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1. Introduction

Biofluid flows in distensible tubes, fluid–structure interaction and flow-
induced instabilities represent a subject of many review papers [1–7]. The book
edited by Pedley and Carpenter [8] also contains several useful reviews.
A wide range of experimental and theoretical considerations of the problem
is available in the literature. Results obtained by numerical simulations for
membrane-like structures are reviewed in [3, 5] and more recently in [6]. Ex-
perimental studies of collapsible tubes are reviewed in [9] and new experimental
results are obtained in [10]. Though many physical and physiological phenomena
of flow instability in collapsed and non-collapsed tubes are explained, the prob-
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lem is still of great interest for numerous technical and biomedical applications,
medical diagnostics chief amongst them.

Blood flows in normal and pathologically changed arteries and veins – through
stenosis, aneurisms, stents and grafts – have common features with air flows in
nasal cavities and upper airways in snorers, glottis, larynx and vertebrate lungs.
The main irregularities of such flows can be described by mathematical models
of fluid flow over viscoelastic surfaces with complex mechanical properties. In
the present paper, a survey of recent data on biofluid flow instabilities in dis-
tensible tubes and the related physical phenomena are given, and some novel
results obtained by the present authors are reported. The new results focus on
analyzing multilayer thick-tube models.

2. Physical phenomena in compliant tubes

The accepted model of physiological flows in collapsible tubes is the ‘Star-
ling resistor’ proposed in [11] as a model of the peripheral blood circulation. It
consists of a segment of pliable tube mounted axially between two rigid tubes
and enclosed in a pressurized chamber (Fig. 1a). In experiments using different
steady controlling parameters, a remarkable variety of unsteady behavior of the
system can be observed, including highly nonlinear oscillations, transitions and
hystereses between different oscillatory regimes, and chaotic behavior. Flowrate
limitation is observed when the internal pressure is sufficiently low to cause
collapse at the downstream end of the compliant tube, so that the flowrate be-
comes substantially pressure-independent. The dynamics of the collapsible tube
depends on the coupling between the fluid and the wall via the constitutive tube
law, which is generally nonlinear. Prior to tube’s collapse, any decrease in down-
stream pressure accelerates the fluid. In a collapsed state, in contrast, the tube’s

a) b)

Fig. 1. a) Schematic of experiments with Starling resistor. b) Typical dependency δP (Q) for the
passive blood vessel. The corresponding cross-sectional shapes are depicted along the branches

I, II and III of the curve.
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neck narrows, and a point at which the volume flowrate attains its peak value is
reached. The collapsed part (neck) is typically found near the downstream end
of the tube, and past that neck the fluid motion is essentially three-dimensional
with turbulent mixing and flow separation, and the shear stress at the wall is
changed in comparison with the non-collapsible state.

Flow limitation is mostly associated with small-amplitude noise-like fluctu-
ations of the downstream pressure because it is seldom accompanied by large-
amplitude self-excited oscillations. The latter is mostly exhibited only during the
transition to or from maximum flow to the flow-limited state. Large-amplitude
self-excited oscillations can be observed when the external pressure in the cham-
ber is increased. When external pressure is being reduced to certain level, either
flow limitation or absence of tube collapse can be obtained for the same values of
the upstream transmural pressures Ptm [12]. The onset of oscillations has been
examined in order to determine the lowest Reynolds number at which the oscil-
lations appear. In all the experiments, large-amplitude flow-induced oscillations
have been detected at Re ≥ 200 [10, 13,14].

Laboratory experiments on flow limitation at Re > 250 commonly reveal
self-excited oscillations and noise generation, which are believed to be linked, i.e.
high-Reynolds-number flow limitation is accompanied by wall oscillations [15,16].
At relatively low Reynolds numbers, wall oscillations are unattainable and flow
limitation is determined by viscous pressure drop. It is however not clear what is
the extent at which self-excited oscillations accompany the flow-rate limitation.
For example, flow limitation without wall oscillation has been observed in [12,16].
As it was found in some early experiments [17], the outbreak of spontaneous
oscillations coincides with the fluid speed reaching the critical pressure wave
speed, and interconnection of the flow limitation and the wall oscillations has
been hypothesized. An analogy to the choking condition of gas dynamics has been
made to explain the flow-limitation phenomenon in collapsible urethra [18, 19].
As it was shown theoretically, the instabilities leading to flutter could arise at
lower fluid speeds [20], and subcritical oscillations at low downstream resistance
have also been found [21].

Physiological observations are in agreement with laboratory experiments. In-
creased blood flow after a physical or thermal load often produces some noise that
can be detected over the large blood vessels. Air flow during forced expiration is
accompanied by wheezing, and registration of the generated sound as well as dif-
ferentiation between dry and moist rales is important for diagnostics. Occurrence
of flow-induced oscillations can be explained by analogy to sonic gas flows. Noise
generation is possible when fluid moves through a distensible tube and the flow
becomes sonic (flow velocity equal to the speed of low-frequency pressure waves).
When the tube is mounted vertically and the flow is directed downwards, flow-
induced oscillations are determined by the hydraulic jump conditions [22]. An
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important physiological problem for both upward and downward flows in vertical
distensible tubes is illustrated by flow in the blood vessels of the neck, especially
for long-necked animals such as giraffes [23]. In that case, flow instability and
vein collapse are of great importance for the blood supply to the brain.

3. Mathematical models of distensible tubes

The lumped-parameter model has been used to explain the physical phenom-
ena observed when a fluid flows through a Starling resistor [23, 24]. The model
consists of a series connection of two rigid tubes with fixed volumes and a dis-
tensible one between them. The Windkessel model [25] for collapsible tubes is
presented by the mass balance equation

(3.1)
dV2

dt
= Q12 −Q23,

where V2(t) is the volume of the distensible tube, Q12 and Q23 are respectively
inflow from the first tube and outflow into the third one. Expressions for Q12 and
Q23 as functions of pressure drops are usually taken from the Poiseuille law. The
cross-section area A∗(t) and pressure P ∗(t) in the narrowest part of the tube’s
neck, input and output pressures Pin(t), Pout(t), flowrates Qin(t), Qout(t), and
tube’s compliance C2(P2) = dV2/dP2 are introduced, which result in a nonlinear
system of ODE for the pressure, flowrate and tube’s cross-section. The resulting
second-, third- [24–26] and fifth-order [27] systems of ODE describe oscillations
of the respective parameters and have been used to explain the experimental
observations.

