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1. Introduction

Free vibration and stability of continuous structures such as beams,
plates, shells, frames and other multibody structures composed of the ones just
mentioned above, can be carried out by means of the classical Rayleigh–Ritz
method and its generalization for composite systems – the substructure synthe-
sis method [1–3]. In the analyses, admissible functions such as Euler–Bernoulli
beam eigenfunctions (free vibration and stability through the vibration method)
and beam-column eigenfunctions (stability through the static method) have the
advantage, compared with other functions, of being mechanically related to the
foregoing structures, which implies excellent convergence characteristics of the
methodologies [2–4], and of being orthogonal. In fact, these were applied suc-
cessfully in analyzing those structures throughout the last century [3, 5–10].
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Nevertheless, the application of beam eigenfunctions has not been widely uti-
lized because these have the drawback of being troublesome to work with, as
they are complicated and involve hyperbolic and trigonometric functions. In or-
der to avoid the use of beam functions, some researchers utilized non-orthogonal
polynomials [11] and orthogonal polynomials [12], while others developed the
finite element method which, as far as mechanics is concerned, represents the
Rayleigh–Ritz method. The finite element method is not the most indicated
one for beams, plates, shells and multibody structures with simple geometry;
indeed, the superior convergence characteristics of basic Rayleigh–Ritz method-
ologies based on beam characteristic functions have been shown in these cases
[2–4, 10, 13].

Consequently, if convergence speed is vital in analyzing this class of struc-
tures, the Rayleigh–Ritz method and the substructure synthesis method should
be selected; thus, integrals involving beam eigenfunctions and derivatives must
be negotiated. Moreover, because any of the Rayleigh–Ritz approaches is a nu-
merical method itself, there is the strongest interest in reducing the number of
computer operations in the algorithms, needless to say, in avoiding secondary
routines as numerical integration. Reducing the number of computer opera-
tions is especially important because badly behaved hyperbolic functions and
trigonometric functions are involved. Hence, the solution of the integrals must
be simple.

Robert P. Felgar, in his not fully-published and sometimes disregarded work,
presented a table with integrals involving Euler–Bernoulli beam eigenmodes.
The results were reprinted by Blevins [14] and are neat and amazing; that
is, the simplicity and order of their structure is so marvelous that these rep-
resent an example of the close relationship between mathematics, physics and
beauty. Incidentally, it seems that Sharma [15] was not aware of this preced-
ing work while developing a paper on the same subject. By contrast, in another
work Leung [16] extended the original by Felgar; indeed, some erroneous results
were corrected. However, integrals in their simplest form were not attained as
in Felgar’s work; actually, the objective of Leung’s investigation was to gener-
alize Felgar’s results and to develop a computational algorithm for obtaining
definite integrals. Additional integrals of that type in their simplest form were
presented by Morales and Ramírez [17]; in addition, some integrals given by
Blevins [14] that can be written in an even simpler form were also presented
therein.

We present novel integrals in their simplest form involving beam-column
eigenfunctions and derivatives. All the integrals arise in computational stability
analysis of frames. It is emphasized that simpler results improve the accuracy of
Rayleigh–Ritz-based approximate methods for buckling analysis of distributed
structures.
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2. Definitions and results

The beam-column eigenfunctions satisfy the ordinary equation

(2.1) Y ′′′′ + k2Y ′′ = 0,

wherein the independent variable is the spatial variable x and k is given by

(2.2) k2 =
P

EI
,

where P is the axial compressive load and EI is the flexural rigidity. The
characteristic functions for clamped-clamped, clamped-pinned, pinned-pinned,
clamped-free and pinned-clamped beams are, respectively, given by

(2.3)

Ycc = cos k1x− 1 + σ1(k1x− sin k1x),

Ycp = sin k2x+ k2(L(1 − cos k2x) − x),

Ypp = sin k3x,

Ycf = cos k4x− 1,

Ypc = sin k2x− σ2k2x,

where the characteristic k is defined by

(2.4)

2(1 − cos k1L) = k1L sin k1L,

tan k2L = k2L,

sin k3L = 0,

cos k4L = 0,

and the characteristic sigmas by

(2.5) σ1 =
cos k1L− 1

sin k1L− k1L
, σ2 = cos k2L,

where L is the beam length. Finally, in the table of integrals that follows, the
indices r and s indicate the mode and the primes indicate derivatives.

The integrals:

1.

L∫

0

Y 2
ppr

=
1

2
L.

2.

L∫

0

Y ′′
cpr
Y ′′

cpr
=

1

2
k6

2rL
3.
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3.

L∫

0

Y ′′
cpr
Y ′′

ccs
=

k1sk
3
2r

(k2
2r − k2

1s)
(k2

1sLσ1s − k1s)(σ2r(k
2
2rL

2 + 1) − 1).

4.

L∫

0

Y ′′
ppr
Y ′′

ppr
=

1

2
k4

3rL.

