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THE PRESENT INVESTIGATION DEALS WITH the study of Green’s functions in or-
thotropic piezothermoelastic diffusion media. With this objective, firstly the two-
dimensional general solution in orthotropic piezothermoelastic diffusion media is de-
rived. On the basis of general solution, the Green function for a point heat source and
chemical potential source in the interior of semi-infinite orthotropic piezothermoelas-
tic diffusion material is constructed by five newly introduced harmonic functions. The
components of displacement, stress, electric displacement, electric potential, temper-
ature change and chemical potential are expressed in terms of elementary functions.
Since all the components are expressed in terms of elementary functions, this fact
makes them convenient to use. From the present investigation, a special case of inter-
est is also analyzed to depict the effect of diffusion. Resulting quantities are computed
numerically and presented graphically to illustrate the effect of diffusion.
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1. Introduction

GREEN’S FUNCTIONS OR FUNDAMENTAL SOLUTIONS play an important role in
both applied and theoretical studies of solids’ physics. Green’s functions can be
used to construct many analytical solutions of practical problems when bound-
ary conditions are imposed. Green’s functions play an important role in the
solution of the numerous problems in the mechanics and physics of solids. They
are the heart of singular integrals equation method such as the boundary ele-
ment method which is often used in engineering. For static problems, the gen-
eral solution is finally expressed in terms of five harmonic functions (more pre-
cisely weighted or quasi harmonic functions). Green’s functions with applications
systematically present various methods of deriving these useful functions. Such
a form allows one to use the solution feasibly to solve boundary value problems
associated with cracks, defects, inclusions and punches. Many researchers have
investigated Green’s function for elastic solid in isotropic and anisotropic elastic



556 R. KuMAR, V. CHAWLA

media, notable among them are LORD KELVIN [1], FREEDHOLM |[2], SYNGE [3],
PAN and Cuou [4], DEEG [5], WANG [6] and CHEN and LIN [7].

LEE and JIANG [8] investigated the boundary integral formulation and two-
dimensional fundamental solution for piezoelectric media. WANG and ZHENG
[9] derived the general solution for three-dimensional problem in piezoelectric
media. DING et al. [10] investigated the fundamental solution for piezoelectric
media. DING et al. [11] studied the fundamental solution for plane problem of
piezoelectric materials.

Piezoelectric ceramics and composites have been extensively used in many
engineering applications such as sensors, actuators, intelligent structures etc.
when thermal effects are not considered; piezoelectric ceramics and piezoelectric
polymers, which are extensively utilized in small structure and intelligent sys-
tem, all belong to pyroelectric media. RAO and SUNAR [12] pointed out that
the temperature variation in the piezoelectric media can affect the overall per-
formance of a distributed control system. Therefore, in depth investigation on
electro-thermo-mechanical coupling behavior is significant.

The thermal effect is not considered in the above works. RAO and SUNAR [12]
pointed out the temperature variation in the piezoelectric media. CHEN et al. [13]
derived the general solution for transversely isotropic piezothermoelastic media.
CHEN et al. [14] obtained Green’s function of transversely isotropic pyroelectric
media with a penny- shaped crack. HOU et al. [15] constructed Green’s function
for a point heat source on the surface of a semi-infinite transversely isotropic
pyroelectric media.

Diffusion can be defined as the movement of particles from an area of high
concentration to an area of lower concentration until equilibrium is reached.
It occurs as a result of second law of thermodynamics which states that the
entropy or disorder of any system must always increase with time. Diffusion is
important in many life processes. Nowadays, there is a great deal of interest
in the study of this phenomena, due to its many application in geophysics and
industrial applications. Until recently, thermodiffusion in solids, especially in
metals, was considered as a quantity that is independent of body deformation.
Practice however indicates that the process of thermodiffusion could have a very
considerable influence on the deformation of the body. Thermodiffusion in elastic
solid is due to the coupling of temperature, mass diffusion and strain in addition
to the exchange of heat and mass with the environment.

NowACKI [16-19] developed the theory of thermoelastic diffusion by using
coupled thermoelastic model. This implies infinite speed of propagation of ther-
moelastic waves. SHERIEF et al. [20] developed the generalized theory of thermoe-
lastic diffusion with one relaxation time which allows finite speeds of propaga-
tion of waves. Recently KUMAR and KANSAL [21] derived the basic equations for
generalized thermoelastic diffusion (GL model) and discussed the Lamb waves.
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KuMAR and CHAWLA [22] discussed the surface wave propagation in an elastic
layer lying over a thermodiffusive elastic half-space with imperfect boundary.
KUANG [23] discussed the variational principles for generalized thermodiffusion
theory in pyroelectricity. KUMAR and CHAWLA [24] obtained the fundamental
solutions for orthotropic thermodiffusive elastic media. Recently KUMAR and
CHAWLA [25] derived the Green function for two-dimensional problem in or-
thotropic thermoelastic diffusion media. However, the important Green’s func-
tion for two-dimensional problem for a steady point heat source in orthotropic
piezothermoelastic diffusion medium has not been discussed so far.

In order to theoretically study surfaces of fairly arbitrary materials for initial
and boundary value problems, there is a need for the computational approach
because complex geometries can not be treated analytically, in general. So in
the present problem, we have developed a formalism to investigate it by using
Green’s functions.

