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This paper concerns the Lattice Boltzmann Method (LBM) which has re-
cently become alternative, computationally efficient tool to simulate a Newtonian
fluid flow, especially in complex geometries. A series of benchmark two-dimensional
simulations with the LBM are presented and analyzed in order to assess the impact
of the LBM grid refinement on the results of the simulations. The considered cases
include stationary and time-dependent flows past a circular or a 45-degree rotated
square cylinder confined in the channel with parallel walls. Next, the same flow con-
figurations are investigated by means of the Spectral Element Method (SEM) and
obtained results are used to cross-validate both approaches. The sensitivity to the
resolution of representation of the obstacle’s shape in the LBM simulations is of the
main interest. Particular attention is paid also to the effects of compressibility of the
flow. Additionally, for unsteady flows the transient flow characteristics are compared
in detail: the velocity profiles from the LBM and SEM are presented and some non-
dimensional characteristics such as Strouhal number of the compared von Karman
vortex streets.
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1. Introduction

The Lattice Boltzmann Method is a relatively new approach to simulate
fluid flows. It is based on the kinetic approach to fluid motion and originates from
the Boltzmann Transport Equation from the classical kinetic theory of gases. The
LBM appeared as a spin-off of the Lattice Gas Cellular Automata (LGCA) at the
end of the 80s of the past century [1]. LGCA were a set of numerical techniques
that aimed to reproduce the dynamics of multi-particle systems by creating a bi-
nary dynamical system with a certain set of collision rules of strictly local nature.
The LBM became an independent field of research as soon as its remarkable po-
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tential to simulate various kinds of physical phenomena was realized. Nowadays,
although still in rapid development stage, LBM is a well-established alternative
when it comes to simulating various types of fluid flows including turbulence [2],
magnetohydrodynamics [3], multicomponent flows across complicated geometries
[4] to multiphase flows with phase change [5]. Main advantage of the LBM over
the classical approach to solving Navier Stokes equations is its remarkable con-
ceptual simplicity, ease of implementation, predestination to massively parallel
computing [6] and straightforward implementation of geometry.

In this paper, the simplest form of the LBM, namely LBM with Bhatnagar–
Gross–Krook (BGK) collision operator, is presented for simulation of Newtonian
fluid flows. The main part is focused around the flow of an incompressible New-
tonian fluid past a circular or square cylinder in a confined geometry. Square
cylinder obstacle is rotated by 45◦ from horizontal direction and is referred as
“diamond”. Mathematically, the aim of the simulation is to find the solution of
the governing equations:

∂tu + (u · ∇)u = −∇p+ ν∆u,(1.1)

∇ · u = 0,(1.2)

in the domain Ω depicted in Fig. 1. The boundary ∂Ω of the flow domain consists
of three parts: the material part Γ1, which is the sidewall of the channel, the
material part Γ2, which is the sidewall of the obstacle and the inlet and outlet
sections denoted respectively as Sin and Sout. The sidewalls of the channel and
the obstacle are impermeable and motionless, hence the boundary condition
enforced at Γ1 and Γ2 is u|Γ = 0.

Fig. 1. The wall-confined flow past a circular cylinder – dimensions and boundary of the
computational domain.

The aim of the paper is to validate the LBM with use of the Spectral Element
Method in the regime of low and moderate Reynolds numbers (10 to 200), i.e.,
in both steady and unsteady flow regimes. The first regime is inspected in terms
of the average pressure drop while the latter in terms of average quantities such
as pressure drop as well as the Strouhal number of the von Karman vortex street
that appears behind the obstacle.
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The flows in confined geometries serve as a typical benchmark for any nu-
merical method and were performed also with use of the LBM immediately after
the invention of the method [7] and appeared later in [8]. They were also vali-
dated with use of the Finite Volume Method [9], but only the flow past a square
obstacle parallel to the channel walls was investigated. Confined flows past rect-
angular and circular geometries have also been studied extensively by means of
other methods [10, 11], where various issues like an effect of the blockage ratio
BR = D/H (D – diameter of the obstacle, H – channel height) or the inlet
velocity profile on the critical Reynolds and/or Strouhal numbers of the vortex
wake were investigated. This paper, however, deals only with a fixed blockage
ratio and varying values of Reynolds number. The literature is really rich when
it comes to investigation of flows past circular obstacles and also considerable
number of papers dealing with a flow past a square can be found. However, the
data concerning the wall-confined flows past diamond-shaped bodies is rare [12].

The paper is organized as follows: Section 2 presents the Lattice Boltzmann
Method, its derivation, basic boundary conditions and typical issues necessary to
set up an LBM simulation. Section 3 is devoted solely to simulations performed
with LBM. Section 4 presents the Spectral Element Method. The simulations of
flow past an obstacle performed with LBM and SEM are discussed and compared
in Sec. 5. The results of the paper are briefly summarized in Sec. 6.

