
Arch. Mech., 64, 6, pp. 603–615, Warszawa 2012

Self-vibration of thin plate band with non-linear functionally
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The subject of this paper is the analysis of free vibration of a thin plate band
made of nonlinear functionally graded material. The considered material has periodic
properties in one direction and slow but non-linear functionally graded properties in
the other. The main attention is given to description of the effect of the material
distribution on the overall response of the composite. The modelling approach is
based on the tolerance averaging of the equation of motion. The general results are
illustrated by the free vibration analysis of the bracket and the plate band simply
supported on both sides.
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1. Introduction

1.1. Formulation of the modelling problem

It is known that elastic responses of microheterogeneous media are described
at microscopic level by PDEs with non-uniformly oscillating piecewise constant
coefficients. As an example of these media we can mention solids made of func-
tionally graded materials (FGM) [1, 2]. The analytical procedure leading to these
equations is usually referred to as the mathematical modelling of FGM. At the
same time the averaged model equations describe the behavior of FGM on the
macroscopic level.

So far, the known general approaches to the averaging PDEs with non-
uniformly oscillating coefficients were based on the asymptotic methods of the ho-
mogenization theory [3, 4]. The mathematical foundations of the formal asymp-
totic homogenization are based on the formal limit passage to zero with a certain
length parameter describing the size of microstructure [5]. For FGM with a de-
terministic structure this parameter can be defined as the supreme of diameters
of local periodicity cells. Consequently, the concept of locally periodic function
was introduced in [6], which makes it possible to accomplish the limit passage
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to zero with the microstructure size length parameter in the framework of the
asymptotic homogenization of FGM [7].

In the last decade a new approach to the mathematical modelling of FGM
has been proposed. This approach is referred to as the tolerance modeling of
FGM and the overview of results in this field was summarized in [8]. There are
two main reasons for applying the tolerance modeling of differential equations
as an alternative to the asymptotic non-uniform homogenization. Firstly, for
many microheterogeneous media the space distribution of material properties
is not uniquely described by means of locally periodic functions. Secondly, the
asymptotically homogenized equations are independent of the microstructure
size length parameter. Hence, they are unable to describe the effect of the length
scale on the overall behaviour of FGM. The tolerance averaging of differential
equations overcomes the aforementioned restrictions.

The existing attempts used to model the dynamic behaviour of FGM were
performed for materials for which the geometry variation was linear [9]. Although
in 2011, the work [10] was published, which allowed non-linear functions of the
distribution of the individual materials, but the interfaces between various ma-
terials have remained parallel to each other. As a result, the geometry materials
proposed in [10] have remained linear at the micro level. In this paper, the author
aims to extend the application of the tolerant averaging method to FGM mod-
elling structures in which the interfaces between different materials are described
by non-linear functions.

1.2. Numerical approaches

Another type of methods currently used for modelling the dynamic behaviour
of materials such as FGM is the numerical approach. The papers describing this
approach can be divided according to the methods used in them into the mesh
methods [11, 12, 13] and meshless methods [14]. In the case of mesh methods,
the most common method is the finite element method. For plates and shells
with non-uniform structure a variety of advanced methods is used. For example,
they can be based on:

– QUAD-8 shear flexible element based on higher order structural theory [13],
– four-noded quadrilateral plate bending element [12],
– a node-based strain smoothing merged into shear-locking-free triangular

plate elements [15],
– field-consistency approach and free forms of shear membrane locking prob-

lems [11].
In the case of meshless methods the works worth mentioning is based on

kp-Ritz method [16] and another one containing a very wide, cross-cutting list of
bibliography [14].



Self-vibration of thin plate band. . . 605

1.3. The subject of consideration

The subject of this paper considers the free vibration analysis of a thin plate
band made of non-linear functionally graded material. The considered material
has periodic properties in one direction and slow but non-linear functionally
graded properties in the other (Fig. 1a). The plate band has periodically in-
homogeneous microstructure slowly varying in space: the λ-periodic structure
along ξ1 coordinate. It has smoothly graded apparent (averaged) properties in
the perpendicular direction of the ξ1 axis, along ξ2 axis (Figs. 1a and 1b). This
structure is the generalization of linear variables of FGM structures analyzed in
papers [9, 17].

a) b)

Fig. 1. Fragment of the plate’s midplane with non-linear functionally graded microstructure:
a) microscopic level, b) macroscopic level.