The Green function for two-dimensional problem in orthotropic piezother-
moelastic diffusion medium is investigated in this paper. The adopted approach
is to obtain closed form expression for the piezothermoelastic diffusion media
by using Green’s functions. Green’s functions are very useful for the analysis of
many problems in the mathematics and physics of piezothermoelastic diffusion
solid.

2. Basic equations

The basic governing equations of orthotropic piezothermodiffusive elastic ma-
terials can be found in [23]. If all the components are independent coordinate v,
this is the so-called plane problem. The constitutive equations in two-dimensional
Cartesian coordinate (z, z) can be expressed as

ou ow 0P

(2.1) Oaw = C115 -+ 35— + €315 = BT = bip,
(2.2) Ozz = 013% + 0332—2} + 633g—f — 33T — bap,
(2.3) Oz = Ca44 (% + g—:) + 6152_?

(2.4) D, =e5 (% + g—:) - Eng—i,

(2.5) D, = 631% + egsa—w — 6338_(15 + p3T,

ox 0z 0z

where u and w are components of the mechanical displacement in  and z di-
rections, respectively; o;; and D; are the components of stress and electric dis-
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placement, respectively; 3; and b; are material constants. @,7T and u are electric
potential ,temperature increment and chemical potential respectively; c;;, €;5, €45,
and p3 are elastic piezoelectric, dielectric, thermal modules, diffusion modules
and pyroelectric constants, respectively.

The mechanical, electric, heat equilibrium and mass diffusions equations for
static problem, in the absence of body forces, free charges, heat sources and mass
diffusive sources are

29
(2.7) 8;3; + %(;Z —0,
(2.8) <)\1;2—2x + )\388—222>T =0,
(2.9) (Dla(z—l + Dg(%)M = 0.
We define the dimensionless quantities:
(2,2 ' w') = i—f(m,z,u,w), 0 = ﬁj%)’

T’:Tzo, u’:%, D;:\/%, H’:TO:—MH, Pl:vlliwf’
where
(2.10) 2=b fo Wi = ﬂbllilll.

Substituting Egs. (2.1)—(2.5) into Egs. (2.6) and (2.7) and applying the dimen-
sionless quantities defined by (2.10) to resulting equations, after suppressing the
primes, we obtain

0? 0? 0*
2.11 — +0h= )
(2.11) (3x2+ 1822>u+< 283}82>w
_ 0% 0 0
_ elgp—ﬁmaz - <%>T —q1 <%>,u =0,

ok 0? 0
2.12 — —
(2.12) <52 8m8z> vt (51 92 " % 022 ) v
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0? 0? 0?
(2.13) <€1axaz>“ * (eQW * @)w
AL 0?2 0 0
5q<€ax2 02)“91(@)““(@)“—0’
9?2 - 0?
(2.14) (62 + A

Jr=o
0?0
1

(01,02,03) = o <C44, c13 + ca4, 033>,

1
(e1,e2) = — | es1 +eis,€e15 |,
€33
1 9, 9
(r1,73,q1,q3) = C—H(ﬁlTO,ﬁ?)To,bwl,b:a%),

1
(8791> = —(511,P3T07b3’l)%),

€33
() = — <633%WT o] ) :
v1 C11 €33
- ﬁa 5 &, by — vfiTo.
A Dy w*ess
Equations (2.11)—(2.15) can be written as
(2.16) D{u,w,®,T,u} =0,
where D is the differential operator matrix given by
(2.17)
ot 513 2 523:1:8,2 e1Ep 52 —rigy ~
drgly 01 8x2 +53az2 Sleds + )8 i ~035%
Cigbor 2t g —ca(Ehm + i) 95 h1 g
0 0 0 (2 +a2) 0
.0 0 0 0 (Z + D))

Equation (2.16) is a homogeneous set of differential equations in w,w,®, T, p.

The general solution according to the operator theory is as follows:
u=ApnF, w=ApF, &= A3F,

(2.18) ,
T:AZ‘4F, ,u:Ai5F (121,2,3,4,5).
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The determinant of the matrix D is given as

o 90 90 99
(2.19) 1Dl = (a@ * b8m28z4 T dw>
0? - 0? 0? _ 92
x <W “@) (W +D@>’

where a,b,c,d are given in Appendix A. The function F' in Eq. (2.18) satisfies
the following homogeneous equation:

(2.20) ID|F = 0.

It can be seen that if i was set to 1 or 2 in Eq. (2.18), one can get two sets
of general solution with P = 0, T' = 0 and g = 0, which are actually to those
for pure elasticity (see [26]); ¢ = 1,2 and 3 corresponds to the solution for
piezoelectricity discussed in [28]; i = 4 corresponds to the general solution W
with p = 0 which is identical to that for piezothermoelaticity; ¢ = 5 corresponds
to the general solution Wy with T' = 0.

Due to the linear nature of the piezothermoelastic diffusion theory adopted
in this paper, follows the same procedure as used by LI et el. |28, 29] with
superposing Wp and W, this leads to

— a_6+b 66 + 86 _F

YT\ M6 T M 1922 Cla 28 vl
85 85 86 8F

w = a2ﬁ+b28482+028284 —
89 85

(2.21) @—(ag,ﬂ-i-b;;a 482+636 284 )

8 B8 o8 B8

r= (‘”W“’“a 6922+ “igst +d4a 5922 ”5@)}7’

8 88 88 88 88
— (a5 7 \F
# (“5 05 692 T O gaiga T B Ty, ) ’

where the coefficients ay, by, cx, di, (kK =1,2,3,4,5) and [5, lg are the expressions
given in Appendix B.
The general solution of Eq. (2.16) in terms of F' can be rewritten as

S92 82
2.22 —+—= |F =0
(2:22) H (8362 - 67:?-) ’
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where z; = 552, 54 = \/A1/A3, 5 = \/D1/D3 and s; (j = 1,2, 3) are three roots

(with positive real part) of the following algebraic equation:

(2.23) as® —bs? +cs? —d =0.

