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The present investigation deals with the study of Green’s functions in or-
thotropic piezothermoelastic diffusion media. With this objective, firstly the two-
dimensional general solution in orthotropic piezothermoelastic diffusion media is de-
rived. On the basis of general solution, the Green function for a point heat source and
chemical potential source in the interior of semi-infinite orthotropic piezothermoelas-
tic diffusion material is constructed by five newly introduced harmonic functions. The
components of displacement, stress, electric displacement, electric potential, temper-
ature change and chemical potential are expressed in terms of elementary functions.
Since all the components are expressed in terms of elementary functions, this fact
makes them convenient to use. From the present investigation, a special case of inter-
est is also analyzed to depict the effect of diffusion. Resulting quantities are computed
numerically and presented graphically to illustrate the effect of diffusion.
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1. Introduction

Green’s functions or fundamental solutions play an important role in
both applied and theoretical studies of solids’ physics. Green’s functions can be
used to construct many analytical solutions of practical problems when bound-
ary conditions are imposed. Green’s functions play an important role in the
solution of the numerous problems in the mechanics and physics of solids. They
are the heart of singular integrals equation method such as the boundary ele-
ment method which is often used in engineering. For static problems, the gen-
eral solution is finally expressed in terms of five harmonic functions (more pre-
cisely weighted or quasi harmonic functions). Green’s functions with applications
systematically present various methods of deriving these useful functions. Such
a form allows one to use the solution feasibly to solve boundary value problems
associated with cracks, defects, inclusions and punches. Many researchers have
investigated Green’s function for elastic solid in isotropic and anisotropic elastic
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media, notable among them are Lord Kelvin [1], Freedholm [2], Synge [3],
Pan and Chou [4], Deeg [5], Wang [6] and Chen and Lin [7].

Lee and Jiang [8] investigated the boundary integral formulation and two-
dimensional fundamental solution for piezoelectric media. Wang and Zheng
[9] derived the general solution for three-dimensional problem in piezoelectric
media. Ding et al. [10] investigated the fundamental solution for piezoelectric
media. Ding et al. [11] studied the fundamental solution for plane problem of
piezoelectric materials.

Piezoelectric ceramics and composites have been extensively used in many
engineering applications such as sensors, actuators, intelligent structures etc.
when thermal effects are not considered; piezoelectric ceramics and piezoelectric
polymers, which are extensively utilized in small structure and intelligent sys-
tem, all belong to pyroelectric media. Rao and Sunar [12] pointed out that
the temperature variation in the piezoelectric media can affect the overall per-
formance of a distributed control system. Therefore, in depth investigation on
electro-thermo-mechanical coupling behavior is significant.

The thermal effect is not considered in the above works. Rao and Sunar [12]
pointed out the temperature variation in the piezoelectric media. Chen et al. [13]
derived the general solution for transversely isotropic piezothermoelastic media.
Chen et al. [14] obtained Green’s function of transversely isotropic pyroelectric
media with a penny- shaped crack. Hou et al. [15] constructed Green’s function
for a point heat source on the surface of a semi-infinite transversely isotropic
pyroelectric media.

Diffusion can be defined as the movement of particles from an area of high
concentration to an area of lower concentration until equilibrium is reached.
It occurs as a result of second law of thermodynamics which states that the
entropy or disorder of any system must always increase with time. Diffusion is
important in many life processes. Nowadays, there is a great deal of interest
in the study of this phenomena, due to its many application in geophysics and
industrial applications. Until recently, thermodiffusion in solids, especially in
metals, was considered as a quantity that is independent of body deformation.
Practice however indicates that the process of thermodiffusion could have a very
considerable influence on the deformation of the body. Thermodiffusion in elastic
solid is due to the coupling of temperature, mass diffusion and strain in addition
to the exchange of heat and mass with the environment.

Nowacki [16–19] developed the theory of thermoelastic diffusion by using
coupled thermoelastic model. This implies infinite speed of propagation of ther-
moelastic waves. Sherief et al. [20] developed the generalized theory of thermoe-
lastic diffusion with one relaxation time which allows finite speeds of propaga-
tion of waves. Recently Kumar and Kansal [21] derived the basic equations for
generalized thermoelastic diffusion (GL model) and discussed the Lamb waves.
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Kumar and Chawla [22] discussed the surface wave propagation in an elastic
layer lying over a thermodiffusive elastic half-space with imperfect boundary.
Kuang [23] discussed the variational principles for generalized thermodiffusion
theory in pyroelectricity. Kumar and Chawla [24] obtained the fundamental
solutions for orthotropic thermodiffusive elastic media. Recently Kumar and
Chawla [25] derived the Green function for two-dimensional problem in or-
thotropic thermoelastic diffusion media. However, the important Green’s func-
tion for two-dimensional problem for a steady point heat source in orthotropic
piezothermoelastic diffusion medium has not been discussed so far.

In order to theoretically study surfaces of fairly arbitrary materials for initial
and boundary value problems, there is a need for the computational approach
because complex geometries can not be treated analytically, in general. So in
the present problem, we have developed a formalism to investigate it by using
Green’s functions.

The Green function for two-dimensional problem in orthotropic piezother-
moelastic diffusion medium is investigated in this paper. The adopted approach
is to obtain closed form expression for the piezothermoelastic diffusion media
by using Green’s functions. Green’s functions are very useful for the analysis of
many problems in the mathematics and physics of piezothermoelastic diffusion
solid.

