations, (automatically satisfied) are ignored in (4.8).
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Thus, (4.8) and (4.9) give 2N + 2 algebraic equations to determine 2N + 2
unknowns, which are gη(rη) and the contact widths a and b. Because the system
of equations is nonlinear in a and b, an iterative procedure is used to obtain the
two unknown contact widths.

5. Numerical results
The calculated results are the contact widths and and the contact pressures

P1(x)/(P/h2) and P2(x)/(P/h2) acting on the contact areas, for various dimen-
sionless quantities, such as h1/h2, µ1/µ2, µ3/µ2, R/h2, µ2/(P/h2), κ1, κ2 and κ3.

The variation of contact width withh1/h2 is given in Table 1. As it is seen in
Table 1, with increasing values of h1/h2, the contact width between the layer and
the half-plane increases but the contact width under the stamp decreases. Along
with increasing values of the coating height, this behavior causes the distance
between the application point of the load and the half-plane to increase and the
stress on the contact area to decrease, which causes separation of the layer from
the half-plane.

Table 1. Variation of the contact widths for various values of h1/h2 (µ1/µ2 = 1,
µ3/µ2 = 1, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).

Contact widths

h1/h2 a/h2 b/h2

Hertzian contact 0.6909883 ∞

50 0.6910218 104.06096

10 0.6916101 15.116869

2 0.6990829 4.0611766

1 0.7082785 2.7457192

0.5 0.7194743 2.1071227

0.1 0.7365187 1.6202971

0 0.7424830 1.5051292

Comez [16] 0.7424830 1.5051292

Kahya et al. [17] 0.74260 1.50260

As the coating becomes stiffer, the contact width under the stamp a/h2

decreases, but the contact width between the layer and the half-plane b/h2 in-
creases (Figs. 2 and 3). Both a/h2 and b/h2 increase as the half-plane becomes
softer. The variation of µ1 influences a/h2 more than it does b/h2. Contrarily,
the variation of µ3 has a greater effect on b/h2 than it does on µ1.

The maximum contact pressures occur in the symmetry plane x = 0, and
vanish towards the end of the contact areas (Figs. 2–11).
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Fig. 2. Variation of the contact widths under the stamp with µ3/µ2 (h1/h2 = 0.5,
R/h2 = 250, µ2/(P/h2) = 250, κi = 2).

Fig. 3. Variation of the contact widths between the layer and the half-plane with µ1/µ2 and
µ3/µ2 (h1/h2 = 0.5, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).
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Fig. 4. Contact pressure distribution under the stamp for various values of h1/h2

(µ1/µ2 = 1, µ3/µ2 = 0.5, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).

Fig. 5. Contact pressure distribution between the layer and the half-plane for various value
of h1/h2 (µ1/µ2 = 1, µ3/µ2 = 0.5, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).
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Fig. 6. Contact pressure distribution under the stamp with µ1/µ2 (h1/h2 = 0.5,
µ3/µ2 = 0.5, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).

Fig. 7. Contact pressure distribution between the layer and the half-plane with µ1/µ2

(h1/h2 = 0.5, µ3/µ2 = 0.5, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).
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Fig. 8. Effect of the shear ratio, µ3/µ2, on the contact pressure distribution under the stamp
(h1/h2 = 0.5, µ1/µ2 = 1, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).

Fig. 9. Effect of the shear ratio, µ3/µ2, on the contact pressure distribution between the
layer and the half-plane (h1/h2 = 0.5, µ1/µ2 = 1, R/h2 = 250, µ2/(P/h2) = 250, κi = 2).
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Fig. 10. Effect of the µ2/(P/h2) on the contact pressure distribution under the stamp
(µ1/µ2 = 1, µ3/µ2 = 0.5, R/h2 = 250, h1/h2 = 0.5, κi = 2).

Fig. 11. Effect of the µ2/(P/h2) on the contact pressure distribution between the layer and
the half-plane (µ1/µ2 = 1, µ3/µ2 = 0.5, R/h2 = 250, h1/h2 = 0.5, κi = 2).
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Figures 4 and 5 show the contact pressure distributions (P1(x)/(P/h2) and
P2(x)/(P/h2)) for various values of h1/h2, respectively. As the coating height h1

decreases, the peak of contact pressure under the stamp decreases, but the peak
of contact pressure between the layer and the half-plane increases.