1.4. The objective and general assumption

The main objective of the research is to derive and apply a deterministic
macroscopic model describing the dynamic behaviour of microheterogeneous
plate band made of two components. The general assumption of the research
is that the generalized period λ is sufficiently small when compared to the width
of plate band L (Fig. 1a). The main attention is given to describing the effect of
the material distribution on the overall response of the composite.

1.5. Methods of the investigation

The problems of the plates of this kind have been investigated by means
of different methods. However, the exact analysis of those plates within solid
mechanics is too complicated to constitute the basis for solving most of the
engineering problems. Thus, many different approximate modelling methods for
functionally graded material plates have been formulated [18, 19].

The proposed modelling approach is the generalization of the tolerance av-
eraging technique (TAT). This technique was presented in detail in [20]. The
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tolerance averaging technique, in contrast to the homogenization technique for
equations with non-uniformly oscillating coefficients, describes the effect of the
microstructure size on the overall behaviour of composite elements. This method,
by assuming the decomposition of the displacement field (2.9), allows us to cal-
culate not only the fundamental frequency of free vibrations, which are well
described by theories based on homogenisation and asymptotic analysis, but
also makes it possible to describe the higher frequency of free vibrations which
is characteristic for a given microgeometry [21].

2. Modelling

2.1. The direct description

The general way to create equations of motion is the same as in [9, 22], which
is discussed in detail. The starting point for modelling are well known equations
of linear elasticity theory, which are used to write equations on the micro scale.

The bases of modelling procedure are:
– strain-displacements relations

(2.1) καβ = −w|αβ,

where καβ is curvature, w is displacement field;
– constitutive equations

(2.2) mαβ = DHαβγδκγδ,

where

Hαβγδ =
1

2

{

gαµgβγ + gαγgβµ − ν(ǫαγǫβµ + ǫαµǫβγ)
}

,(2.3)

D =
Eδ3

12(1 − υ2)
,(2.4)

E – Young’s modulus, δ – thickness of plate, ν – Poisson’s number, ǫij – com-
ponent of Ricci’s tensor, g – component of contravariant metric tensor.

After applying formulas (2.1)–(2.4) we can write the equation of motion for
the band plate under consideration as

(2.5) mαβ
|αβ + p− ρẅ = 0,

where p is the external load, the symbol is the covariant derivative.
Due to the complex and non-linear variable geometry of the composite under

consideration in the micro scale, this equation has highly oscillating coefficients,
so it is difficult to solve.
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2.2. Tolerance averaging technique

Next we use the tolerance averaging technique (TAT) for modelling the dy-
namic behaviour of thin plates, as it was presented in [23]. The more extensive
discussion about TAT and the bibliography containing various examples of ap-
plications of this theory can be found in the monographs [8, 36]. This theory
has been used successfully by many authors for different applications such as:
statics of plates [24], dynamics of plates [25, 26, 27], heat conduction [28, 29, 30],
stability analysis of plates and shells [31, 32, 33]. For the purpose of this paper
we shall describe only briefly some of the concepts defined by this theory.

The most important operators and lemmas are:
– an averaging operator

(2.6) 〈f〉(ξα) =
1

λ

ξ1+λ/2
∫

ξ1−λ/2

f(y, ξ2)dy,

where y is a local coordinate;
– a slowly varying function F (·) ∈ SV∆(T ):

(2.7) ∀x, y ∈ Π x− y ∈ ∆ ⇒ |DF (x) −DF (y)| < εDF ,

where εDF is a tolerance parameter

(2.8) DF ∈ {F,∇F,F, . . .};

– the displacement field disjoint

(2.9) w(·, t) = w0(·, t) + qA(·)VA(·, t),

where
w0(·, t) ∈ SV∆(T ), VA(·, t) ∈ SV∆(T )

are the basic unknowns, qA(·) are the known shape functions;
– the most important theorems