2. Basic equations

The basic governing equations of orthotropic piezothermodiffusive elastic ma-
terials can be found in [23]. If all the components are independent coordinate y,
this is the so-called plane problem. The constitutive equations in two-dimensional
Cartesian coordinate (x, z) can be expressed as

σxx = c11
∂u

∂x
+ c13

∂w

∂z
+ e31

∂Φ

∂z
− β1T − b1µ,(2.1)

σzz = c13
∂u

∂x
+ c33

∂w

∂z
+ e33

∂Φ

∂z
− β3T − b3µ,(2.2)

σzx = c44

(

∂u

∂z
+
∂w

∂x

)

+ e15
∂Φ

∂x
,(2.3)

Dx = e15

(

∂u

∂z
+
∂w

∂x

)

− ε11
∂Φ

∂x
,(2.4)

Dz = e31
∂u

∂x
+ e33

∂w

∂z
− ε33

∂Φ

∂z
+ p3T,(2.5)

where u and w are components of the mechanical displacement in x and z di-
rections, respectively; σij and Di are the components of stress and electric dis-
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placement, respectively; βi and bi are material constants. Φ, T and µ are electric
potential ,temperature increment and chemical potential respectively; cij , eij , εij ,
and p3 are elastic piezoelectric, dielectric, thermal modules, diffusion modules
and pyroelectric constants, respectively.

The mechanical, electric, heat equilibrium and mass diffusions equations for
static problem, in the absence of body forces, free charges, heat sources and mass
diffusive sources are

∂σxx

∂x
+
∂σzx

∂z
= 0,

∂σzx

∂x
+
∂σzz

∂z
= 0,(2.6)

∂Dx

∂x
+
∂σz

∂z
= 0,(2.7)

(

λ1
∂2

∂2x
+ λ3

∂2

∂2z

)

T = 0,(2.8)

(

D1
∂2

∂2x
+D3

∂2

∂2z

)

µ = 0.(2.9)

We define the dimensionless quantities:

(x′, z′, u′, w′) =
ω∗

1

v1
(x, z, u, w), σ′ij =

σij

β1T0
,

T ′ =
T

T0
, µ′ =

µ

v2
1

, D′
i =

Di√
β1T0

, H ′ =
v1

T0λ1ω∗
1

H, P ′ =
P

v1D1ω∗
1

,

where

(2.10) v2
1 =

β1T0

b1
, ω∗

1 =
β1c11

b1λ1
.

Substituting Eqs. (2.1)–(2.5) into Eqs. (2.6) and (2.7) and applying the dimen-
sionless quantities defined by (2.10) to resulting equations, after suppressing the
primes, we obtain

(

∂2

∂x2
+ δ1

∂2

∂z2

)

u+

(

δ2
∂2

∂x∂z

)

w(2.11)

− e1ε̄p
∂2Φ

∂x∂z
− r1

(

∂

∂x

)

T − q1

(

∂

∂x

)

µ = 0,

(

δ2
∂2

∂x∂z

)

u+

(

δ1
∂2

∂x2
+ δ3

∂2

∂z2

)

w(2.12)

− ε̄p

(

e2
∂2

∂x2
+ δ3

∂2

∂z2

)

Φ− r3

(

∂

∂z

)

T − q3

(

∂

∂z

)

µ = 0,



General steady-state solution and Green’s function. . . 559

(

e1
∂2

∂x∂z

)

u+

(

e2
∂2

∂x2
+

∂2

∂z2

)

w(2.13)

− ε̄q

(

ε̄
∂2

∂x2
+

∂2

∂z2

)

Φ+ g1

(

∂

∂z

)

T + h1

(

∂

∂z

)

µ = 0,

(

∂2

∂2x
+ λ̄

∂2

∂2z

)

T = 0,(2.14)

(

∂2

∂2x
+ D̄

∂2

∂2z

)

µ = 0,(2.15)

(δ1, δ2, δ3) =
1

c11

(

c44, c13 + c44, c33

)

,

(e1, e2) =
1

e33

(

e31 + e15, e15

)

,

(r1, r3, q1, q3) =
1

c11
(β1T0, β3T0, b1v

2
1 , b3v

2
1),

(ε, g1) =
1

ε33
(ε11, P3T0, b3v

2
1),

(ε̄p, ε̄q) =
1

v1

(

e33Φ0ω
∗
1

c11
,
ε33Φ0ω

∗
1

e33

)

,

λ̄ =
λ3

λ1
, D̄ =

D3

D1
, Φ0 =

v1β1T0

ω∗e33
.

Equations (2.11)–(2.15) can be written as

(2.16) D{u,w, Φ, T, µ}t = 0,

where D is the differential operator matrix given by

(2.17)


















∂2

∂x2 + δ1
∂2

∂z2 δ2
∂2

∂x∂z e1ε̄p
∂2

∂x∂z −r1 ∂
∂x −q1 ∂

∂x

δ2
∂2

∂x∂z δ1
∂2

∂x2 + δ3
∂2

∂z2 ε̄p

(

e2
∂2

∂x2 + ∂2

∂x2

)

∂
∂z −r3 ∂

∂z −q3 ∂
∂z

e1
∂2

∂x∂z e2
∂2

∂x2 + ∂2

∂x2 −ε̄q

(

ε̄ ∂2

∂x2 + ∂2

∂z2

)

g1
∂
∂z h1

∂
∂z

0 0 0
(

∂2

∂x2 + ā ∂2

∂x2

)

0

0 0 0 0
(

∂2

∂x2 + D̄ ∂2

∂x2

)



















.