2. The Lattice Boltzmann Method

2.1. Method overview

Conventional approaches to simulate fluid flows rely on various discretizations
of the Navier–Stokes equation which describes the motion of fluid treated as
continuum. In contrast, the Lattice Boltzmann Method (LBM) originates from
the Boltzmann transport equation, a fundamental equation in the kinetic theory
of gases that describes the motion and interaction of particle populations in the
phase space. This equation has the standard form

(2.1)
∂f

∂t
+ v∇xf +

F

m
∇vf

=

∫∫

σ(Ω)|v − v1| · [f(v′) · f(v′
1) − f(v) · f(v1)]dΩ dv1,

where f = f(t,x,v) stands for the probability density function (PDF) of finding
a particle in the position x with velocity v in the phase space and F denotes the
external force field acting on the molecules of mass m. The left hand side of the
equation represents the advection of the PDF in the phase space whereas the
right hand side, the Boltzmann collision integral, is the balance of the PDF due
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to molecular collisions. There, primed velocities (v′,v′
1) represent the admissible

post-collision velocities, σ denotes the differential collision cross-section and the
total balance is obtained after integration of PDF of collisions over whole solid
angle Ω and all velocities v1.

The LBM is based on the so-called Lattice Boltzmann Equation that can
be interpreted as a discretized form of the Boltzmann Transport Equation. The
discretization procedure consists of a few steps. First, the equation is discretized
in space and time. The space discretization takes place on the Cartesian grid.
Additionally, the velocity space is limited to a finite number of velocities ci,
i = 0, 1, 2, . . . ,M . The convention used in the LBM is to denote different distri-
bution functions at certain location xk with different subscripts: f(t,xk, ci) →
fi(t,xk), i = 0, 1, 2, . . . ,M . The admissible velocities are those which let particles
move exactly to neighboring nodes in one time step. In two dimensions, velocity
space is usually limited to nine directions and in three dimensions one usually
uses 15, 19 or 27 vectors (see Fig. 2). Other grids, however, are also admissi-
ble, e.g., the hexagonal grid in 2D. In general, the set of velocities is admissible
if it has sufficient symmetries to ensure conservation of mass, momentum and
momentum flux [13].
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Fig. 2. a) D2Q9 lattice, b) D3Q19 lattice.

The Lattice Boltzmann Equation (LBE), the core of whole LBM states the
relation between the particle population in one time step located in a certain
node x and population in the next time step that neighbors the node from the
direction in which the population moves (x+ ci∆t). It takes the following form:

(2.2) fi(x + ci∆t, t+ ∆t) − fi(x, t) = Ω(f),

with Ω as the collision operator. The LBE can be viewed as two-stage process:
first, all PDFs are transferred to neighboring locations (the streaming process,
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Fig. 3. Conceptual view of streaming process on D2Q9 lattice: each PDF is transferred to
the neighboring lattice node.

Eq. (2.3) and Fig. 3). Then PDFs’ values are updated because of molecular
collisions:

fpre-collision
i (x + ci∆t, t+ ∆t) = fi(x, t),(2.3)

fpost-collision
i (x + ci∆t, t+ ∆t) = fpre-collision

i (x + ci∆t, t+ ∆t) +Ω(f).(2.4)

Regarding collision operators, any operator that preserves mass, momentum
and momentum flux can be used in the LBE. The operator used in this work
is known as single-relaxation-time BGK collision operator. The abbreviation
BGK originates from the names of three authors (Bhatnagar, Gross and Krook,
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see [16]). There exist more sophisticated models such as, e.g., multiple-relaxation-
time [14, 17] that improve the stability of the algorithm for high Reynolds number
flows. In this work, however, the BGK turned out to be sufficient. The LBE with
BGK collision operator takes particularly simple form:

(2.5) fi(x + ci∆t, t+ ∆t) − fi(x, t) =
1

τ
(f eq

i − fi), i = 0, 1, 2, . . . ,M.

The coefficient of proportionality τ is the collision relaxation time which is
related to the sheer viscosity of fluid by the formula:

(2.6) ν = c2
(

τ − ∆t

2

)

,

where c denotes the lattice speed of sound, c = 1/
√

3 in this model. Relaxation
time (and viscosity) is a tunable parameter in the simulation and has influence
on the stability and accuracy of the method [14, 15]. Time step is usually set to
unity ∆t = 1.

In the BGK model, the new population is updated by the amount of particles
proportional to the deviation of the population’s state from the local equilibrium
expressed by f eq

i , which is the linearized form of the Maxwell–Boltzmann equi-
librium distribution:

(2.7) f eq
i = wiρ

[

1 +
ci · u
c2

+
(ci · u)2

2c4
− u2

2c2

]

,

where u is the local resultant velocity vector, w0 = 4/9, wi=1,...,4 = 1/9,
wi=5,...,9 = 1/36 are weight coefficients and ρ is the density of fluid in the
node.