〈fF 〉(x) ∼= 〈f〉F (x),(2.10)

〈f∇(hF )〉(x) ∼= 〈fF∇h〉(x),(2.11)

〈f∇∇(hF )〉(x) ∼= 〈fF∇∇h〉(x).(2.12)

These definitions and theorems will be used to build the equations of the
averaged model. A wider discussion on the derivation and the proof of these
associations has been summarized in the monographs [8].
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2.3. The averaging equations

The modelling procedure is based on two steps. At first, we put into the
equation of motion (2.5) the assumption of the decomposition of the displace-
ment field (2.9) and we obtain the equation with N + 1 unknowns w0 and VA,
where A = 1, . . . , N

(2.13) 〈mαβ
|αβ + p− ρ(ẅ0 + qAV̈A)〉 = 0.

We obtain the missing equation by orthogonalization method, multiplying the
equation of motion by the functions qA and we get the equation:

(2.14) 〈qA(mαβ
|αβ + p− ρ(ẅ0 + qAV̈A))〉 = 0.

After substituting the constitutive equations, strain-displacements relations,
displacement field disjoint and many mathematical transformations, we get the
averaging equations:

(2.15) 〈BHαβγδw0
|γδ〉|αβ + (〈BHαβ11qA

|11〉VA)|αβ

+ (〈BHαβ22qA〉VA|22)|αβ + 〈ρẅ〉 = 〈p〉.

The coefficients in the above system are continuous and slowly varying func-
tions. It is therefore possible to find a solution to this system of equations using
the finite difference method.

3. The free vibrations of the plate band

3.1. The assumptions

Let us consider the following example of the free vibrations of a thin plate
band. This plate is shown in Fig. 1 in rectangular coordinates. We make some
assumptions:

– the displacement field disjoint

(3.1) w = w0 + qV,

where
w0 ∈ SV∆(T ), V ∈ SV∆(T );

– no external loading p = 0,
– the harmonic vibration

(3.2)
w0(ξα, t) = w̄(ξα) cos(ωt),

V (ξα, t) = V̄ (ξα) cos(ωt);
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– the shape function

(3.3) q(·) = λ2

(

cos

(

2πξ1

λ

)

+ C

)

,

where the constant C is obtained from the equation

(3.4) 〈qρ〉 = 0

as

(3.5) C =

λξ2
(

−ρ1 + ρ1 cos

(

2πd

ξ2λ

)

− ρ2 − ρ2 cos

(

2πd

ξ2λ

))

2π(ρ1d+ ρ2λξ2 − ρ2d)
.

After many mathematic transformations a fourth row partial differential
equations’ system with two equations with 2 unknowns is built as

〈BH2222w0
,22〉,22 + (〈BH2211qA

,11〉VA),22 + (〈BH2222qA〉VA,22),22 + 〈ρẅ〉 = 〈p〉,

(3.6) 〈qA
,11BH

1122〉w0
,22 + 〈qA

,11BH
1111qB

,11〉VB + 〈qA
,11BH

1122qB〉VB,22

+ (〈qA
,11BH

2222〉w0
,22)|22 + (〈qABH2211qB

,11〉VB)|22

+ (〈qABH2222qB〉VB,22),22 + 〈qAρqB〉V̈B = 〈qAp〉.

The coefficients in this system of equations are continuous and they can be
found by symbolic calculations. In order to find a particular solution to the
system of equations we have the task’s defined boundary conditions. In the case
of bracket (left bank clamped, right side free), we write it as

w|ξ2=0 = 0 and

(

∂w

∂ξ2

)∣

∣

∣

∣

ξ2=0

= 0,(3.7)