Equation (2.16) is a homogeneous set of differential equations in u,w, Φ, T, µ.
The general solution according to the operator theory is as follows:

(2.18)
u = Ai1F, w = Ai2F, Φ = Ai3F,

T = Ai4F, µ = Ai5F (i = 1, 2, 3, 4, 5).
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The determinant of the matrix D is given as

|D| =

(

a
∂6

∂z6
+ b

∂6

∂x2∂z4
+ c

∂6

∂x4∂z2
+ d

∂6

∂x6

)

(2.19)

×
(

∂2

∂x2
+ λ̄

∂2

∂z2

)(

∂2

∂x2
+ D̄

∂2

∂z2

)

,

where a, b, c, d are given in Appendix A. The function F in Eq. (2.18) satisfies
the following homogeneous equation:

(2.20) |D|F = 0.

It can be seen that if i was set to 1 or 2 in Eq. (2.18), one can get two sets
of general solution with P = 0, T = 0 and µ = 0, which are actually to those
for pure elasticity (see [26]); i = 1, 2 and 3 corresponds to the solution for
piezoelectricity discussed in [28]; i = 4 corresponds to the general solution W1

with µ = 0 which is identical to that for piezothermoelaticity; i = 5 corresponds
to the general solution W2 with T = 0.

Due to the linear nature of the piezothermoelastic diffusion theory adopted
in this paper, follows the same procedure as used by Li et el. [28, 29] with
superposing W1 and W2, this leads to

(2.21)

u =

(

a1
∂6

∂x6
+ b1

∂6

∂x4∂z2
+ c1

∂6

∂x2∂z4
+ d1

∂6

∂z6

)

∂F

∂x
,

w =

(

a2
∂6

∂x6
+ b2

∂6

∂x4∂z2
+ c2

∂6

∂x2∂z4
+ d2

∂6

∂z6

)

∂F

∂z
,

Φ =

(

a3
∂6

∂x6
+ b3

∂6

∂x4∂z2
+ c3

∂6

∂x2∂z4
+ d3

∂6

∂z6

)

∂F

∂z
,

T =

(

a4
∂8

∂x8
+ b4

∂8

∂x6∂z2
+ c4

∂8

∂x4∂z4
+ d4

∂8

∂x6∂z2
+ l5

∂8

∂z8

)

F,

µ =

(

a5
∂8

∂x8
+ b5

∂8

∂x6∂z2
+ c5

∂8

∂x4∂z4
+ d5

∂8

∂x6∂z2
+ l6

∂8

∂z8

)

F,

where the coefficients ak, bk, ck, dk (k = 1, 2, 3, 4, 5) and l5, l6 are the expressions
given in Appendix B.

The general solution of Eq. (2.16) in terms of F can be rewritten as

(2.22)

5
∏

j=1

(

∂2

∂x2
+

∂2

∂z2
j

)

F = 0,
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where zj = sjz, s4 =
√

λ1/λ3, s5 =
√

D1/D3 and sj (j = 1, 2, 3) are three roots
(with positive real part) of the following algebraic equation:

(2.23) as6 − bs4 + cs2 − d = 0.

As known from the generalized Almansi theorem [30], the function F can be
expressed in terms of five harmonic functions:

(2.24)

1. F = F1 + F2 + F3 + F4 + F5 for distinct sj (j = 1, 2, 3, 4, 5),

2. F = F1 + F2 + F3 + F4 + zF5 for s1 6= s2 6= s3 6= s4 = s5,

3. F = F1 + F2 + F3 + zF4 + z2F5 for s1 6= s2 6= s3 = s4 = s5,

4. F = F1 + F2 + zF3 + z2F4 + z3F4 for s1 6= s2 = s3 = s4 = s5,

5. F = F1 + zF2 + z2F3 + z3F4 + z4F5 for s1 = s2 = s3 = s4 = s5,

where Fj satisfies the following harmonic equation:

(2.25)

(

∂2

∂x2
+

∂2

∂z2
j

)

Fj = 0, (j = 1, 2, 3, 4, 5).

The general solution for the case of distinct roots, can be derived as follows:

(2.26)

u =

5
∑

j=1

p1j
∂7Fj

∂x∂z6
j

, w =

5
∑

j=1

sjp2j
∂7Fj

∂z7
j

, Φ =

5
∑

j=1

sjp3j
∂7Fj

∂z7
j

,

T = p44
∂8F4

∂z8
4

, µ = p55
∂8F5

∂z8
5

.

Equation (2.26) can be further simplified by taking

(2.27) p1j
∂6Fj

∂z6
j

= ψj .

Use of (2.27) in Eq. (2.26) yields

(2.28)

u =
5

∑

j=1

∂ψj

∂x
, w =

5
∑

j=1

sjP1j
∂ψj

∂zj
, Φ =

5
∑

j=1

sjP1j
∂ψj

∂zj
,

T = P34
∂2ψ4

∂z2
4

, C = P45
∂2ψ5

∂z2
5

,
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where

P1j = p2j/p1j , P2j = p3j/p1j , P34 = p44/p14, P45 = p55/p15.

The function ψj satisfies the harmonic equation

(2.29)

(

∂2

∂x2
+

∂2

∂z2
j

)

ψj = 0, j = 1, 2, 3, 4, 5.