5.

L∫

0

Y ′′
ppr
Y ′′

cps
=

k3
2sk

3
3rL

k2
2s − k2

3r

.

6.

L∫

0

Y ′′
ccr
Y ′′

ccr
=

1

2
k4

1rL.

7.

L∫

0

Y ′′
ccr
Y ′′

pps
=

k1rk
3
3s

k2
3s − k2

1r

((−1)s(k2
1rLσ1r − k1r) + k1r).

8.

L∫

0

Y ′′
ccr
Y ′′

cfs
=

k1rk
2
4s

k2
4s − k2

1r

(k2
1rσ1r − k4s(k

2
1rLσ1r − k1r)(−1)s+1).

9.

L∫

0

Y ′′
cfr
Y ′′

cfr
=

1

2
k4

4rL.

10.

L∫

0

Y ′′
pcr
Y ′′

pcr
=

1

2
k6

2rL
3σ2

2r.

11.

L∫

0

Y ′′
cpr
Y ′′

pcr
= 0.

12.

L∫

0

Y ′′
cpr
Y ′′

pcs
=

k3
2rk

3
2sL

k2
2r − k2

2s

(1 − σ2rσ2s(k
2
2rL

2 + 1)) for r 6= s.

13.

L∫

0

Y ′
cpr
Y ′

cpr
=

1

2
k4

2rL
3.

14.

L∫

0

Y ′
cpr
Y ′

ccs
=

k1sk2r

(k2
2r − k2

1s)
(k2

1sLσ1s − k1s)(σ2r(k
2
2rL

2 + 1) − 1).

15.

L∫

0

Y ′
ppr
Y ′

ppr
=

1

2
k2

3rL.
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16.

L∫

0

Y ′
ppr
Y ′

cps
=

k3
2sk3rL

k2
2s − k2

3r

.

17.

L∫

0

Y ′
ccr
Y ′

ccr
=

1

2
k2

1rL.

18.

L∫

0

Y ′
ccr
Y ′

pps
=

k1rk3s

k2
3s − k2

1r

((−1)s(k2
1rLσ1r − k1r) + k1r).

19.

L∫

0

Y ′
ccr
Y ′

cfs
=

k1r

k2
4s − k2

1r

(k2
1rσ1r − k4s(k

2
1rLσ1r − k1r)(−1)s+1).

20.

L∫

0

Y ′
cfr
Y ′

cfr
=

1

2
k2

4rL.

21.

L∫

0

Y ′
pcr
Y ′

pcr
=

1

2
k2

2rL
(
2 − σ2

2r

(
k2

2rL
2 + 2

))
.

22.

L∫

0

Y ′
cpr
Y ′

pcr
= k2

2rL (1 − σ2r) .

23.

L∫

0

Y ′
cpr
Y ′

pcs
=

k2rk2sL

k2
2r − k2

2s

(k2
2r − (k2

2r − k2
2s + k2

2s(k
2
2rL

2 + 1)σ2r)σ2s) for r 6= s.

3. Remarks on these and previous results

Apart from assuring neatness in mechanics, the practical implication of this
work and the precedent ones [14, 17] is that simple and computer-friendly ex-
pressions for the characteristic integrals have been attained. The results are
important because complex approximate methods such as the ones based on
the Rayleigh–Ritz theory, including the finite element method, ask for easy sys-
tem matrices construction and for curtailing the number of both computer op-
erations and subordinate numerical methods in order to protect accuracy. In
other words, the interest is in the actual convergence of the approximate tech-
nique to be controlled only by its inherent numerical characteristics and not by
round-off errors associated with operations involving trigonometric and hyper-
bolic functions, for example, or secondary approximate methods such as numer-
ical integration. Other contributions [16] do not ensure that the Rayleigh–Ritz
procedures based on the algorithms presented therein are numerically optimal
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in the sense explained before. Finally, the integrals were of course obtained by
hand; it must be said that approximately half of the table could be obtained
through an advanced computer algebra software (like Mathematica R©) but it
would require more steps and commands than the basic ones, more importantly,
it would require the assumption of equations that are presented in this Note or
in specialized literature on structural stability; that is, some of the results pre-
sented could be obtained by symbolic manipulation software but it demands
more than beginner’s knowledge of the software and reading or studying of
beam-column eigenfuctions and their mathematics. The other half simply can-
not be obtained, in the simplest or most elegant form, through purely specialized
software.

4. Conclusions

Simplest-expression integrals that contain eigenfunctions of Euler–Bernoulli
beam-column buckling boundary-value problems have been obtained; the ex-
pressions are written in terms of beam length and a few characteristic constants
(L, ki and σi). This type of integrals appears in optimal structural applications
of Rayleigh–Ritz methodologies; those prove to be powerful for simplifying these
techniques and improving their convergence characteristics; initial results on this
matter are being obtained at this point.
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