The wave propagation phenomena and different types of oscillatory instability
can be successfully described by one-dimensional models [1, 28–31]. The mass
continuity and momentum equations for a Newtonian fluid are respectively

∂A

∂t
+
∂(AU)

∂x
= 0,(3.2)

ρf

(

∂U

∂t
+ U

∂U

∂x

)

= −∂P
∂x

− τw(A),(3.3)

where P (t, x) and U(t, x) are, respectively, mean pressure and velocity, τw(A) is
the wall shear stress per unit length of the tube, and ρf is the fluid density.

Since the shear stress depends on the derivative of velocity with respect to
the radial coordinate while the one-dimensional models include the longitudi-
nal coordinate only, the expression for τw(A) is often taken from the steady
Poiseuille flow in circular or elliptical cross-section tubes [28, 31] depending on
the relationship between A and A0, and the area of the nonstretched tube at
Ptm = 0. Thus,
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(3.4) τw(A) =
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where α1 and α2 are empirical constants, which are different for the non-collapsed
and collapsed portions of the tube.

The steady flow relationship τw(A) can also be taken from the Womersley
model [32] of pulsatile flow in distensible tubes in the form [33]:

(3.5) τw(A) = − ρf√
πA

(

8cvπµU

ρf
+ (cv − 1)

∂(UA)

∂t

)

.

The experimental P (A) curves for blood vessels (curve 1 in Fig. 2a) can be
approximated by either the simple linear relation

(3.6) P − Pext = λ(A−A0),

where the slope λ is different in the collapsed and non-collapsed states (curve 2
in Fig. 2b) or by the nonlinear relationship [28]:

(3.7) P (S) =
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a) b)

Fig. 2. Experimental dependencies P (S) for a) passive and b) active tubes at different flow
conditions; 1: monotonically increasing, unambiguous dependency; 2: S-shape curve; 3: N-shape

curve.
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where λ is the wall elasticity coefficient, k is the circumferential bending stiffness
of the tube, and α3 is an empirical coefficient.

The relationship between the transmural pressure Ptm(t, x) = P − Pext and
the cross-sectional area A(t, x), the tube law, has also been used in the nonlinear
form [34]:

(3.8) P − Pext =
Gh0

R0

(

1 −
(

A0

A

)2)

,

where G is the Young’s modulus of the wall material, h is the wall thickness,
and subscript 0 corresponds to the state with Ptm = 0.

Along the collapsed part of the tube, dA/dx changes its sign. For the tube
with longitudinal stretching T , the collapsed part can be modeled by two mem-
branes and the pressure variation due to the membrane’s curvature can be taken
into account in the tube law [1]:

(3.9) P = Pext + P (A) − T
d2A

dx2
.

When the outer surface of the tube is attached to the surrounding media,
which is the case for arteries and veins, the pressure dependence on area is valid
for both small and large deformations and is empirically determined to be [34]:

(3.10) P − Pext =
kGh0√
A

((

A

A0

)1/2

−
(

A0

A

)3/2)

.

Finally, the one-dimensional problem with the tube law P − Pext = Θ(A) in
any of the above-mentioned forms of Θ(A) gives a hyperbolic system of equa-
tions, whose solution can be obtained as a superposition of forward and backward
propagating waves [1,28–34]. The effects of longitudinal wall tension and energy
loss due to flow separation and the stability of steady flow are respectively in-
vestigated in [35, 36]. Depending on the model parameters, it is shown that
a compliant tube may be unstable to at least three different oscillation modes
with different frequencies. This is consistent with a complex dynamical behavior
of the fluid–structure system. The motion of the separation point is found to be
important in connection with wall oscillations.

In the tube laws such as Eqs. (3.6), (3.7), (3.8) or (3.10), the changes in
A(t, x) with pressure variations P (t, x) and Pext are determined by passive wall
behavior. Like other soft tubes, blood vessels can be passively stretched by in-
ternal hydrostatic pressure exhibiting either linear or nonlinear A(P ) behavior.
The behavior can be passive because the smooth muscle cells in the vessel wall
are not activated. In experiments, on the other hand, the tube laws (Fig. 2a) are
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usually obtained in vitro on the blood vessel segments. In that case, the activa-
tion can be performed by electrical, chemical or mechanical stimuli at certain
experimental conditions.

The active response of the blood vessel to the hydrostatic pressure and flow
shear rate includes coordinated changes in the lumen area and wall thickness
and rigidity. In vivo arteries demonstrate active behavior responding to increased
blood pressure by decreasing the lumen’s area; the so-called Bayliss myogenic
response [37], which is an active reaction of some smooth muscle cell types to
stretch. The myogenic response of the smooth muscle cells to the shear stress at
the wall is aimed at maintaining the volumetric flow rate. Increased/decreased
wall shear stress evokes mechano-sensory reaction resulting in the smooth mus-
cles relaxation/contraction accordingly. Muscle contraction leads to increase in
the wall thickness and rigidity and decrease in the lumen, while muscle relaxation
produces opposite effects.

The active response of the wall influences the Ptm(A) curve, and in vivo for
the active blood vessels, the S-shape and N-shape curves (Fig. 2b) can be ob-
tained [38]. The S-shape curve is characterized by ambiguous dependence Ptm
(A) (curve 2), while the N-shape curve by ambiguous dependence A (Ptm)
(curve 3) in comparison with unambiguous relationship for the passive wall
(curve 1). When the declining part exists in the Ptm (A) dependence, the flow
through the vessel may be unstable [38]. The smooth muscles being involved in
at least two types of response to the blood pressure and wall shear stress, what
may result in a complex reaction. Consequently, in the tube law P−Pext = Θ(A)
for an active vessel, the function Θ may depend on the shear rate, pressure, con-
centrations of vasoactive chemicals and some other parameters involved in the
myogenic reaction. The model of a blood vessel with the bioactive wall is devel-
oped in [38–40] and the nonlinear models for the S-type and N-type vessels are
proposed in [41].

Experimentally measured pressure-flow relationships δP (Q) for the passive
blood vessels [27] are N-shaped and composed by two branches (branches I and
III in Fig. 1b) with different positive slopes and a branch with negative slope
(branch II in Fig. 1b). The collapsed state of the tube at different points are
depicted in Fig. 1a. Gradual increase in the pressure drop δP starting from
the fully collapsed state leads to partial opening of the vessel and growth of the
volumetric rate (branch I). The vessel resistivity Z = δP/Q is high and gradually
increases with lumen opening, while the tube remains collapsed along its full
length. Further increase in the pressure drop (branch II) leads to formation of
the collapsed neck close to the inlet. The tube resistivity becomes high due to the
flow separation, formation of the turbulent jet and high viscous dissipation [28].
The neck moves towards the outlet of the tube with subsequent increase in δP
and al finally disappears. Then along branch III the tube is fully open and the
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pressure-flow relationship is again determined by the tube resistivity which is
much bigger than it was along the branch I.