As known from the generalized Almansi theorem [30], the function F' can be
expressed in terms of five harmonic functions:

1. F=F+FK+Fs+F+ Fs for distinct Sj (] = 1,2,3,4,5),
2. F=F+ F,+ F3+ Fy+ 2F; for s1 # s2 # s3 # s4 = 55,
(2.24) 3. F=F| + Fy + F3 + zF, + 2% F5 for s1 # so # 83 = $4 = S5,

A F =F) + Fy+ 2F3 + 22F; + 23F} for s1 # s9 = s3 = 54 = $s,
5. F = F\ 4+ 2Fy + 22F3+ 2Fy + 2*F5  for 51 = s9 = s3 = 54 = S5,

where Fj satisfies the following harmonic equation:

0? 0?
2.25 —+ == |F;=0 ) =1,2,3,4,5).
( ) <ax2+azj2> J ’ (.7 5 Ly 9y Ty )

The general solution for the case of distinct roots, can be derived as follows:

5

d7F; ° O7F;
Zplj 81‘8 6’ w = ZSJPQJ Oz 7 ) Q= Zsjp3j 827]’
j=1 j

(2.26) =1
T—p 0%F, _, 0¥ Fx
44 82’2 3 H 55 aZ? .

Equation (2.26) can be further simplified by taking
O°F;
(2.27) i =
Use of (2.27) in Eq. (2.26) yields
5. o, 5 O 5 O
— J — Py — P
u—;%, w_;Sjpljazj’ dj_jz:;sjpljazj7

D%y
323 ’

(2.28)
s

T = P3y 8—2’%7

C =Py
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where

P = paj/p1j, Pyj = p3;/p1j, P34 = paa/p14, Py5 = ps5/p1s5.

The function v; satisfies the harmonic equation

9> 0 ,
(229) (W + @)d}] = O, J= 1,2,3,4,5.
J

Applying the dimensionless quantities defined by (2.7) to Egs. (2.1)-(2.5), after
suppressing the primes, with the aid of (2.28) we obtain

5
0,
Opz = Z (=f1+ fosiPy + fssiPa; — Psj — f4P4j)8—d;j7
j=1 Zj
5 32¢.
O = Z (—fa+ f585 Py + fosiPaj — f1Psj — f8P4j)a72]a
j=1 J
5 82wj
oy — 14 P Pyilsi— L
(2.30) o ; [fo(L 4+ P1j) + froP2yls; D20z,
5 82’(/}
D, = Z [ll(l + Plj) — nloPQj]sj 8:68,;‘,

<
Il
-

01,

2 b
8,2]-

A
I

(—lz + l38§P1j — TLQSJZ-PQJ' + n3P3j — n4P4j)

7j=1

where

P3y = Py = P33 = P35 =0 and Py = Pyo = Py3 = Py = 0,

and
(f1, f2, f3, fas f5, f6,) = ﬁ <C11,C13, %7&#070337 %),
O L
(I1,l2.03,n1,n2,n3,M4) = \/ﬁ <e15, es1, €33, 61121‘@07 5Hfgﬁo,P?,To, b§,uo>.

Substituting Eq. (2.30) into Egs. (2.1)—(2.5), with the aid of (2.5) and (2.6) gives
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fi— (f2P1] + f3p2j)3 + P3] + f4P4J [f9(1 + Plj) + flOPQJ] Sjs

— fo+ (fsP1j + foPoj)s; — frPsj — fsPaj = [fo(1 4+ Pij) + froPy),
231 4 (3P, — naPyj)s5 + n3Psj + naPyy = l(1 + Pyj),

(A1 — A3s5)Psj =0,

(D1 — D3s5)Py =0 (j=1,2,3,4,5).

By virtue of the above equations, the general solution (2.30) can be simplified
as

5 5
0%y 0% 0%y,
Ogx = S?UJl] 02 2 ) = Z W14 (922-]’ = ZS]UHJ 8:3(9,;
1 j
(232 : 5 0% ° aw
Dr=2 siwigepyy  De= vy
j=1 J j=1 J
where
J1 = (faPyrj + f3P2j)s? + Psj + f4Py;
wij = ’ 8; ! ’ L= fo(1+ Pyj) + froPyj
J
(2.33)

= — fa+ (fsPij + foPaj)s; — frPs; — fsPyj,
wo; = — ls + (lgPlj — nngj)Sj + n3P3j + n4P4j = ll(l + Plj) — nlpgj.

3. Green’s function for a point heat source and chemical potential
source in the interior of a semi-infinite orthotropic piezothermodif-
fusion elastic material

As shown in Fig. 1 we consider an orthotropic semi-infinite piezothermodiffu-
sion elastic material z > 0. A point heat source H and chemical potential source

o b X

H, P (0, h)

Fi1c. 1. A semi-infinite piezothermodiffusive elastic plane applied by a point heat source of
strength H and chemical potential source of strength P.
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P are applied at the point (0, h) in two-dimensional Cartesian coordinate (z, 2)
and the surface z = 0 is free, thermally insulated and impermeable boundary. In
Cartesian coordinate system, the general solution given by equation (2.28) and
(2.32) in this semi-infinite plane is derived in this section.