Figures 6 and 7 show the effect of µ1/µ2 on the contact pressure distributions.
Note that the coating stiffens with increasing values of µ1 and that P1(x)/(P/h2)
increases while P2(x)/(P/h2) decreases. For the case of µ1/µ2 = 10 (the stiffer
coating), the maximum occurs at P1(x)/(P/h2).

The variation of contact pressure distributions on the contact areas with
µ3/µ2 are given in Figs. 8 and 9. Contact pressures acting on the contact areas
increase with increasing values of µ3. These figures show that µ3 has a greater
effect on P2(x)/(P/h2) than it does on P1(x)/(P/h2). In this study, if the shear
modulus of the half-plane goes to infinity, (µ3/µ2 → ∞), then contact pressure
distributions associated with contact problems of double layers resting on rigid
substrates can be obtained. The maximum values of the contact pressures occur
for the case of µ3 → ∞.

Figures 10 and 11 show the contact pressure distributions on the contact
areas for various values of µ1/(P/h2). When the value of the concentrated load
increases, µ1/(P/h2) decreases, and contact pressures acting on the contact areas
decrease.

Fig. 12. Comparison of contact pressures for various values of h1/h2 (µ1/µ2 = 1, µ3/µ2 = 1,
R/h2 = 250, µ2/(P/h2) = 250, κi = 2).
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In this study, when the material properties of the coating and the layer are
selected to be the same (µ1 = µ2, κ1 = κ2) or the height of the coating is
taken as zero (h1 = 0), the problem reduces the contact problem of an uncoated
layer lying on a half-plane. The comparison of different studies for the contact
widths and the contact pressure distributions are given in Table 1 and Fig. 12
for various values of h1/h2. Our results for contact widths on the contact areas
obtained by setting h1/h2 = 0 are identical to those by Comez [16] and Kahya

et. al. [17]. Furthermore, with increasing values of h1/h2 the contact width un-
der the stamp is close to the Hertzian contact width [18]. This means that if
the height of layer is too high (h1/h2 > 10) the layer behaves as a half-plane
(Table 1).

6. Conclusions

The frictionless receding contact problem for a coated layer and a half-plane
loaded by a rigid cylindrical stamp is solved using the theory of linear elasticity
and Fourier transform.

Maximum values of the contact pressures occur in the symmetry plane x = 0.
The values gradually decrease in the symmetry plane.

The contact pressure under the stamp can be reduced by selecting thinner
and softer coatings. The maximum values of the contact pressures occur for the
case of µ3 = ∞.

As the coating height increases, the contact width between the layer and the
half-plane increases, but the contact width under the stamp decreases. As ex-
pected, the layer behaves as a half-plane when the height of the layer is too high
(h1/h2 > 10).

Appendix A

Expressions of the Fredholm kernels K11(x1, t1), K12(x1, t2), K21(x2, t1) and
K22(x2, t2) appearing in Eq. (4.8) are given below:

K11(x1, t1) =
1

1 + κ1

∞
∫

0

1

∆
(1 + κ1)(A.1)

×
{

−4αh1(−1 +m)(κ2 +m)e−2αh1(e−4αh2 + 1)

+ (1 + κ1m)(κ2 +m)(1 + e−4αh1−4αh2)

+ (−1 +m)(−κ2 +mκ1)(e
−4αh2 − e−4αh1)

+ ((−1 +m)(1 + κ1m)(4α2h2
2 + 1)
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+ (κ2 − κ1m)(κ2 +m))(e−2αh2 − e−4αh1−2αh2)

+ (4αh2(4α
3h1h2(−1 +m)2 + (1 + κ1)(1 + κ2)m)

+ 4αh1((κ2 +m)2 + (1 −m)2))