Applying the dimensionless quantities defined by (2.7) to Eqs. (2.1)–(2.5), after
suppressing the primes, with the aid of (2.28) we obtain

(2.30)

σxx =
5

∑

j=1

(−f1 + f2s
2
jP1j + f3s

2
jP2j − P3j − f4P4j)

∂2ψj

∂z2
j

,

σzz =

5
∑

j=1

(−f2 + f5s
2
jP1j + f6s

2
jP2j − f7P3j − f8P4j)

∂2ψj

∂z2
j

,

σzx =

5
∑

j=1

[f9(1 + P1j) + f10P2j ]sj
∂2ψj

∂x∂zj
,

Dx =
5

∑

j=1

[l1(1 + P1j) − n10P2j]sj
∂2ψj

∂x∂zj
,

Dz =
5

∑

j=1

(−l2 + l3s
2
jP1j − n2s

2
jP2j + n3P3j − n4P4j)

∂2ψj

∂z2
j

,

where

P31 = P32 = P33 = P35 = 0 and P41 = P42 = P43 = P44 = 0,

and

(f1, f2, f3, f4, f5, f6, ) =
1

β1T0

(

c11, c13,
e31ω

∗
1Φ0

T0
, b1µ0, c33,

e33ω
∗
1Φ0

T0

)

,

f7 =
β3

β1
, f8 =

b3µ0

b1T0
, f9 =

c44

β1T0
, f10 =

e15ω
∗
1Φ0

β1T0v1
,

(l1, l2.l3, n1, n2, n3, n4) =
1√
β1T0

(

e15, e31, e33,
ε11ω

∗
1Φ0

v1
,
ε11ω

∗
1Φ0

v1
, P3T0, b

∗
3µ0

)

.

Substituting Eq. (2.30) into Eqs. (2.1)–(2.5), with the aid of (2.5) and (2.6) gives
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(2.31)

f1 − (f2P1j + f3P2j)s
2
j + P3j + f4P4j = [f9(1 + P1j) + f10P2j ]s

2
j ,

− f2 + (f5P1j + f6P2j)s
2
j − f7P3j − f8P4j = [f9(1 + P1j) + f10P2j ],

− l2 + (l3P1j − n2P2j)s
2
j + n3P3j + n4P4j = l1(1 + P1j),

(λ1 − λ3s
2
j )P3j = 0,

(D1 −D3s
2
j )P4j = 0 (j = 1, 2, 3, 4, 5).

By virtue of the above equations, the general solution (2.30) can be simplified
as

(2.32)

σxx = −
5

∑

j=1

s2jw1j
∂2ψj

∂z2
j

, σzz =
5

∑

j=1

w1j
∂2ψj

∂z2
j

, σzx =
5

∑

j=1

sjw1j
∂2ψj

∂x∂zj
,

Dx =

5
∑

j=1

sjw2j
∂2ψj

∂x∂zj
, Dz =

5
∑

j=1

w2j
∂2ψj

∂z2
j

,

where

(2.33)

w1j =
f1 − (f2P1j + f3P2j)s

2
j + P3j + f4P4j

s2j
= f9(1 + P1j) + f10P2j

= − f2 + (f5P1j + f6P2j)s
2
j − f7P3j − f8P4j ,

w2j = − l2 + (l3P1j − n2P2j)s
2
j + n3P3j + n4P4j = l1(1 + P1j) − n1P2j .

3. Green’s function for a point heat source and chemical potential
source in the interior of a semi-infinite orthotropic piezothermodif-
fusion elastic material

As shown in Fig. 1 we consider an orthotropic semi-infinite piezothermodiffu-
sion elastic material z ≥ 0. A point heat source H and chemical potential source

Fig. 1. A semi-infinite piezothermodiffusive elastic plane applied by a point heat source of
strength H and chemical potential source of strength P .
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P are applied at the point (0, h) in two-dimensional Cartesian coordinate (x, z)
and the surface z = 0 is free, thermally insulated and impermeable boundary. In
Cartesian coordinate system, the general solution given by equation (2.28) and
(2.32) in this semi-infinite plane is derived in this section.

In the rest of the paper, following notations are introduced:

(3.1)

zj = sjz, hk = skh, zjk = zj + hk,

rjk =
√

x2 + z2
jk, z̄jk = zj − hk,

r̄jk =
√

x2 + z̄2
jk (j, k = 1, 2, 3, 4).

By virtue of trial and error method, Green’s functions in the semi-infinite plane
are assumed in the following form:

ψj = Aj

[

1

2
(z̄2

jj − x2)

(

log r̄jj −
3

2

)

− xz̄jj tan−1

(

x

z̄jj

)]

(3.2)

+
5

∑

k=1

Ajk

[

1

2
(z2

jk − x2)

(

log rjk − 3

2

)

− xzjk tan−1

(

x

zjk

)]

,

j = 1, 2, 3, 4, 5,

where Aj and Ajk (j, k = 1, 2, 3, 4, 5) are 30 constants to be determined.
The boundary conditions at the surface z = 0 are

(3.3) σzz = σzx = 0, Dz = 0,
∂µ

∂z
= 0,

∂T

∂z
= 0.