One-dimensional models cannot describe the geometry of a collapsed tube,
and the two-dimensional models are more successful for that purpose [1, 28,42].
The two-dimensional flow in a rigid channel with a membrane insertion has been
studied in [31,43,44].

A frequently cited two-dimensional model proposed in [49] includes Navier–
Stokes equations for an incompressible fluid

(3.11) div (v) = 0, ρf

(

∂v

∂t
+ (v,∇)v

)

= −∇p+ µf∆v,

and the momentum equation for the collapsible part of the wall

(3.12) ρ
∂2uy

∂t2
= κT − σn − Pext.

The boundary conditions are presented by the input parabolic flow

(3.13) x = 0 : vx =
4vmax

H2
(H − y)y, vy = 0,

no-slip conditions at the rigid wall

(3.14) (0 ≤ x ≤ L, y = 0) ∪ (0 ≤ x ≤ L1, y = H)

∪ (L1 + L2 ≤ x ≤ L, y = H) : vx = 0, vy = 0

and stress and flow continuity conditions at the moving collapsible insertion

(3.15) (L1 ≤ x ≤ L1 + L2, y = h(t, x)) : v =
∂u

∂t
, στ = −∂T

∂s
,

σn = Pext − Th′′x(1 + (h′x)2)−3/2,

where |AB| = L, |CD| = L1, |EF | = L3, L2 = L − L1 − L3, T and κ = ∂φ/∂s
are respectively membrane’s tension and curvature, s is the coordinate measured
along the membrane, φ is the angle between the tangent to the membrane and
the axis of the tube, ρ = ρs/ρf , ρs is the density of the membrane, µf is the
fluid viscosity, and σn and στ are respectively normal and tangential stress in
the membrane.

4. Linear stability analysis of collapsible tubes

A numerical method has been used in [57, 62] to study the spatio-temporal
stability of the coupled fluid–thick collapsible tube. It is found that the system
is subjected to both axisymmetric and azimuthal, unstable modes. The authors
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determined whether a particular instability mode is convective or absolute using
spatiotemporal stability analysis. For axisymmetric disturbances corresponding
to the azimuthal wavenumber n = 0, they identified two convective instability
modes, one propagating upstream and the other downstream.

For each of the non-axisymmetric disturbances n = 1, . . . , 10, there are one
mode representing absolute instability and one representing convective instabil-
ity. Some of them are upstream propagating waves and some others are down-
stream propagating waves. The mode with azimuthal wavenumber n = 1 is
shown to have the highest temporal amplification rate. When the steady state of
the system takes the form of a divergent–convergent tube, the unstable modes
occur only in the divergent part of the tube. In the convergent part, all the modes
become stable regardless whether the tube takes the form of inflated or deflated
tube.

Among the absolute unstable modes, there are three modes that have a fre-
quency ratio in their cusp points [62] in good qualitative agreement with the
observed experimental ratio frequency of unstable modes found by [10, 12, 13].
The energy transfer from the flow to the viscoelastic tube has been examined
in [58, 60, 61]. It has been shown that when the tube is elastic, the energy
transfer toward the wall from the fluid coincides with the instability of the sys-
tem, as could be expected. When the tube is viscoelastic, however, there is a sig-
nificant gap between the energy transfer toward the wall and the instability of
the system due to kinetic energy dissipation in the wall. Based on linear stability
analysis, the flow through collapsible tubes has been analyzed for the case of col-
lapse’s onset that induces self-excited oscillations [83]. The experimental data in
the form of measured oscillation frequency at the onset of collapse of an elastic
tube, is supplied as a base input parameter for the theoretical approximations in
order to estimate the unmeasured parameters, such as critical oscillation speed,
speed index, and tube cross-sectional area at collapse’s onset. Some agreement
between the theoretical and experimental results has been reported [83].

5. Linear and nonlinear dynamics in membrane channels

Two-dimensional models obviously avoid some of the complexities associated
with the three-dimensional formulation. Solution of the two-dimensional problem
has been obtained using the finite-element method (FEM) at different boundary
conditions [42–48]. It has been found that the system admits two different steady
solutions for the same system parameters, namely, Reynolds number, membrane
tension, and geometrical parameters. This finding is consistent with the well-
known feature of multiple solutions of the Navier–Stokes equations.

The primary difference between the observed steady solutions is that the
system delivers different flows under the same conditions. This is similar to the
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flow-limitation phenomena observed in collapsible tubes. Linear stability analysis
of the two steady solutions has been carried out. It is found that both solutions
are unstable, and the system goes back and forth from one steady solution to
the other, in agreement with the numerical simulations in [44].

Detailed computations do not indicate an unambiguous correlation between
flow limitation and self-excited oscillations of the membrane. WhenQ is confined,
both stable and unstable regimes are realized. Instability of the parabolic steady
inflow can be developed for certain values of the membrane’s parameters. Steady
state is observed when a membrane is inverted and flow limitation is not reached
yet. In this case, a solution of the two-dimensional problem exhibits a set of
interacting unstable modes [1, 5, 42–44]. This problem has been revisited more
recently [69–77].

The interaction between the flow and a stretched-membrane channel for large
membrane tension, large Reynolds number and long channel, has been studied
in [69]. It is found that the primary mechanism of instability described by linear
analysis is preserved when the amplitudes of the oscillations become large, even
though the flow has been complicated substantially by the generation of sec-
ondary instabilities. A similar conclusion has been drawn in [57,62] for a thick-
walled tube. The computed frequency ratio of absolute unstable modes at their
cusp point, where the frequency has the most important contribution to the
physical wave, is in good agreement with experimental results [12].

For a membrane with large tension, it is found that a rich variety of different
secondary instabilities are particularly evident upstream of the membrane, when
the upstream-directed flux due to the oscillations has a magnitude close to that
of the imposed mean flow. This conclusion suggests that there are some unstable
upstream propagating waves in the system, as has been demonstrated in [57].

A careful inspection of Fig. 12 in [69] shows that the instability occurs in
the divergent part of the channel, in qualitative agreement with the thick-tube
analysis presented in [57]. Moreover, the same figure indicates that the unstable
mode grows locally, which suggests that the instability of those modes is abso-
lute, consistent with the results published in [57]. Though the geometries are
different in the studies presented in [57] and [69], the dynamics in the two cases
is surprisingly similar.