In the rest of the paper, following notations are introduced:

zj = 8%, hy = sih, Zjk = Zj + hp,

(3.1) rik = /22 + z?k, Zik = zj — hu,
Tk = /22 + 2 (4 k=1,2,3,4).

By virtue of trial and error method, Green’s functions in the semi-infinite plane
are assumed in the following form:

1, _ 3 _ =z
(3.2) ;= A, [5(,2]2] — %) (log Tjj — 5) — xZ;; tan” ! (Z—)]
7j

5
1 3 _ T
+ g A [E(z?k —2?) <logrjk — 5) — xzj), tan 1 <—)},
k=1 Zjk

J=12,3,4,5,

where A; and Aj, (j,k =1,2,3,4,5) are 30 constants to be determined.
The boundary conditions at the surface z = 0 are

op_, oT

(33) Ozz = 0z =0, D, =0, 92 0z

=0.

Substituting Eq. (2.30) into Egs. (2.28) and (2.32), we obtain

5
_ _ Lz
(3.4a) u= Z A; [:L“(log Fjj — 1) + Z;; tan™! 5]

Mm

5
Z Ajk{ (logrjr — 1) + zji tan™ i],
=1

ij

.
Ead
Il
—

(3.4b) w = Z s; Py A [z” log7j; — 1) — ztan™* zi]
Ji

Mm

5
x
+ Z s;P1jAjk [z]k(logr]k —1) —ztan™ —],
J=1

ij

B
Il
—
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(3.4¢) ¢ = ZSJPU [z” (log7;; — 1) — xtan™* i]

2jj

5 5
x
+ZZS Py Ajy [z]k(logrjk —1) —ztan™ 1—],

j=1k=1 Zjk
5
(3.4d) T = P34 AslogTas + P3y Z Aupra,
k=1
5
(3.4e) p = P35A51og 55 + Py Z AskT5ks
k=1
5 5 5
(3.4f) Opz = Zs wi;Ajlog 7y — ZZS w1 A logrjr,
7j=1 j=1k=1
5
(3.4g) Opy = Zwlej log T+ Zzwlejk log Tjks
j=1 j=1 k=1
5 z 5 5 T
—1 -1
(3.4h) Oyp = — Z sjwlej tan 2— — Z Z sjwlejk tan a,
j=1 I =1 k=1 J
5 5 5 .
(3.41) D, = — Z sjwo;j Ajtan” 7 Z Z sjwa; A tan” 7,
j=1 7j=1 k=1
(34J) Dz = ngjA logrjj +ZZUJ2] klog Tjk-
=1 k=1
Considering the contlnulty on plane z = h for w, @, 0,, and D, gives the
following expressions:
5
(3.5) Z SjPlej = 0,
5
(3.6) Z sjwlej = 0,
j=1
5
(3.7) Z SngjAj = O,

—
w
o
N—
<.
(=7
—_

SngjAj =0
Jj=1
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Equations (3.5)—(3.8) can be written in combined form as

5
(39) ZSijjAj = 0, m = 1, 2,
j=1
5
(3.10) > sjwmiAj = 0.
j=1

Substitution wy,; (m = 1,2) from Eq. (2.33) into (3.10) gives

hE

(3.11) si[fo(1+ Prj) + fioPe;]A; =0,

<.

Mo I

<
I
=

(312) Sj[ll(l + Plj) — angj]Aj =0,

By their virtue, Egs. (3.9), (3.11) and (3.12) can be simplified to one equation

(3.13) D 5545 =0.

Considering the mechanical, electric and thermal equilibrium as well as chemical
potential per unit mass for a rectangle of a; < z < ag and —b <z <b (b > 0),
four equations can be obtained

b a
(3.14a) /[azz(ac,ag) — 0zx(z,a1)]de + / [022(b, 2) — 022(—b, 2)]dz =0,
—b 0
b a
(3.14Db) [D.(x,a2) + D.(x,a1)|dz + [ [Dg(b,z) — Dy(—b, 2)]dz =0,
/ /

(3.14c) —)\/ [g—f(az,ag) - g—f(x,al)] dx—/ [Z—Z(b, 2) — Z—Z(—b, 9a =,
- 0 B

(3.14d) —D/b [%(m,ag) _ %(x,al)] daz—/ [%(b, 2) — %(—b, 9dz=p
b 0 B



GENERAL STEADY-STATE SOLUTION AND GREEN’S FUNCTION. . . 567

Some useful integrals are listed as follows:

(3.15a) /10g 7jj = x(logTj; — 1) + zj; tan™" <_i>
77

(3.15b) /log rjx = z(logrj, — 1) + 2z, tan ™" <zi
ik

)
)

1

(3.15(3) /tan_l <i> = — <$’ log T+ Zjj tan_l <i>

255 Sj Zjj

1

(3.15d) /tanl <i) =— (ac log 7k, + 2jx tan ™! (i ),

Zjk Sj 255

4

oT
(3.15¢e) —dx = 54 P34 | Agtan™ — + Z Aygp tan™! L ,

0z 244 Z4k

k=1

oT P: x 1 T
(3.15f) dr=-"H <A4 tan~! —— + Z Aytan™t —> ,

ox S4 244 1 Z4

ou x . x
(3.15g) / &dw = A]'SjPQj tan~! a + Z AijjPQj tan ! a,

k=1
4

0 A

(3.15h) / Pz = A P tan~! — — Z —jkng tan~! .
Zij = si Zjk

It is noticed that the integrals (3.15f, h) are not continuous at z = h; hence, the
following expression should be used:

(3.16)

Substituting Eq. (3.4) into Egs. (3.14a, b) and using the integrals (3.15a, b),
yields

5 5 5
=1 =1 k=1
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where
z2=as x=b
L = <x(10grjj — 1)+ zjtan" ! <i>>
ZJ] zZ=ai r=—b
r=b |*T92
- <ZL‘ log 7; + Z;; tan™* <_i>> ,
Zjj T=—b 2=a1
(3.18)

r=b

x zZ=as
I, = <1:(10g ik — 1) + zjp tan ™t <—>>
Zik F=01] g=—b
x=b 7792
— <x log 7k + 2j tan™? (i)> .
ij r=-—b

z=ay

To simplify, we obtain Iy = 0 and I = 0, i.e., Egs. (3.17) and (3.14a, b) are
satisfied automatically.

Using Eq. (3.4d) in Eq. (3.14¢), and using the integrals (3.15e, f) with the
aid of (3.16a) and s4 = \/A1/A3 in the resulting equation, we obtain

4
H
(3.19) Agdz + ) Agply = ——F—=,
; PZM\/M
where
" z=az7 r=b T w=b 1*=h"
e (o (2))7 [ (2)
Z44 z=a1d z=—b “44 r==b z=a1
x=b 1*=92
X
(3.20) + (tan_l (_—)) ] )
244 r==b] ,_p+

I, =

z=b zZ=as z=as x=b
x x
) M | G ) N
#4k r==b],_q Ak F=OL] p=—b
When solving Egs. (3.20, we obtain I3 = —27 and I, = 0.
Thus, A4 can be determined from Egs. (3.19) and (3.20), as follows:
I S
2 Pyyrn/As/ M

Substituting the value of p from Eq. (3.4e) into Eq. (3.14d), and using the
integrals (3.15g, h) with the aid of (3.16d) and s5 = y/D;1/Ds3 in the resulting

(3.21) Ay =
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equation, we obtain

5

P
(3.22) Asls + Asply = ———F——,
kzl Py5+/ D3/ D1
where
z z=ay] T=0 z a=b 7#=""
e () (o ()
255/ ) 2mar | ,__, %5/ ) a=b], o
z=b 7722
(3.23) + (tam‘1 (ﬁ)) = —2m,
255 r==b] ,_p+

z=asz

I, =

(o ()l ()] o

Thus, A can be determined from Egs. (3.22) and (3.23), as follows:

zZ=a1

P
2 Pys\/D3/Dy

At the surface z = 0, Eq. (2.16) reduces to

(3.24) As =

zj =0, hi = sih, Zjk = hg,

(3.25)
Tik = \/ 2 + hz, Zik = —hy, rik = \/:L'Q + hi

Substituting Eq. (3.4) into boundary conditions (3.3) and with the aid of s4 =

VA1/A3, s5 = /D1/Ds and Eq. (3.25), we obtain

5

(3.26) —sjwlej + Z SkwlkAkj =0,
k=1
5
(3.27) WinjAj+ Y wakAr; =0, j=1,2,3,4,5,
k=1
(3.28) A4 — A44 = 0, A4k = O, m = 1, 2,
(3.29) As — As5 =0, Asp =0, k=1,23,4.

Thus, 30 constants A; and Aj;, (j,k = 1,2,3,4,5) can be determined by 30
equations including Egs. (3.9), (3.13), (3.21), (3.24) and (3.26)—(3.29).
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4. Special case

In the absence of chemical potential per unit mass, Eqs. (3.4) reduce to

4

x
4.1 =Y Aj|a(logTy; — 1) + Zjtan~" —
(4.1a) u ' J[x(OgTJJ ) + zjj tan ij]

4 4
—ZZA]k[ (logrj — 1) + 21 tan™ 11}

o
j=1 k=1 ik

(4.1b) w = ZSJPU [z” log7;; — 1) — xtan™" Zi}
Ji

4 4
i
+ Z Z Sjplejk [ij(log Tk — 1) — ztan™! —:| ,
7j=1k=1

ij

(4.1c) ¢ = ZSJPU [zﬂ log7;; — 1) — xtan™" Zi}
Jj

4 4
x
+ Z Z siP1jAjp [zjk(log rjk — 1) —ztan™! —] ,
=1 k=1 Zik
4

(4.1d) T = Py AglogTas + Pss Y Agerar,
k=1

4
g swlj Aj logrjg,

M%

4
(4.16) Opy = — Z s?wlej log T —

j=1 j=1 k=1
4 4
(4.1f) Oyy = Zw1]A logr]] Zzwlejk logrjk,
j=1 7j=1k=1
4 4 4 .
(4.1g) Opg = — Z sjwyjAjtan™ — Z Z sjwijAj, tan™ 7,
j=1 j=1 k=1 ik
4 . 4 4 .
4.1h D, = — awgjA;tan™t — — wyj Ay, tan ™t
( ) T ZSJU’ZJ j van Zox ZZSJ“)?J jk tan P
j=1 17 =1 k=1 J

(4.11) D, = Z'UJQ]A log 75; + ZZMQJ jk log 7k,

7j=1 k=1

zj = 8z, sS4 = \/A1/As3, and s; (j = 1,2,3) are three roots (with positive real
part) of Eq. (2.23).