Substituting Eq. (2.30) into Eqs. (2.28) and (2.32), we obtain

u =

5
∑

j=1

Aj

[

x(log r̄jj − 1) + z̄jj tan−1 x

z̄jj

]

(3.4a)

−
5

∑

j=1

5
∑

k=1

Ajk

[

x(log rjk − 1) + zjk tan−1 x

zjk

]

,

w =

5
∑

j=1

sjP1jAj

[

z̄jj(log r̄jj − 1) − x tan−1 x

z̄jj

]

(3.4b)

+

5
∑

j=1

5
∑

k=1

sjP1jAjk

[

zjk(log rjk − 1) − x tan−1 x

zjk

]

,
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Φ =

5
∑

j=1

sjP1jAj

[

z̄jj(log r̄jj − 1) − x tan−1 x

z̄jj

]

(3.4c)

+

5
∑

j=1

5
∑

k=1

sjP1jAjk

[

zjk(log rjk − 1) − x tan−1 x

zjk

]

,

T = P34A4 log r̄44 + P34

5
∑

k=1

A4kr4k,(3.4d)

µ = P35A5 log r̄55 + P45

5
∑

k=1

A5kr5k,(3.4e)

σxx = −
5

∑

j=1

s2jw1jAj log r̄jj −
5

∑

j=1

5
∑

k=1

s2jw1jAjk logrjk,(3.4f)

σzz =

5
∑

j=1

w1jAj log r̄jj +

5
∑

j=1

5
∑

k=1

w1jAjk log rjk,(3.4g)

σzx = −
5

∑

j=1

sjw1jAj tan−1 x

z̄jj
−

5
∑

j=1

5
∑

k=1

sjw1jAjk tan−1 x

zjk
,(3.4h)

Dx = −
5

∑

j=1

sjw2jAj tan−1 x

z̄jj
−

5
∑

j=1

5
∑

k=1

sjw2jAjk tan−1 x

zjk
,(3.4i)

Dz =
5

∑

j=1

w2jAj log r̄jj +
5

∑

j=1

5
∑

k=1

w2jAjk log rjk.(3.4j)

Considering the continuity on plane z = h for w, Φ, σzx and Dx gives the
following expressions:

5
∑

j=1

sjP1jAj = 0,(3.5)

5
∑

j=1

sjw1jAj = 0,(3.6)

5
∑

j=1

sjP2jAj = 0,(3.7)

5
∑

j=1

sjw2jAj = 0(3.8)
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Equations (3.5)–(3.8) can be written in combined form as

5
∑

j=1

sjPmjAj = 0, m = 1, 2,(3.9)

5
∑

j=1

sjwmjAj = 0.(3.10)

Substitution wmj (m = 1, 2) from Eq. (2.33) into (3.10) gives

5
∑

j=1

sj [f9(1 + P1j) + f10P2j ]Aj = 0,(3.11)

5
∑

j=1

sj [l1(1 + P1j) − n1P2j ]Aj = 0,(3.12)

By their virtue, Eqs. (3.9), (3.11) and (3.12) can be simplified to one equation

(3.13)
5

∑

j=1

sjAj = 0.

Considering the mechanical, electric and thermal equilibrium as well as chemical
potential per unit mass for a rectangle of a1 ≤ z ≤ a2 and −b ≤ x ≤ b (b > 0),
four equations can be obtained

b
∫

−b

[σzz(x, a2) − σzz(x, a1)]dx+

a
∫

0

[σzx(b, z) − σzx(−b, z)]dz = 0,(3.14a)

b
∫

−b

[Dz(x, a2) +Dz(x, a1)]dx+

a
∫

0

[Dx(b, z) −Dx(−b, z)]dz = 0,(3.14b)

−λ̄
b

∫

−b

[

∂T

∂z
(x, a2) −

∂T

∂z
(x, a1)

]

dx−
a

∫

0

[

∂T

∂x
(b, z) − ∂T

∂x
(−b, z)

]

dz = H,(3.14c)

−D̄
b

∫

−b

[

∂µ

∂z
(x, a2) −

∂µ

∂z
(x, a1)

]

dx−
a

∫

0

[

∂µ

∂x
(b, z) − ∂µ

∂x
(−b, z)

]

dz = P.(3.14d)
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Some useful integrals are listed as follows:

∫

log r̄jj = x(log r̄jj − 1) + z̄jj tan−1

(

x

z̄jj

)

,(3.15a)

∫

log rjk = x(log rjk − 1) + zjk tan−1

(

x

zjk

)

,(3.15b)

∫

tan−1

(

x

z̄jj

)

=
1

sj

(

x log r̄jj + z̄jj tan−1

(

x

z̄jj

))

,(3.15c)

∫

tan−1

(

x

zjk

)

=
1

sj

(

x log rjk + zjk tan−1

(

x

z̄jj

))

,(3.15d)

∫

∂T

∂z
dx = s4P34

(

A4 tan−1 x

z̄44
+

4
∑

k=1

A4k tan−1 x

z4k

)

,(3.15e)

∫

∂T

∂x
dz = −P34

s4

(

A4 tan−1 x

z̄44
+

4
∑

k=1

A4 tan−1 x

z4

)

,(3.15f)

∫

∂µ

∂z
dx = AjsjP2j tan−1 x

z̄jj
+

4
∑

k=1

AjksjP2j tan−1 x

zjk
,(3.15g)

∫

∂µ

∂x
dz =

Aj

sj
P2j tan−1 x

z̄jj
−

4
∑

k=1

Ajk

sj
P2j tan−1 x

zjk
.(3.15h)

It is noticed that the integrals (3.15f, h) are not continuous at z = h; hence, the
following expression should be used:

(3.16)

a2
∫

a1

∂T

∂x
dz =

h−

∫

a1

∂T

∂x
dz +

a2
∫

h+

∂T

∂x
dz,

a2
∫

a1

∂µ

∂x
dz =

h−

∫

a1

∂µ

∂x
dz +

a2
∫

h+

∂µ

∂x
dz.