(

∂3w

(∂ξ2)3

)
∣

∣

∣

∣

ξ2=L

= 0 and

(

∂2w

(∂ξ2)2

)
∣

∣

∣

∣

ξ2=L

= 0,(3.8)

because (3.1)

w0|ξ2=0i
= 0,

(

∂w0

∂ξ2

)
∣

∣

∣

∣

ξ2=0i

= 0,

V |ξ2=0i
= 0,

(

∂V

∂ξ2

)
∣

∣

∣

∣

ξ2=0i

= 0,(3.9)
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(

∂3w0

(∂ξ2)3

)
∣

∣

∣

∣

ξ2=L

= 0,

(

∂2w0

(∂ξ2)2

)
∣

∣

∣

∣

ξ2=L

= 0,

(

∂3V

(∂ξ2)3

)∣

∣

∣

∣

ξ2=L

= 0

(

∂2V

(∂ξ2)2

)∣

∣

∣

∣

ξ2=L

= 0,(3.10)

and for the simple support on both sides

(3.11) w|ξ2=ri
= 0 and

(

∂2w

(∂ξ2)2

)∣

∣

∣

∣

ξ2=ri

= 0,

because (3.1)

(3.12)

w0|ξ2=ri
= 0,

(

∂2w0

(∂ξ2)2

)
∣

∣

∣

∣

ξ2=ri

= 0,

V |ξ2=ri
= 0,

(

∂2V

(∂ξ2)2

)∣

∣

∣

∣

ξ2=ri

= 0,

where ri = 0 or ri = L, respectively.

3.2. Numerical results

We use the finite difference method to obtain the numerical solution of this
equations system, using our own computer program in MS Visual C++. We
could change any geometrical and material parameter of a plate and obtain the
first and higher frequency of free vibrations and shapes of displacement field
corresponding to it. In this way, we can analyze the influence of the material’s
distribution on the frequency of free vibrations.

For example, we used the following materials:
– matrix: E1 = 20 GPa, ν1 = 0.2, ρ1 = 2800 kg/m3,
– walls: E2 = 210 GPa, ν2 = 0.7, ρ2 = 7800 kg/m3,

and geometrical data:
– microstructure size λ = 0.1 m,
– thickness of plate h = 3 cm,
– bandwidth L = 1 m,
– quantity of material walls – 50 %,
– quantity of material matrix – 50 %.

The border between the materials was determined by polynomial functions of
fourth order form y = ax4+bx3+cx2+dx+e, where the constants a, b, c, d, e were
always determined to ensure the condition of equal volumes of both components
of the composite. By varying these factors and controlling the geometry of the
composite, we do not change the percentage composition of the material. Below
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are the numerical results obtained for different geometries. On the horizontal axis
we have the position of the gravity centre of the walls’ material; on the vertical
axis we can see the frequency of vibrations of the composite. In the figures below
we see pictorials like this . They indicate that the result in selected
point is obtained for the appropriate distribution of walls and matrix.

Fig. 2. Example of the considered plate band.

Fig. 3. Dependency of first frequency of free vibrations from location of centre of gravity of
walls (d1 = 0, d2 = 0.1 m) left side clamped, right side free.
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Fig. 4. Dependency of first frequency of free vibrations from location of the centre of gravity
of walls (d1 = 0, d2 = 0.14 m) both sides simply supported.

Fig. 5. Dependency of first frequency of free vibrations from width of walls in ξ2 = 0.5
(d1 = 0, d2 = 0) left side clamped, right side free.
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Fig. 6. Dependency of first frequency of free vibrations from width of walls in ξ2 = 0.5
(d1 = 0, d2 = 0) both sides simply supported.

4. Conclusions

1. The tolerance averaging technique can be successfully applied to formulate
averaging model of dynamic behaviour of the composite plates with non-linear
functionally graded material. Despite the complicated and non-linear structure
of the material at the micro level, it was possible to use TAT to obtain solutions
to a given problem. By assuming the decomposition of the displacement field it
is also possible to find a higher frequency of free vibrations associated with the
unknown V and corresponding to the microstructure of the material. This will
be the subject of this author’s further research.

2. We can see a very strong dependency of frequency of free vibrations of the
plate band from the material distribution for the bracket and very weak for the
simple support on both sides.

3. The first frequency of free vibrations of the plate band made of non-linear
functionally graded material could be completely different for the same material
proportion of walls and matrix.
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