GENERAL STEADY-STATE SOLUTION AND GREEN’S FUNCTION. . . 571

Considering the continuity on plane z = h for w, @, 0,, and D, using

Egs. (4.1) with the aid of s4 = \/A1 /A3 and Ay = —H /(2w P34/ A3/ A1) gives the
following expressions in the absence of diffusion:

4

(4.2) > siPnjA; =0,  m=1.2,
j=1

4
(4.3) D 545 =0,
j=1

4

(4.4) — Sjwlej + Z SkwlkAkj =0,
k=1
4
(4.5) WAy + Y WA =0, j=1,2,34,
k=1
(4.6) Ay—Ap =0, A =0, m=1,2k=123.

Twenty constants A; and Aj, (4,k = 1,2,3,4) can be determined by 20 equations
including Eqs. (4.2)—(4.6) by using the method of Cramer’s rule.
The above results are similar to the ones obtained by XIONG et al. [31].

5. Numerical results and discussion

In order to determine the constants A;, A, (j, k = 1,2,3,4,5), the method of
Cramer’s rule has been used to solve the system of non-homogeneous equations.
We have used the MATLAB 7.04 software to compute the values of A;, Aj;
(J,k=1,2,3,4,5) for computer program.

The material chosen for numerical calculations is cadmium selenide (CdSe),
which is orthotropic material. The physical data for piezothermoelastic as given
in Sharma [32] are

c11 = 74.1 x 10° Nm™2, c¢12 =45.2 x 10 Nm™2, c¢13 = 39.3 x 10° Nm 2,
c33 = 83.6 x 10° Nm ™2, cqq = 13.2 x 10° Nm 2,

Ty =298 K, (1 =6.21x10° C?/Nm?, 3 =5.51 x 10° C?/Nm?,

M =9 Wm 'K A=7Wm 'K

e13 =—0.160 x 1072 em™2, e33 =34 x 1073 cm ™2,

e15 = —0.138 x 1072 cm™2, &1 = 8.26 x 1071 Nm?/K,

£33 =9.03 x 107 Nm™2/K, p3=-29x10"% cm™?/K,

D; =0.15Cm™2, D3=025Cm 2.
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Behaviour of components of stress, electric potential, temperature change
and chemical potential per unit mass

Figures 2-4 show variation of components of stress (o33, 031), electric poten-
tial (@), temperature change (7") and chemical potential per unit mass (u) with
respect to distance x. The without center symbol lines correspond to piezother-
moelastic (PTE) and the centre symbols on these lines correspond to piezother-
moelastic diffusion (PTDE).

Figure 2 shows that the values of normal stress (o33) increase for both cases
of PTE and PTDE. It is noticed that for smaller values of x, the values of o33 for
the case of PTE remain larger (in comparison to PTDE), but for higher values
of z reverse behavior occurs.

247

PTE (z=4)
————PTE(z=9)
—+— PTDE (z=4)

20 1

— -3 — PTDE (z=28)

—_— —_
[\S) N
L L

o]
L

Normal components of stress

Distance (x)

F1c. 2. Variation of normal components of stress (o33) w.r.t. distance (z).

Figure 3 shows that for smaller values of x, the values of tangential stress (o31)
for the cases of PTE (z = 5) and PTDE (Z = 5) increase, but for higher values
of x, they decrease whereas for the cases PTE (z = 10) and PTDE (z = 10),
the values of 031 decrease initially, but for higher values of z, they increase. It
is noticed that the values of 031 in case of PTDE remain more (in comparison
with PTE).

Figure 4 shows that for smaller values of x, the values of electric potential
(®) slightly decrease for both cases of PTE and PTDE, but for higher values
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16 -
PTE (2= 4)

——————— PTE (z=38)

21 | 4w PTDE(=4)
———a---PIDE(z=9)

Tangential components of stress

Fic. 3. Variation of tangential components of stress (o31) w.r.t. distance (z).

52 1

48 1

3
Distance (x)

44 -

40 -

PTE (z=4) | \

- PTE(z=8) |
- PTDE (z=4)| '

36 | |——+——— PTDE (z=8)|

32 1

28 1

Piezoelectric

24 1
20 1
16 1

12 1

8 —

gI}—B-—B-—B-—D-—D-—D-
4 :

T n 5o o

0 1
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Fia. 4. Variation of electric potential w.r.t. distance ().
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PTE (z=4)

I l---=--=--- PTE (z=38)

Temperature change

Distance (x)

Fic. 5. Variation of temperature change w.r.t. z.

———+—— PTDE (z=4)
~—--B---PIDE(z=8)

Chemical potential

Distance (x)

F1G. 6. Variation of chemical potential w.r.t. x.
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of z, the values of @ in case of PTE (z = 5, z = 10) decrease, whereas for the
case of PTDE (z = 5, z = 10), they slightly increase. It is noticed that the values
of @ in case of PTE (z = 10) remain more (in comparison with PTE (z = 5),
PTDE (z =5, z = 10)).

Figure 5 shows that the values of temperature change (7) increase for both
cases PTE (z = 5, z = 10) for comparison, it is noticed that the values of T" in
case of PTE (z = 10) remain more (in comparison with PTE z = 5) for smaller
values of x, but for higher values of z, the values of T" in case of PTE (z = 5)
remain more, but there is minor difference in both values.