An unstable axisymmetric equilibrium state surrounded by two topologically
equivalent stable non-axisymmetric states has been suggested in [70] as a pos-
sible explanation for the oscillations of collapsible tubes. The oscillations are
classified as type I and type II. Type II occurs when the wall approaches its
non-axisymmetric equilibrium shape.

The system’s overall energy budget has been investigated in [71] to establish
the critical Reynolds number at which the wall begins to extract energy from the
flow. It is concluded that self-sustained oscillations occur when there is no more
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energy transfer between the wall and the flow. This of course is only valid when
the wall is elastic, as it has been demonstrated in [57, 60, 61]. The shape of the
tube found in [71] indicates that the unstable mode with azimuthal wavenumber
n = 1 is the dominant mode, as is confirmed in [57,62].

Numerical simulations to explore the development of flow-induced self-excited
oscillations in three-dimensional collapsible tubes is found in [74–76]. The simu-
lations show that self-excited oscillations tend to arise preferentially from steady
equilibrium configurations in which the tube is buckled non-axisymmetrically.
The linear stability analysis of the flow interacting with a thick collapsible tube
performed in [62] leads to the conclusion that the oscillations must be domi-
nated by three non-axisymmetric modes with azimuthal wavenumbers n = 1,
n = 3 and n = 4. Linear analysis of the coupling between Poiseuille flow and
a tensioned membrane of finite length, using an eigenvalue approach to study
the effect of wall-to-fluid mass ratio, is considered in [80].

6. Flow in thick collapsible tubes

The complete three-dimensional problem formulation includes the Navier–
Stokes equations for the liquid, large-displacement momentum equations for the
solid wall, constitutive relations for the wall material, and boundary conditions
at the fluid–solid interface and the outer surface of the wall. Solutions of such
complex problem can only be obtained numerically. The calculations are com-
puter intensive because a tube that collapses is non-axisymmetric. On the other
hand, it has been shown that a one-dimensional flow model combined with shell
approximation for the wall gives a solution that is in reasonably good agreement
with physiological data for blood’s flow rate and pressure distribution in arter-
ies. The reason is that Ptm typically remains positive and the arteries remain
non-collapsed during the entire heart cycle [28].

A three-dimensional computer model has been developed to simulate fluid
flow through a collapsible tube in [77]. It is found that the collapse is generally
localized near the downstream end of the tube. Under certain conditions, how-
ever, it is also possible for the collapse to occur at multiple discrete locations
separated by regions of open cross-section. A numerical method using general-
ized finite differences has been introduced in [78, 79] to solve for the unsteady
viscous flow in collapsible tubes, simulating blood flow in stenotic carotid arter-
ies. The Navier–Stokes equations have been used as the governing equations for
the fluid. The tube wall has been treated as a free moving boundary whose elas-
tic properties (the tube law) have been determined experimentally. Longitudinal
tension has been included in the tube law. Physiologically-relevant pressure con-
ditions and parameters have been used in the simulations. It is found that severe
stenoses cause cyclic pressure changes between positive and negative values at
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the throat of the stenosis, cyclic tube compressions and expansions, and shear
stress changing directions in the region, just distal to the stenosis under un-
steady conditions. It is concluded that those critical mechanical conditions may
be related to excessive artery fatigue and possible rupture of the plaque cap.

A fluid–beam model, to overcome potential shortcomings of fluid–membrane
models in collapsible channels, has been proposed in [46]. A finite-element code
has been developed to solve the coupled nonlinear fluid–structure interaction
equations, and a moving mesh with rotating spines has been used to enable
a movable boundary. It is found that fluid–beam model compares favorably with
those of the fluid–membrane model for very small wall stiffness. However, differ-
ent results have been obtained in a thick-wall collapsible tube corresponding to
real physiological application. The authors conclude that a thick-walled model
provides a more realistic description of flow in collapsible channels.

A numerical method to solve the fluid-structure interaction in three-dimen-
sional pulmonary arterial bifurcation with collapsible tubes has been proposed in
[48]. A finite-element code has been used to calculate the nonlinear deformation
of the thin-wall structure, and a commercial CFD solver is used to resolve the
fluid flow. It is found that a large deformation of the structure significantly
alters the flow field, while the fluid pressure strongly affects the deformation of
the structure. In the bifurcation branches, the relatively short tube collapses into
wavenumber mode. The strong collapse of the tube leads to a large contraction
of the cross-sectional area and an increase in the resistance to the fluid flow.
Recirculation occurs both upstream and downstream of the collapsed region of
the tube.

The problem of finite axisymmetric deformation of a thick-walled elastic tube
with circular cross-section subject to pressure on its external lateral boundaries
and zero displacement at its ends has been formulated for an incompressible
isotropic neo-Hookean material in [82]. It found that short tubes exhibit “corner
bulging”, and longer tubes exhibit multiple modes of deformation.

7. Structure and mechanical properties of blood vessels

in normalcy and pathology

Blood vessel walls are composed of three layers, as depicted in Fig. 3a. Each
layer has different thicknesses and viscoelastic properties [50–52]. The innermost
layer is called intima and is composed of a monolayer of endothelium cells and the
subendothelial layer reinforced by the collagen microfibres [53]. Endotheliocytes
play an important role providing hemocompatibility and the mechano-sensory
function that regulates the shear stress at the wall by influencing the vessel’s
lumen. In certain pathology such as hypertension, atherosclerosis and hyper-
lipemia, the thickness of the intima increases and its material parameters alter



Mathematical models of biofluid flows in compliant ducts 77

a) b)

Fig. 3. a) Three layers of arterial wall. b) Cross-section in normalcy and certain pathology.

significantly due to fat accumulation, tissue development (intimal fibromuscular
hypertrophy) or wall calcification [54,55]. This abnormality is depicted in Fig. 3b.

The middle layer is called media and is mechanically active. It consists of
smooth muscle cells arranged in two helically distributed families, with a small
pitch and very little dispersion in their orientation [53]. The thickness and elastic-
ity of the media depend on the artery’s type (elastic, muscular, or intermediate)
and the smooth muscle tone. At elevated blood pressures, the activity of smooth
muscle cell contributes significantly to the stiffness of the vessel’s wall [56].

The outermost layer is called adventitia and is reinforced by two families of
collagen fibers exhibiting some dispersion. Helical orientation of the fibers pro-
vides anisotropic properties of the adventitia, which differ from the properties
of the media [51, 53]. The adventitia influences the wall’s mechanical properties
mainly by facilitating tethering of the vessel to the surrounding tissues and by
limiting the increase of the lumen’s thickness at high arterial blood pressures.
Relative thickness of the adventitia depends on the type and caliber of the blood
vessel.