Substituting Eq. (3.4) into Eqs. (3.14a, b) and using the integrals (3.15a, b),
yields

(3.17)

5
∑

j=1

wmjAjI1 +

5
∑

j=1

wmj

5
∑

k=1

AjkI2 = 0 (m = 1, 2),
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where

(3.18)

I1 =

[

(

x(log r̄jj − 1) + z̄jj tan−1

(

x

z̄jj

))z=a2

z=a1

]x=b

x=−b

−
[

(

x log r̄jj + z̄jj tan−1

(

x

z̄jj

))x=b

x=−b

]z=a2

z=a1

,

I2 =

[

(

x(log rjk − 1) + zjk tan−1

(

x

zjk

))z=a2

z=a1

]x=b

x=−b

−
[

(

x log rjk + zjk tan−1

(

x

zjk

))x=b

x=−b

]z=a2

z=a1

.

To simplify, we obtain I1 = 0 and I2 = 0, i.e., Eqs. (3.17) and (3.14a, b) are
satisfied automatically.

Using Eq. (3.4d) in Eq. (3.14c), and using the integrals (3.15e, f) with the
aid of (3.16a) and s4 =

√

λ1/λ3 in the resulting equation, we obtain

(3.19) A4I3 +
4

∑

k=1

A4kI4 =
H

P34

√

λ3/λ1

,

where

(3.20)

I3 = −
[(

tan−1

(

x

z̄44

))z=a2

z=a1

]x=b

x=−b

−
[

(

tan−1

(

x

z̄44

))x=b

x=−b

]z=h−

z=a1

+

[

(

tan−1

(

x

z̄44

))x=b

x=−b

]z=a2

z=h+

,

I2 =

[

(

tan−1

(

x

z4k

))x=b

x=−b

]z=a2

z=a1

−
[

(

tan−1

(

x

z4k

))z=a2

z=a1

]x=b

x=−b

.

When solving Eqs. (3.20, we obtain I3 = −2π and I4 = 0.
Thus, A4 can be determined from Eqs. (3.19) and (3.20), as follows:

(3.21) A4 = − H

2πP34

√

λ3/λ1

.

Substituting the value of µ from Eq. (3.4e) into Eq. (3.14d), and using the
integrals (3.15g, h) with the aid of (3.16d) and s5 =

√

D1/D3 in the resulting
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equation, we obtain

(3.22) A5I3 +

5
∑

k=1

A5kI4 =
P

P45

√

D3/D1

,

where

(3.23)

I5 = −
[

(

tan−1

(

x

z̄55

))z=a2

z=a1

]x=b

x=−b

−
[

(

tan−1

(

x

z̄55

))x=b

x=−b

]z=h−

z=a1

+

[

(

tan−1

(

x

z̄55

))x=b

x=−b

]z=a2

z=h+

= −2π,

I2 =

[

(

tan−1

(

x

z5k

))x=b

x=−b

]z=a2

z=a1

−
[

(

tan−1

(

x

z5k

))z=a2

z=a1

]x=b

x=−b

= 0.

Thus, A5 can be determined from Eqs. (3.22) and (3.23), as follows:

(3.24) A5 = − P

2πP45

√

D3/D1

.

At the surface z = 0, Eq. (2.16) reduces to

(3.25)
zj = 0, hk = skh, zjk = hk,

rjk =
√

x2 + h2
k, z̄jk = −hk, r̄jk =

√

x2 + h2
k.

Substituting Eq. (3.4) into boundary conditions (3.3) and with the aid of s4 =
√

λ1/λ3, s5 =
√

D1/D3 and Eq. (3.25), we obtain

−sjw1jAj +
5

∑

k=1

skw1kAkj = 0,(3.26)

wmjAj +

5
∑

k=1

wmkAkj = 0, j = 1, 2, 3, 4, 5,(3.27)

A4 −A44 = 0, A4k = 0, m = 1, 2,(3.28)

A5 −A55 = 0, A5k = 0, k = 1, 2, 3, 4.(3.29)

Thus, 30 constants Aj and Ajk (j, k = 1, 2, 3, 4, 5) can be determined by 30
equations including Eqs. (3.9), (3.13), (3.21), (3.24) and (3.26)–(3.29).



570 R. Kumar, V. Chawla

4. Special case

In the absence of chemical potential per unit mass, Eqs. (3.4) reduce to

u =

4
∑

j=1

Aj

[

x(log r̄jj − 1) + z̄jj tan−1 x

z̄jj

]

(4.1a)

−
4

∑

j=1

4
∑

k=1

Ajk

[

x(log rjk − 1) + zjk tan−1 x

zjk

]

,

w =
4

∑

j=1

sjP1jAj

[

z̄jj(log r̄jj − 1) − x tan−1 x

z̄jj

]

(4.1b)

+
4

∑

j=1

4
∑

k=1

sjP1jAjk

[

zjk(log rjk − 1) − x tan−1 x

zjk

]

,

Φ =

4
∑

j=1

sjP1jAj

[

z̄jj(log r̄jj − 1) − x tan−1 x

z̄jj

]

(4.1c)

+
4

∑

j=1

4
∑

k=1

sjP1jAjk

[

zjk(log rjk − 1) − x tan−1 x

zjk

]

,

T = P34A4 log r̄44 + P34

4
∑

k=1

A4k∗r4k,(4.1d)

σxx = −
4

∑

j=1

s2jw1jAj log r̄jj −
4

∑

j=1

4
∑

k=1

s2jw1jAjk logrjk,(4.1e)

σzz =

4
∑

j=1

w1jAj log r̄jj +

4
∑

j=1

4
∑

k=1

w1jAjk log rjk,(4.1f)

σzx = −
4

∑

j=1

sjw1jAj tan−1 x

z̄jj
−

4
∑

j=1

4
∑

k=1

sjw1jAjk tan−1 x

zjk
,(4.1g)