Figure 6 shows that the values of chemical potential (x) increase for both
cases of PTDE (z = 5, z = 10) and for comparison it is noticed that the values
of p remain more in case of PTDE (z = 10) (in comparison with z = 5) for
smaller values of x, but for higher values of = reverse behavior occurs.

6. Conclusion

Green’s functions have become a fundamental mathematical technique for
solving boundary value problems. Most treatments however focus on its theory
and classical applications in physics rather than the practical means of finding
Green’s functions for application in science and engineering. Green’s function for
two-dimensional problem in orthotropic piezothermoelastic diffusion medium has
been derived. With this objective, the two-dimensional general solution in or-
thotropic piezothermodiffusion elastic medium has been derived at first. Based
on the obtained two-dimensional general solution, Green’ functions for a point
heat source and chemical potential source in the interior of semi-infinite or-
thotropic piezothermodiffusion elastic plane is constructed by five newly intro-
duced harmonic functions. The components of displacement, stress, electric dis-
placement, electric potential, temperature change and chemical potential are ex-
pressed in terms of elementary functions. Since all the components are expressed
in terms of elementary functions, this makes them convenient to use. The com-
ponents of displacement, electric potential, temperature change and chemical
potential are computed numerically and depicted graphically. From the present
investigation, a special case of interest is also deduced to depict the effect of
diffusion.
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Appendix A
a= —6i(ep+ 03),
b=e,4(05 — 03) — 81(0164 + 038) — 2616pen + 2025pe1 — £p(1 + €1036,),
¢ = e1ep(eady — S1€1) — £4(01 + 838) — 2epe2 — 51(81648 — €pe3)

+ 02(02e48 + e1€2ep),

d= — (ep€3 + £4801).
Appendix B
a = — q1(5q51§+ 8;,,6%),

b1 = 02(4q38 — ephiez) + eper(01h1 + e2g3) — €41 (01 + 038)
— 2q1e2ep, — aqi1(gq01€ + Epe%)
+ 02(r3e48 — €pgre2) + €pe1(g101 + er3)
— 471(01 + 038) — 2r179e, — Depri (018 + €3),

c1 = 0a(r3eq — epg1) + e16p(9103 + 13) — r1(eg03 — £p)

+ D[b2e4(r3& — grea) + epe1(d1g1 + ears) — r1(e403 — &)
+ (52(Q3€q — h1€p) + 261€ph1(53 —q1 (€q53 + Ep) + 61(]3€p]

+ ald2(gzepe — ephiea)

+ epe1(01h1 + gze2) — 2qiepes — g4(q1d1 + J3¢8)],
dy = D[62(gqr3 — €pg1) + €pe1(g1ds + 13) — 11(2403 + €p)]

+ ald2(gqq3€ — ephiea) + epe1(d1h1 + e2q3) — £4q1(01 + 03€) — 2q1€pe2,
az = epea(g1 + e171) + €¢E(r102 — r3) + ep(hiez — q3€) + q1(g402€ + ere2ep),

by = Dlepea(g1 + e1r1) + €48(r102 — 73)] + €pgr (1 + d1e2)
—eqr3(1+ 018) — e1(g102ep — e173) + r1(e402 + e16p)
+alep(hiea — q3€) + q1(eq02 + e1eaep)] + ephi (1 + d1e2)
— q3(ep — €4018) — e1ep(h1d2 — €1q3) + qi (402 + e1€p)
c2 = Dlepgi(1 + 81e2) — g4r3(1 + 618)] + d2(g4m1 — gre16)p)
+e1(epr1 — e1r3)] + 1(epgr — &qr3) + alepha (1 + d1e2) — g3(ep + £401€),
— e16p(02h1 + €1q3) + quepel + £402)] + pd1(h1 — g3),

do = D51 (z—:pgl — Eq’l“g) + C_L51(€ph1 — €qq;3),
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az = ez(r162 —r3) — d1(g1 + e1r1) + e2(q102 — g3) — d1(h1 + qre1),

by = Dlea(r182 — r3) — 81(g1 + e171)]02(d291 + 73€1) +71(32 — dze1)
+91(63 + 67) + r3(1 + diea) + alea(d2q1 — g3) — 81 (hn + qren)]
+ h1 (65 — 03) + q3(62e1 — 1) — 61(61h1 + gze2) + q1(52 — dze1),

c3 = D[02(62g1 + 13€1) + 71(82 — d3€1) — g1(03 + 07) — r3(1 + d1e2)]
— 61(r3 + 0391) + a[hn (63 — 83) — g3(1 + d1ez) — 671 + gze1da
+ q1(02 — d3ze1)] — 61(d3h1 + g3),

d3 = —Dé1(r3 + 8391) — ad1(d3h1 + g3),

ag=d, by=c+aD, c4=b+cD, dy=a+bD, I5=aD,

as=d, by=c+ad, cs=b+ac, ds=a-+ab, Ig=aa.

References
1. W. THOMPSON, Sk (LORD KELVIN), Note on the integration of the equations of equilib-

10.

11.

rium of an elastic solid, Mathematical and Physical Systems, Cambridge University Press,
London, 1882.

I. FREEDHOLM, Sur les equations de [’equilbre d’um crops solide elastique, Acta Mathe-
matica, 23, 1-42, 1900.

J.L. SYNGE, The Hypercircle in Mathematical Physics, Cambridge University Press, Lon-
don, UK, 1957.

Y.C. Pan, T.W. Cnou, Point forces solution for an infinite transversely isotropic solid,
ASME Journal of Applied Mechanics, 43, 6080-612, 1976.