A brief review of recent measurements of structure and material parameters
of blood vessel’s walls is presented in [63]. It is important to note that differ-
ent vascular pathology can be modeled by conjoined variations of the elasticity,
Poisson’s ratio, viscosity, density and thickness of the separate layers. Using the
data summarized in [63], the three-dimensional problem of blood flow in arteries
and veins can be modeled as a viscous flow in a multilayer viscoelastic tube, as
discussed in the following section.

8. Fluid flow in multilayered distensible tubes

The stability of a viscous, incompressible, Poiseuille flow in a multilayered,
thick-walled, viscoelastic tube has been studied in [63–65]. The pipe is composed
of three anisotropic layers with thicknesses h1, h2 and h3, where the total thick-
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ness of the wall is h = h1 +h2 +h3. The conservation equations for the fluid side
are the incompressible Navier–Stokes equations

∇ · v = 0,

∂v

∂t
+ v · ∇v = − 1

ρf
∇p+

1

ρf
∇ · σ̂,

(8.1)

∇ · uj = 0,

ρj
w

∂2uj

∂t2
= −∇pj + ∇ · σ̂j,

(8.2)

where v is the flow velocity, uj is the displacement of the wall layers j = 1, 2, 3,
and ρf , p, σ̂ and ρj

w, pj , σ̂
j are, respectively, the density, hydrostatic pressure

and stress tensor for the fluid and the wall layers.
A viscoelastic Kelvin–Voight material has been considered for the solid

(8.3)
κj ∂

∂t
σ

j
i + σ

j
i = Aj

ikε
j
k + µj

w

∂

∂t
ε

j
i ,

ε̂j =
1

2
(∇uj + ∇ujT ),

where σ and ε are the stress and strain vectors, Aj
ik is the matrix of elasticity

coefficients, µj
w are the layers’ viscosities, and κj is the stress relaxation time for

each of the three layers.
The boundary conditions include the continuity conditions for the fluid ve-

locity and displacement of the inner layer, and for the normal and tangential
stresses at the fluid–solid interface, as well as the continuity conditions for the
displacements and stresses at the two interfaces between the three solid layers:

r = R : v =
∂u1

∂t
, σ̂

1
n = σ̂n, σ̂

1
τ = σ̂τ ,(8.4)

r = R+ h1 : u1 = u2, σ̂
1
n = σ̂

2
n, σ̂

1
τ = σ̂

2
τ ,(8.5)

r = R+ h1 + h2 : u2 = u3, σ̂
2
n = σ̂

3
n, σ̂

2
τ = σ̂

3
τ .(8.6)

Finally, at the outer surface of the tube either a no-stress boundary condition
[66]:

(8.7) r = R+ h : σ̂
3
n = 0, σ̂

3
τ = 0

or a no-displacement boundary condition is applied [63]:

(8.8) r = R + h : u3 = 0,
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where the subscripts n and τ respectively denote the normal and tangential
components of the stress tensor.

Solution of the linearized fluid–structure interaction problem has been found
as a superposition of the unperturbed steady-state liquid flow and small distur-
bances in the form of normal modes

(8.9)
(v, p) = (v∗, p∗) + (ṽ, p̃)est+ikz+inθ,

(uj , pj) = (u∗j , p∗j) + (ũj , p̃j)est+ikz+inθ,

where ṽ, ũj , p̃ and p̃j are the amplitudes of the corresponding disturbances,
k = kr+iki, s = sr+isi, kr is the wavenumber, ki and sr are spatial and temporal
amplification rates, and si is the wave frequency. The steady part (v∗, p∗) of (8.9)
is identified with the Poiseuille flow. Both isotropic and transversely isotropic
materials for the wall layers have been studied.

According to the experimental data summarized in [32], the plane of isotropy
of each layer is perpendicular to the radial axis, and the matrix of elasticity
coefficients is

(Aj
ik)

−1 =








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
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


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−νj
1

Ej
1

1
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0
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
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



,

where Gj
2 are the shear moduli, Ej

1,2 are the Young’s moduli, and νj
1,2 are the

Poisson’s ratios of the layers. The values of Ej
1,2, G

j
1,2 and νj

1,2 are different for
different blood vessels (elastic or muscle type) and for healthy vessel walls and
those for certain pathological conditions including hypertension, atherosclerosis
and hyperlipidemia.

The temporal and spatial eigenvalues of the system have been computed
using the numerical technique described in [64, 65]. The above fluid–structure
interaction problem has a large number of parameters, and effects of Reynolds
number, viscous and elastic parameters and thicknesses of the wall layers on
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the system stability have been thoroughly studied. See Appendices I and II for,
respectively, the difference between temporal and spatial instabilities and the
numerical method used to compute them.

The temporal and spatial eigenvalues of the system have been computed for
the no-displacement (Fig. 4) and the no-stress (Fig. 5) boundary conditions at
the outer surface of the vessel’s wall. The modes located near the real axis in the
complex (sr, si)-plane are solid-based, and those located near the imaginary axis
are fluid-based. The modes near the origin efficiently couple the solid and fluid
motions. For a cylindrical water column with free boundaries, the fluid-based
modes remain only in the (sr, si)-plane, whereas for an empty viscoelastic shell,
the fluid-based modes disappear and only solid-based modes could be identified.
The modes involved efficiently in the fluid–solid interaction are placed near the
origin of the complex plane where unstable modes with sr > 0 are located. As can

a) b)

Fig. 4. No-displacement boundary condition at the outer surface of a fluid-filled tube, computed
at Re = 10, µj

r = 0, h = 0.4, h1 = 0.14, h2 = h3 = 0.63, ρj
r = 1, Ej = 2Gj ; a) temporal

eigenvalues, b) spatial eigenvalues. +: isotropic wall material Gj = 1; 2: G1 = G2 = 1, G3 = 20;
∗: G1 = G3 = 1, G2 = 20; ×: G2 = G3 = 1, G1 = 20.

a) b)

Fig. 5. No-stress boundary condition at the outer surface of a fluid-filled tube, computed for
isotropic and anisotropic walls; a) temporal eigenvalues, b) spatial eigenvalues. Parameters and

symbols are the same as in Fig. 4.
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be seen in Fig. 4a for the no-displacement condition, the modes are mostly solid-
based, because the fixed wall determines the fluid motion and wave propagation.
For the free unloaded wall, the modes are mostly fluid-based as depicted in
Fig. 5a. In this case, the wall motion is strongly determined by the fluid flow.