Dx = −
4

∑

j=1

sjw2jAj tan−1 x

z̄jj
−

4
∑

j=1

4
∑

k=1

sjw2jAjk tan−1 x

zjk
,(4.1h)

Dz =

4
∑

j=1

w2jAj log r̄jj +

4
∑

j=1

4
∑

k=1

w2jAjk log rjk,(4.1i)

zj = sjz, s4 =
√

λ1/λ3, and sj (j = 1, 2, 3) are three roots (with positive real
part) of Eq. (2.23).
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Considering the continuity on plane z = h for w, Φ, σzx and Dx using
Eqs. (4.1) with the aid of s4 =

√

λ1/λ3 and A4 = −H/(2πP34

√

λ3/λ1) gives the
following expressions in the absence of diffusion:

4
∑

j=1

sjPmjAj = 0, m = 1, 2,(4.2)

4
∑

j=1

sjAj = 0,(4.3)

− sjw1jAj +

4
∑

k=1

skw1kAkj = 0,(4.4)

wmjAj +

4
∑

k=1

wmkAkj = 0, j = 1, 2, 3, 4,(4.5)

A4 −A44 = 0, A4k = 0, m = 1, 2k = 1, 2, 3.(4.6)

Twenty constants Aj and Ajk (j, k = 1, 2, 3, 4) can be determined by 20 equations
including Eqs. (4.2)–(4.6) by using the method of Cramer’s rule.

The above results are similar to the ones obtained by Xiong et al. [31].

5. Numerical results and discussion

In order to determine the constants Aj , Ajk (j, k = 1, 2, 3, 4, 5), the method of
Cramer’s rule has been used to solve the system of non-homogeneous equations.
We have used the MATLAB 7.04 software to compute the values of Aj , Ajk

(j, k = 1, 2, 3, 4, 5) for computer program.
The material chosen for numerical calculations is cadmium selenide (CdSe),

which is orthotropic material. The physical data for piezothermoelastic as given
in Sharma [32] are

c11 = 74.1 × 109 Nm−2, c12 = 45.2 × 109 Nm−2, c13 = 39.3 × 109 Nm−2,

c33 = 83.6 × 109 Nm−2, c44 = 13.2 × 109 Nm−2,

T0 = 298 K, β1 = 6.21 × 105 C2/Nm2, β3 = 5.51 × 105 C2/Nm2,

λ1 = 9 Wm−1K−1, λ3 = 7 Wm−1K−1,

e13 = −0.160 × 10−3 cm−2, e33 = 34 × 10−3 cm−2,

e15 = −0.138 × 10−3 cm−2, ε11 = 8.26 × 10−11 Nm−2/K,

ε33 = 9.03 × 10−11 Nm−2/K, p3 = −2.9 × 10−6 cm−2/K,

D1 = 0.15 Cm−2, D3 = 0.25 Cm−2.



572 R. Kumar, V. Chawla

Behaviour of components of stress, electric potential, temperature change
and chemical potential per unit mass

Figures 2–4 show variation of components of stress (σ33, σ31), electric poten-
tial (Φ), temperature change (T ) and chemical potential per unit mass (µ) with
respect to distance x. The without center symbol lines correspond to piezother-
moelastic (PTE) and the centre symbols on these lines correspond to piezother-
moelastic diffusion (PTDE).

Figure 2 shows that the values of normal stress (σ33) increase for both cases
of PTE and PTDE. It is noticed that for smaller values of x, the values of σ33 for
the case of PTE remain larger (in comparison to PTDE), but for higher values
of x reverse behavior occurs.

Fig. 2. Variation of normal components of stress (σ33) w.r.t. distance (x).

Figure 3 shows that for smaller values of x, the values of tangential stress (σ31)
for the cases of PTE (z = 5) and PTDE (Z = 5) increase, but for higher values
of x, they decrease whereas for the cases PTE (z = 10) and PTDE (z = 10),
the values of σ31 decrease initially, but for higher values of x, they increase. It
is noticed that the values of σ31 in case of PTDE remain more (in comparison
with PTE).

Figure 4 shows that for smaller values of x, the values of electric potential
(Φ) slightly decrease for both cases of PTE and PTDE, but for higher values
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Fig. 3. Variation of tangential components of stress (σ31) w.r.t. distance (x).

Fig. 4. Variation of electric potential w.r.t. distance (x).
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Fig. 5. Variation of temperature change w.r.t. x.

Fig. 6. Variation of chemical potential w.r.t. x.
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of x, the values of Φ in case of PTE (z = 5, z = 10) decrease, whereas for the
case of PTDE (z = 5, z = 10), they slightly increase. It is noticed that the values
of Φ in case of PTE (z = 10) remain more (in comparison with PTE (z = 5),
PTDE (z = 5, z = 10)).

Figure 5 shows that the values of temperature change (T ) increase for both
cases PTE (z = 5, z = 10) for comparison, it is noticed that the values of T in
case of PTE (z = 10) remain more (in comparison with PTE z = 5) for smaller
values of x, but for higher values of x, the values of T in case of PTE (z = 5)
remain more, but there is minor difference in both values.

Figure 6 shows that the values of chemical potential (µ) increase for both
cases of PTDE (z = 5, z = 10) and for comparison it is noticed that the values
of µ remain more in case of PTDE (z = 10) (in comparison with z = 5) for
smaller values of x, but for higher values of x reverse behavior occurs.