× (e−2αh1−2αh2) − [1 + κ1]
}

sin(αx1) cos(αt1) dα,

K12(x1, t2) =
1

1 + κ1

∞
∫

0

G1

G2∆
e−5αh1−3αh2(1 + κ1)(1 + κ2)m(A.2)

×
{

e−4αh1(1 + κ2 + (−2a(h1 − h2) + 4a2h1h2)

−m(1 + κ1)e
2α(h1+h2)(−1 − κ2 − 2a(−1 +m)

× ((h1 − h2) + 2ah1h) +m(1 + κ1))e
2αh1((1 + κ1m)

× (−1 + 2ah2) + (κ2 +m)(−1 + 2ah1))

+ e2α(2h
1
+h2)((1 + k1m)(1 + 2ah2)

+ (κ2 +m)(1 + 2ah1)))
}

sin(αx1) cos(αt2) dα,

K21(x2, t1) =
nm

n(1 + κ2) + 1 + κ3
(A.3)

×
∞

∫

0

1

∆

{

e−5αh1−3αh2(1 + κ1)(1 + κ2)(e
2a(h1+h2)

× (1 + κ22α(−1 +m)(h1 − h2 + 2αh1h2) −m(1 + κ1))

+ e4αh1(−1 − κ2 +m(1 + κ1) + 2α(−1 +m)

× (h1 − h2 − 2αh1h2)) + e2αh1((κ2 +m)(1 − 2αh1)

+ (1 + κ1m)(1 − 2αh2)) − e2α(2h1+h2)((1 + κ1m)(1 + 2αh2)

+ (κ2 +m)(1 + 2αh1)))
}

sin(αx2) cos(αt1) dα,

K22(x2, t2) = − n

n(1 + κ2) + 1 + κ3
(A.4)

×
∞
∫

0

1

∆

{

e−4αh1−4αh2(1 + κ2)(16α
3h2

1h2(−1 +m2)(e2αh1+2αh2)

+ 4a2h2
1(−1 +m)(κ2 +m)(−1 + e−4αh2)e2αh1 + (−1 + e2ah1)κ2

× (1 + (e2αh1 + e4αh2)(−1 +m) + κ1m+ e2α(h1+2h2)(1 + κ1m))

−m(κ1(−1 +m)(e4αh1 − e4h2) + (1 − e4α(h1+h2))(1 + κ1m)
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+ (−1 + κ1 +m(1 + κ2
1))e

2αh1(1 − e4αh2)) + 4αe2αh2(e2αh1h1

× (1 + κ1)(1 + κ2)m+ h2(1 + e4αh1)(−1 +m) + (1 + κ1m)

× e2αh1(2 + 2m(−1 + κ1) +m(1 + κ2
1)))) + [1 + κ2]}

× sin(αx2) cos(αt2) dα,

∆ =
{

(κ2 +m)(1 +mκ1)(e
−4αh1−4αh2 + 1)(A.5)

+ (−1 +m)(−κ2 +mκ1)(e
−4αh1 + e−4αh2)

+ e−2αh2(1 + e−4αh1)(1 + κ2
2 −m+m(κ1 + κ2 − κ1κ2 − 2κ1m)

− 4α2h2
2(−1 +m)(1 +mκ1)) + e−2αh1(1 + e−4αh2)

× (κ2(−2 + 4α2h2
1(−1 +m) +m(1 − κ1))

+m(−1 + κ1+4α2h2
1(−1 +m) +m(1 + κ2

1)) − 2e−2α1−2αh2

(1 + κ2
2 + 8α4h2

1h
2
2(−1 +m)2 −m(1 − κ1 − κ2 − κ1κ2)

+m2(1 + κ2
1) + 2α2((h1 + h2)

2(2 + 2(−1 + κ1)m

+ (1 + κ2
1)m

2) − 2h1(h1 + h2)(2 − (3 + κ1(−1 + κ2) + κ2)m

+ (1 + κ2
1)m

2) + h2
1(3 + κ2

2 − 6m− 2mκ1κ2 + (3 + κ2
1)m

2))))
}

n,

where m and n can be written as m = µ2/µ1 and n = µ3/µ2 .
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