Unless indicated otherwise, the numerical values of the dimensionless physical
parameters are as follows: wavenumber kr = 2.5; frequency si = 2; Reynolds
number Re = 100; ratio of fluid inertia to elastic forces Γ = 1; Young’s modulus
Ξ and shear modulus Θ are 1

3Ξ
j
1 = 1

3Ξ
j
2 = Θj

2 = Θj
1 = 1; solid-to-fluid density

ratio ρj = 1; viscosity of the solid µj
w = 0; tube radius R = 1; and layer thickness

h = 0.1, h1 = 0.02, h2 = 0.02, h3 = 0.06. The calculated results have been found
to be practically insensitive to the Poisson’s ratio of the layers.

The spectrum in the complex wavenumber plane (kr, ki) forms the branches
in the upper part (ki > 0) and in the lower part (ki < 0) of the (kr, ki)-plane.
The modes in the upper part are the monochromatic components of the solution
for z > 0, i.e. in the region located downstream the source of perturbations. The
modes in the lower part of the (kr, ki)-plane correspond to the solutions located
upstream of the source. At any given cross-section of the tube, superposition of
the forward and backward propagating waves produces a complicated pattern of
pressure and flow time variations in the fluid and wall oscillations. The pressure
and flow distributions depend on the fastening conditions at the wall, because
the spectrum differs for the no-displacement (Fig. 4b) and no-stress (Fig. 5b)
boundary conditions. The spatial amplification rate increases with wavenumber
at both boundary conditions [64–66].

As has been shown through the extensive numerical computations in [63–66],
the fluid–structure system can be stabilized by a proper choice of shear moduli
and viscosities of the separate layers for different material parameters, Re and
Γ values, and boundary conditions. This enables the suppression of absolute
instabilities and prevention of self-excited oscillations and noise generation. The
dependence of the temporal amplification rate of the most unstable mode on the
shear modulus of one of the layers, while the shear moduli of the other two layers
remain unchanged is plotted in Fig. 6a for the no-stress boundary condition.

In the considered variation range of Θj
1 and Θj

2, one can see that an increase
in the shear modulus of the three layers simultaneously leads to an increase in the
amplification rate, what is indicated by the solid line in Fig. 6a. An increase in the
shear modulus G1

1 = G1
2 of the inner layer which is in contact with the fluid, while

the shear moduli of the other two layers are fixed at Θ2
1 =Θ3

1 =Θ2
2 =Θ3

2 =1, leads
to noticeable decrease in the temporal amplification rate down to its negative
values sr < 0, which corresponds to a temporal stability of the system, what is
indicated by curve 2 in Fig. 6a. At sufficiently large values (Θ1

1 = Θ1
2 ≥ 7 in

Fig. 6a), the system becomes stable. An increase in the shear modulus Θ2
1 = Θ2

2
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a) b)

Fig. 6. a) Temporal amplification rate versus shear modulus Θ for viscoelastic layers, µ1
r = µ2

r =
µ3

r = 30. Isotropic walls, Θ1
1 = Θ2

1 = Θ3
1 = Θ (curve 1); non-isotropic walls, Θ2

1 = Θ3
1 = 1,

Θ1
1 = Θ (curve 2); Θ1

1 = Θ3
1 = 1, Θ2

1 = Θ (curve 3); Θ1
1 = Θ2

1 = 1, Θ3
1 = Θ (curve 4).

b) Temporal amplification rate of the most unstable mode versus the viscosity of one of the
three isotropic layers, Θ1

1 = Θ2
1 = Θ3

1 = 1. Layer viscosities are µ2
r = µ3

r = 0 (curve 1);
µ1

r = µ3
r = 0 (curve 2); µ1

r = µ2
r = 0 (curve 3).

or Θ3
1 = Θ3

2, while the parameters of other layers are fixed Θ1,3
1 = Θ1,3

2 = 1 or
Θ1,2

1 = Θ1,2
2 = 1, stabilizes the system as is indicated by curves 3–4 in Fig. 6a.

The obtained results correspond to experimental and theoretical considerations
of flow instability over compliant surfaces. The results presented in Fig. 6a reveal
that flow stabilization in the pliable tube can be achieved by using a relatively
rigid inner coating (inner layer) of certain thickness. These results are consistent
with the conclusions made for a two-layer, anisotropic Kramer-type coating,
which was found to be important for flow stabilization [67,68].

The dependence of the temporal amplification rate on the viscosity of one
of the layer, while the other two layers are considered elastic (i.e. non-viscous),
is plotted in Fig. 6b for the no-stress boundary conditions. An increase in the
viscosity of the second and third layers results in insignificant variation of the
amplification rate, although the instability mode is slightly damped for a very
viscous wall material. Increasing the viscosity of the first layer that is in con-
tact with the fluid significantly destabilizes the system. In other words, high
viscosity of the first layer enhances the fluid–structure interaction and, conse-
quently, the energy transfer from the fluid to the solid, producing the system
instability.

For the viscoelastic layers, as distinct from the elastic wall case, an increase
in the shear modulus Θ3

1 = Θ3
2 of the outer layer leads to increasing the system

instability. On the other hand, a stabilizing effect of the shear modulus of the
inner layer is observed at sufficiently high values Θ1

1 = Θ1
2. The system stability

and the behavior of the unstable modes are very sensitive to the material pa-
rameters of the layers, as it has been found by numerical computations within
a wide range of thicknesses and viscoelastic parameters of the layers. The sta-
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bilizing effect of rigidity of the inner layer has been observed in each case at
Θ1

1 = Θ1
2 ≥ Θ∗, where the value Θ∗ depends on the viscosity of the layer.

Influence of the shear modulus and Young’s modulus on the most unstable
mode at the no-displacement boundary conditions, is illustrated by Fig. 7a. As
the depicted results were obtained for a variety of material parameters, the most
unstable mode remains unstable for all the considered ranges of shear moduli.
Increasing the shear modulus of any single layer does not stabilize the system.
However, increasing both the shear and Young’s modules has a non-uniform effect
on the temporal amplification rate. Variation of the shear modulus of the middle
layer G2 and Young’s moduli E2

1 and E2
2 , while fixing E2

2 = 2G1, E2
1 = 2G2,

causes an opposite effect as compared to varying the shear modulus of the first
layer G1. Note that higher values of the amplification rate have been obtained by
variation of the shear modulus G2 of the second layer, as compared to the values
obtained by varying the shear modulus G1 of the first layer (Fig. 7a). Increasing
the shear modulus G3 of the third layer, while E3

2 = 2G3, E3
1 = 2G3, leads to a

relatively large decrease in the amplification rate of the most unstable mode.

a) b)

Fig. 7. a) Amplification rate of the most unstable mode versus dimensionless shear modu-
lus of one of the layers, j = 1, 2, 3 (curves 1–3). b) Amplification rate of the most unstable
mode versus dimensionless viscosity of one of the layers, j = 1, 2, 3 (curves 1–3); h = 0.4,

h1 = 0.04, h2 = 0.18, h3 = 0.18.