W.F. DEeEG, The analysis of dislocation, crack and inclusion problem in piezoelectric
solids, Ph.D. Dissertation, Stanford University, 1980.

B. WANG, Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric mate-
rial, Int. J. Solids Struct., 29, 293-308, 1992.

T.Y. CHEN, F.Z. LiN, Numerical evalution of derivatives of the anisotropic piezoelectric
Green’s functions, Mech. Res. Commun., 20, 501-506, 1993.

J.S. LEE, L.Z. JiaNG, A boundary integral formulation and 2D fundamental solution for
piezoelectric media, Mech. Res. Commun., 22, 47-54, 1994.

7Z.K. WaNG, B.L. ZHENG, The general solution of three-dimensional problem in piezo-
electric media, Int. J. Solids Struct., 31, 105-115,1995.

H.J. Ding, J. LiaNG, B. CHEN, Fundamental solution for transversely isotropic piezo-
electric media, Sci. China A, 39, 766-775, 1996.

H.J. Ding, G.Q. WANG, W.Q. CHEN, Fundamental solution for the plane problem of
piezoelectric materials, Sci. China E,; 40, 331-336, 1997.



978

R. KuMAR, V. CHAWLA

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S.S. Rao, M. SUNAR, Analysis of distributed thermopiezoelectric sensors and actuators
in advanced intelligent structure, ATAA J., 31, 1280-1284, 1993.

W.Q. CHEN, On the general solution for piezothermoelastic for transverse isotropy with
application, ASME, J. Appl. Mech., 67, 705-711, 2000.

W.Q. CHEN, C.W. Lim, H.J. DiNG, Point temperature solution for a penny shaped crack
in an infinite transverse isotropic thermopiezoelastic medium, Engng. Anal. with Bound.
Elem., 29, 524-532, 2005.

P.F. Hou, W. Luo, Y.T. LEUNG, A point heat source on the surface of a semi-infinite
transverse isotropic piezothermo elastic material, SME J. Appl. Mech., 75, 1-8, 2008.

W. Nowackl, Dynamical problem of thermodiffusion in solid, I, Bulletin of Polish
Academy of Sciences Series, Science and Tech., 22, 55-64, 1974.

W. Nowackl, Dynamical problem of thermodiffusion in solid, II, Bulletin of Polish
Academy of Sciences Series, Science and Tech., 22, 129-135, 1974.

W. Nowacki, Dynamical problem of thermodiffusion in solid, III, Bulletin of polish
Academy of Sciences Series, Science and Tech., 22, 275276, 1974.

W. Nowackl, Dynamic problems of thermodiffusion in solids, Proc. Vib. Prob., 15, 105—
128, 1974.

H.H. SHERIEF, H. SALEH, A half space problem in the theory of generalized thermoelastic
diffusion, Int. J. of Solid and Struc., 42, 4484-4493, 2005.

R. KuMmaARr, T. KANSAL, Propagation of Lamb waves in transversely isotropic thermoe-
lastic diffusive plate, Int. J. of Solid and Struct., 45, 5890-5913, 2008.

R. KuMAR, V. CHAWLA, Surface wave propagation in an elastic layer lying over a ther-
modiffusive elastic half-space with imperfect boundary, Mechanics of Advanced Material
and Structure, 18, 352-363, 2011.

7Z.B. Kuang, Variational principles for gemeralized thermodiffusion theory in pyroelec-
tricity, Acta Mechanica, 214, 275-289, 2010.

R. KuMAR, V. CHAWLA, A study of fundamental solution in orthotropic thermodiffusive
elastic media, Int. Commun. Heat and Mass Transf., 38, 456-462, 2011.

R. KuMaAR, V. CHAWLA, Green’s functions in orthotropic thermodiffusive elastic media,
Engng Anal. with Bound. Elem., 36, 1272-1277 , 2012.

H.A. EvLioTT, Three-dimensional stress distributions in aeolotropic hexagonal crystals,
Proc. Cambridge Philos. Soc., 44, 522-533, 1948.

H. Ding, J. LianG, The fundamental solution for transversely isotropic piezoelectricity
and boundary element method, Computer and Structure, 71, 447-455, 1999.

X.Y. L1, W.Q. CHEN, H.Y. WANG, General steady solution for transversely isotropic
thermoporoelastic media in three-dimensions and its application, European Journal of Me-
chanics A /Solids, 29, 317-326, 2010.

X.Y. Li, W.Q. CHEN, H.Y. WANG, Three-dimensional general solutions for ther-
moporoelastic media and its application, European Journal of Mechanics A /Solids,
doi:10.1016/j.euromechsol.2009.11.007.

H.J. Ding, B. CHEN, J. LIANG, General solutions for coupled equations for piezoelectric
media, Int. J. Solids. Struct., 16, 22832298, 1996.



GENERAL STEADY-STATE SOLUTION AND GREEN’S FUNCTION. . . 579

31. S.M. Xiong, P.F. Hou, S.Y. YANG, 2-D Green’s Function for semi-infinite orthotropic

piezothermoelastic plane, IEEE Transactions on Ultrasonics and Frequency control, 5,
1003-1010, 2010.

32. M.D. SHARMA, propagation of inhomogeneous waves in anisotropic piezothermoelastic
media, Acta Mechanica, 215, 307-318, 2010.

Received April 14, 2012; revised version September 29, 2012.