6. Conclusion

Green’s functions have become a fundamental mathematical technique for
solving boundary value problems. Most treatments however focus on its theory
and classical applications in physics rather than the practical means of finding
Green’s functions for application in science and engineering. Green’s function for
two-dimensional problem in orthotropic piezothermoelastic diffusion medium has
been derived. With this objective, the two-dimensional general solution in or-
thotropic piezothermodiffusion elastic medium has been derived at first. Based
on the obtained two-dimensional general solution, Green’ functions for a point
heat source and chemical potential source in the interior of semi-infinite or-
thotropic piezothermodiffusion elastic plane is constructed by five newly intro-
duced harmonic functions. The components of displacement, stress, electric dis-
placement, electric potential, temperature change and chemical potential are ex-
pressed in terms of elementary functions. Since all the components are expressed
in terms of elementary functions, this makes them convenient to use. The com-
ponents of displacement, electric potential, temperature change and chemical
potential are computed numerically and depicted graphically. From the present
investigation, a special case of interest is also deduced to depict the effect of
diffusion.
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Appendix A

a = − δ1(εp + δ3),

b = εq(δ
2
2 − δ3) − δ1(δ1εq + δ3ε̄) − 2δ1εpe2 + 2δ2εpe1 − εp(1 + e1δ3εp),

c = e1εp(e2δ2 − δ1e1) − εq(δ1 + δ3ε̄) − 2εpe2 − δ1(δ1εqε̄− εpe
2
2)

+ δ2(δ2εqε̄+ e1e2εp),

d = − (εpe
2
2 + εqε̄δ1).

Appendix B

a1 = − q1(εqδ1ε̄+ εpe
2
2),

b1 = δ2(εqq3ε̄− εph1e2) + εpe1(δ1h1 + e2q3) − εqq1(δ1 + δ3ε̄)

− 2q1e2εp − āq1(εqδ1ε̄+ εpe
2
2)

+ δ2(r3εq ε̄− εpg1e2) + εpe1(g1δ1 + e2r3)

− εqr1(δ1 + δ3ε̄) − 2r1r2εp − D̄εpr1(δ1ε̄+ e22),

c1 = δ2(r3εq − εpg1) + e1εp(g1δ3 + r3) − r1(εqδ3 − εp)

+ D̄[δ2εq(r3ε̄− g1e2) + εpe1(δ1g1 + e2r3) − r1(εqδ3 − εp)

+ δ2(q3εq − h1εp) + 2e1εph1δ3 − q1(εqδ3 + εp) + e1q3εp]

+ a[δ2(q3εpε̄− εph1e2)

+ εpe1(δ1h1 + q3e2) − 2q1εpe2 − εq(q1δ1 + δ3qε̄)],

d1 = D̄[δ2(εqr3 − εpg1) + εpe1(g1δ3 + r3) − r1(εqδ3 + εp)]

+ ā[δ2(εqq3ε̄− εph1e2) + εpe1(δ1h1 + e2q3) − εqq1(δ1 + δ3ε̄) − 2q1εpe2,

a2 = εpe2(g1 + e1r1) + εqε̄(r1δ2 − r3) + εp(h1e2 − q3ε̄) + q1(εqδ2ε̄+ e1e2εp),

b2 = D̄[εpe2(g1 + e1r1) + εqε̄(r1δ2 − r3)] + εpg1(1 + δ1e2)

− εqr3(1 + δ1ε̄) − e1(g1δ2εp − e1r3) + r1(εqδ2 + e1εp)

+ ā[εp(h1e2 − q3ε̄) + q1(εqδ2 + e1e2εp)] + εph1(1 + δ1e2)

− q3(εp − εqδ1ε̄) − e1εp(h1δ2 − e1q3) + q1(εqδ2 + e1εp)

c2 = D̄[εpg1(1 + δ1e2) − εqr3(1 + δ1ε̄)] + δ2(εqr1 − g1e1εp)

+ e1(εpr1 − e1r3)] + δ1(εpg1 − εqr3) + ā[εph1(1 + δ1e2) − q3(εp + εqδ1ε̄),

− e1εp(δ2h1 + e1q3) + q1(εpe
2
1 + εqδ2)] + εpδ1(h1 − q3),

d2 = D̄δ1(εpg1 − εqr3) + āδ1(εph1 − εqq3),
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a3 = e2(r1δ2 − r3) − δ1(g1 + e1r1) + e2(q1δ2 − q3) − δ1(h1 + q1e1),

b3 = D̄[e2(r1δ2 − r3) − δ1(g1 + e1r1)]δ2(δ2g1 + r3e1) + r1(δ2 − δ3e1)

+ g1(δ3 + δ21) + r3(1 + δ1e2) + a[e2(δ2q1 − q3) − δ1(h1 + q1e1)]

+ h1(δ
2
2 − δ3) + q3(δ2e1 − 1) − δ1(δ1h1 + q3e2) + q1(δ2 − δ3e1),

c3 = D̄[δ2(δ2g1 + r3e1) + r1(δ2 − δ3e1) − g1(δ3 + δ21) − r3(1 + δ1e2)]

− δ1(r3 + δ3g1) + a[h1(δ
2
2 − δ3) − q3(1 + δ1e2) − δ21h1 + q3e1δ2

+ q1(δ2 − δ3e1)] − δ1(δ3h1 + q3),

d3 = −D̄δ1(r3 + δ3g1) − āδ1(δ3h1 + q3),

a4 = d, b4 = c+ āD, c4 = b+ cD̄, d4 = a+ bD̄, l5 = aD̄,

a5 = d, b5 = c+ ād, c5 = b+ āc, d5 = a+ āb, l6 = aā.
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