Dependence of the amplification rate of the most unstable mode on the vis-
cosity of each of the layers is plotted in Fig. 7b. In each case, the viscosities of
two layers are kept constant while the viscosity of the remaining layer varies.
It is clear that increasing the viscosity of the inner layer, which is in contact
with the fluid, leads to some increase in the positive amplification rate (curve 1
in Fig. 7b). The effect can be explained by better fluid–solid coupling when
the viscosity of the inner layer is sufficiently high. The viscosity of the middle
layer produces a stabilizing effect, while the viscosity of the outer layer does
not influence the system stability. As a result of these findings, a ‘successful’
wall material can be proposed as a sandwich formed by a high-damping vis-
coelastic layer placed between two low-damping layers. Since the system sta-
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bilization is determined by the energy transfer at the fluid–wall interface, the
successful wall materials possess needed properties for energy transferd and ab-
sorption.

Influence of anisotropy of the layers on the system stability has been studied
by computing the temporal amplification rate of the most unstable mode for the
isotropic layers Ξj

1 = Ξj
2 , j = 1, 2, 3, when at least one of the layers is transversely

isotropic and Ξj
1 6= Ξj

2 . Note that a wall composed of three isotropic layers
with different viscoelastic parameters becomes anisotropic along the r-axis. Some
numerical results illustrating the complex influence of wall anisotropy on the
temporal and spatial spectra are presented in Fig. 8, for the no-stress boundary
condition. Increasing the Young’s modules of all three layers (Fig. 8a), of inner
(Fig. 8b), middle (Fig. 8c) and outer (Fig. 8d) layer, is compared in each part
of the figure for isotropic and anisotropic materials.

Curve 1 in Fig. 8a is obtained by varying the Ξj
1 = Ξj

2 = Ξ, j = 1, 2, 3,
while the other parameters are held constant. We observe a dramatic fall of the
temporal amplification rate, although the mode remains unstable. Increasing the

a) b)

c) d)

Fig. 8. Temporal amplification rate of the most unstable mode for anisotropic layers at different
values of Young’s modules. a) Ξj

2 = Ξj
1 = Ξ (curve 1), Ξj

1 = Ξ (curve 2), Ξj
2 = Ξ (curve 3);

b) Ξ1
2 = Ξ1

1 = Ξ (curve 1), Ξ1
1 = Ξ (curve 2), Ξ1

2 = Ξ (curve 3); c) Ξ2
2 = Ξ2

1 = Ξ (curve 1),
Ξ2

1 = Ξ (curve 2), Ξ2
2 = Ξ (curve 3); d) Ξ3

2 = Ξ3
1 = Ξ (curve 1), Ξ3

1 = Ξ (curve 2), Ξ3
2 = Ξ

(curve 3).
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parameters Ξj
1 = Ξ, j = 1, 2, 3, leads to system stabilization, as seen in curve 2

in Fig. 8a, which is obtained by varying the parameter Ξj
1 = Ξ, j = 1, 2, 3

while other parameters are held constant. When Ξ ≤ 8, the most unstable mode
becomes stable. Increasing the parameter Ξj

2 = Ξ for all the layers j = 1, 2, 3
leads to opposite effect and enhances the system instability.

Increasing of the Young’s moduli Ξj
1,2 of the first, second and third layers se-

parately, influences the system stability in different ways, as shown in Fig. 8b–d.
The temporal amplification rate decreases noticeably with increasing Ξ1

1 = Ξ1
2

(curve 1 in Fig. 8b) and Ξ1
1 (curve 2 in Fig. 8b), and the system becomes stable

at Ξ1
1 ≤ 13 and Ξ1

1 ≤ 18. Increasing the value of Ξ1
2 does not influence the

stability of the most unstable mode.
Effect of Young’s modulus of the second layer is similar to the effect of Young’s

modulus of the first layer, as can be concluded from Fig. 8c. Stabilization of the
system can be reached at approximately the same values of Ξ2

1 ≤ 13 and Ξ2
1 ≤ 18

for the case Ξ2
1 = Ξ2

2 (curve 1 in Fig. 8c), and Ξ2
1 (curve 2 in Fig. 8c).

Anisotropy of the third layer exerts the most significant influence, as shown
in Fig. 8d. An increase in Ξ3

1 = Ξ stabilizes the system, while an increase
in Ξ3

2 = Ξ destabilizes it. When Ξ3
1 = Ξ3

2 = Ξ, the system remains unsta-
ble and the temporal amplification rate is approximately of the same order of
magnitude as the mean temporal amplification rate obtained by varying Ξ3

1

and Ξ3
2 .

The present numerical results reveal some novel opportunities for stabilizing
a fluid flow in transversely isotropic, multilayer, viscoelastic tubes, by proper
choice of elastic and viscoelastic materials for the layers. In the blood vessels,
differences in Ξj

1 and Ξj
2 are connected with wall structure. Each layer is com-

posed of a set of sheets (laminae) with different material parameters, while con-
nection between the sheets (in the radial direction) is provided by the fibers that
may be more extensible and flexible than the fibers located in the sheets in the
plane of isotropy of the layers. The difference is most important for the mid-
dle layer composed of several elastic laminae attached to each other by elastic
fibers. In man-made materials, anisotropy is determined by orientation of the
polymer chains, grains and other inclusions and by orientation of the fibers in
fiber-reinforced composites and textiles.

9. Conclusions

A review of liquid and gas flows in compliant tubes, ducts and cavities in
living bodies is presented. Additionally to briefly summarizing what is already
in the open literature, the present paper also contains some new results never
published before.
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Biofluid flows in compliant ducts exhibit common features, caused by system
instability, such as flow limitation, wall oscillations and noise generation. These
physical phenomena are identified at certain geometry, flow regime and boundary
conditions for blood flow in arteries and veins and through stents and grafts, in
air flow in the airways (e.g., nasal cavities, larynx, glottis, and bronchial tree),
in urine flow in the urethra, and in other biological flows. Wall oscillations and
complex flow behavior, collapse of ducts and pressure-independent flow regimes
are observed in the aforementioned biological conduits.

Noise generation is detected over some normal and pathological blood vessels,
in the bronchial tree (dry and moist rales, coughing), in larynx (speech genera-
tion), and in glottis (snoring). Air flow during forced expiration is accompanied
by wheezing, and registration of the generated sound and differentiation between
dry and moist rales is important for diagnostics.

A proper model for observed physiological phenomena is the Starling resistor.
The lumped parameter model as well as the one-dimensional, two-dimensional
and three-dimensional models of fluid flow in rigid and compliant tubes in series,
can be used for detailed investigations of the aforementioned phenomena and to
provide biomechanical explanation of the registered pressure and flow curves
and generated sounds. The choice depends on the desired details of the model
and its consistency with measured data, which can be collected as time series
or three-dimensional fluid flow and wall displacement distributions obtained, for
example, by magnetic resonance imaging (MRI).

A model of blood vessel as a three-layer tube composed of viscoelastic ani-
sotropic materials with different material parameters is useful for detailed in-
vestigation of the flow stability, wave propagation and reflection, and wall oscil-
lations at different flow regimes. Stability analysis of steady flow reveals some
reasonable strategies to increase the system stability by influencing the most
unstable mode. It is shown that the system instability strongly depends on
the rheological properties of the wall. The shear moduli and viscosities of the
layers produce the strongest effect on the temporal and spatial amplification
rates and the group velocity of the unstable modes. When a compliant tube
is composed of three layers with the same material parameters, the system is
found to be unstable. When the material parameters of the layers are different,
the system may possess lower temporal amplification rates and even become
stable.

An increase in the shear moduli of the inner and middle layers decreases the
temporal amplification rate and stabilizes the system, whereas some increase in
rigidity of the outer layer eliminates the temporal instability of the steady viscous
flow in a compliant tube with no-stress boundary condition at the outer surface
of the tube. Comparative analysis of the system stability at the no-displacement
and no-stress boundary conditions at the outer surface of the duct reveals that
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stabilization of the system can be attained by increasing the rigidity of the inner
layer in both cases. For transversely isotropic material, temporal stability can
be achieved by increasing the shear modulus in the plane of isotropy of any of
the layers at the no-stress boundary condition, and by increasing the viscosity
of the second layer at the no-displacement condition.

The numerical results herein reveal some novel opportunities to eliminate
absolute instabilities and flow-induced wall vibrations by judicious choices of
shear moduli and viscosities of individual layers. Therefore, optimal parameters
of a composite wall that effect system stabilization, can be computed to con-
struct efficient sound absorption and vibration damping coatings for aerospace
vehicles and other noise-generating devices. As applied to biomedical problems,
the present results shed new light on the stability/instability of blood flow
in vessels pathologically changed by wall thickening and corresponding varia-
tions of viscosities, elastic coefficients and densities of the layers. Based on the
presented theory, the results can be generalized for non-axisymmetric distur-
bances, which can exist in both blood vessels and tubes of technical applica-
tions.

Appendix I: Temporal and spatial instabilities

We give in this appendix a very brief refresher on the difference between tem-
poral and spatial instabilities. When a physical problem is described by a linear
set of partial differential equations, where the solution depends, for example, on
time t and distance z, while the coefficients of the partial differential equations
are independent of both t and z, a solution, f(t, z) in the form of a normal mode
could be sought, that is of the form

f(t, z) = hest+ikz,

where h is in this case a constant and s and k are complex numbers, thus,

s = sr + isi, k = kr + ki.

The system is then said to be temporally unstable if sr > 0. The analysis
of spatial instability has to be handled with more care. In fact, the sign of ki

does not give a direct indication of the stability or instability of the system,
in spite of the fact that the function f goes to infinity when z goes to ±∞
for, respectively, positive and negative ki. The positive and negative signs of ki

indicate in general the presence of evanescent modes describing perturbations
located upstream and downstream of the coordinate system’s origin used in the
problem formulation. The only mode that represents a spatial instability of the
system is the one mode crossing the imaginary axis in the Fourier’s contour
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during the process of lowering the Laplace’s contour. The lowering process of
the Laplace’s contour could proceed until it reaches the imaginary axis of the
complex Laplace’s plane, (sr, si). The spatial instability is said to be convec-
tive, and is in this case equivalent to a temporal instability. When the process
of lowering a Laplace’s contour is prohibited by the coalescence of two modes
coming from the opposite halves of the Fourier’s contour, the instability is said
to be an absolute one. There is no equivalence between the two kinds of insta-
bility.

Appendix II: Numerical method

A numerical procedure has been developed by the present authors to solve
the linearized fluid and solid equations coupled via the boundary conditions.
Solutions are sought in the form of normal modes in the azimuthal and axial
direction, allowing the computation of s values for a given k wavenumber (tem-
poral eigenvalues) and k values for a given s frequency (spatial eigenvalues).
The numerical procedure for axisymmetric modes consists of finding two inde-
pendent solutions, say X1 and X2, in the fluid medium satisfying the boundary
condition at the tube axis. The component of the vectors X1 and X2 are the two
velocity components, the first-order derivative of the axial velocity component
with respect to r, and the pressure in the fluid medium. The independence of
the two solutions is ensured by starting the computation with one of the two in-
dependent vectors formed by several values of X1 and X2, and can be obtained
by starting the computations with the boundary conditions X0

1 = (1, 0, 0, 0)
and X0

2 = (0, 0, 1, 0). With this choice, the boundary conditions at r = 0 are
satisfied by both solutions X1 and X2 . It should be noted that to initiate the
computation of X1 and X2, the chosen X0

1 and X0
2 must form a set of free

vectors, which is sufficient for the computed X1 and X2 to be free vectors.
Then the general solution in the fluid medium is an arbitrary combination of
the free solutions, namely, X = α1X1 + α2X2, where α1 and α2 are arbitrary
constants.

Similarly, for the displacement field in the solid layers, we solve the linearized
equations for two independent solutions, say Y1 and Y2. The components of the
vectors Y1 and Y2 are the two displacement components, the first-order derivative
of the axial displacement component with respect to r, and the pressure in the
wall layers. The solution for the solid layers is Y = β1Y1 + β2Y2, where β1

and β2 are arbitrary constants. The independence of the solutions is ensured by
the foregoing procedure. The solutions satisfy the boundary conditions at the
outer surface r = R + h. The boundary conditions at the interface r = R lead
to the eigenvalue problem MC = 0, where the elements of the matrix M are
a linear combination of the particular solution components and their derivatives,
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which involve all the rheological, geometric and hydrodynamic parameters of the
system. The components of the vector C are the arbitrary constants α1, α2, β1

and β2. The characteristic equation is obtained by setting Det(M) = 0. The
numerical procedure used for solving the ODE equations is based on a fourth-
order Runge–Kutta method [58]. An iterative technique using the steepest decent
method is developed to find the double roots of the dispersion equation, namely
Det(M) = 0.
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