The LBE is solved in the non-dimensional form. Non-dimensionalization of
the equations has been performed in a way that requires the density functions
in one point to sum up to unity:

(2.8)
8
∑

i=0

fi = 1.

Macroscopic velocity and actual density of fluid (close to unity) are recovered
with the following formulas:

u =
1

ρ

8
∑

i=0

ci · fi,(2.9)

ρ =
8
∑

i=0

fi.(2.10)
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Fig. 4. a) The D2Q9 lattice with nine velocity directions. b) Density functions in
appropriate directions and resultant macroscopic velocity.

The graphical interpretation of Eq. (2.9) is shown in Fig. 4. It should be
noted that the LBM admits some variations of the fluid density, meaning
that the fluid in this approach is inherently compressible and compressibil-
ity effects will inevitably occur during the simulation. Thus, the incompress-
ibility constrain can be imposed only approximately, providing that the local
Mach number of the lattice gas is sufficiently small. The pressure in the fluid is
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connected with density by the relation

(2.11) p = c2ρ.

Pressure variations can thus be directly recovered from density fluctuations.
It is important to underline that the Lattice Boltzmann Equation reproduces
the behavior of a Newtonian fluid only in the limit of the Mach number going
to zero (Ma → 0). In case of stronger compressibility effects, the results of the
simulations should by no means be interpreted as simulations of compressible
flow. In fact, the effects connected with the increased Mach number spoil the
isotropy of the pressure tensor in the Navier–Stokes equation [21].

2.2. Boundary conditions

In contrast to “conventional” approaches in CFD, where generation of com-
putational mesh is often a non-trivial task, the LBM enables straightforward
implementation of geometries of arbitrary complexity (represented, however, by
stair-case approximation). The no-slip condition on the material wall is realized
by the so-called “bounce-back” rule. It forces the average local velocity at the
wall to zero by reversing the directions on the PDFs approaching the wall, as
shown in Fig. 5. The “bounce-back” boundary condition also imposes the form of
the implementation of geometry to the LBM. It has to be provided in the form
of a boolean mask, where zero elements will denote fluid nodes while non-zero
elements will denote solid nodes.

Obviously, the “stair-case” form of geometry makes it impossible to appro-
priately reproduce shapes other than horizontal and vertical walls (see Fig. 6).
The question of influence of such a surface roughness on the flow quality, es-
pecially on the pressure drop, arises. This issue is studied deeper in the further
section of this paper. There exist methods to incorporate curvilinear geometry to
the LBM simulations [23, 24]. In this work, however, the “bounce-back” method
turns out to be sufficient and the effects of “stair-case” do not play any significant
role. It should be stressed that the version of “bounce-back” boundary condition
used here, namely the so-called “mid-wall” bounce back, gives second-order ac-
curacy [15].

From multiple available kinds of open boundary conditions for the LBM [15,
18–20] the most common, yet very robust and simple are velocity and pres-
sure boundary conditions [15]. They are demonstrated on the example of 2D
channel flow with velocity inlet on the left and pressure outlet on the right
(see Fig. 7). In general, these boundary conditions in the LBM link the PDFs
leaving the computational domain with the ones that are injected into the
domain.
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Fig. 6. The graphical implementation of the geometry to a 2-dimensional simulation.
A diamond-shaped obstacle and a circle. Raster geometry clearly visible.
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Fig. 7. Distribution functions at the inlet and at the outlet from the channel for a D2Q9
lattice [15].

2.3. Conversion of units in the Lattice Boltzmann Simulation

The recovery of physical values from the simulations performed with the
LBM is based on the similitude of flows. The relevant similitude number is
the Reynolds number which links the fluid velocity (U or ULB), characteristic
dimension D for the considered flow (or N , i.e., the number of the grid cells
along this dimension) and the fluid kinematic viscosity (ν or νLB)

(2.12) Re =
U ·D
ν

=
ULB ·N
νLB

.

The key question in the lattice Boltzmann simulation is the relation of the
physical time step to the lattice time step. The reasoning goes as follows: the
time (in seconds) needed to travel particular distance in the physical domain is

(2.13) T =
D

U
[s].
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In the non-dimensional domain the same time (in the lattice time unit ts) can
be expressed as

(2.14) TLB =
N

ULB
[ts].

Obviously, these times correspond to each other if

(2.15)
D

U
=

N

ULB
.

Lattice size N is expressed in the lattice length units [lu]. Taking into account the
fact that the Reynolds numbers are the same and substituting for the velocity
(which might be unknown before the simulation) one gets

(2.16)
D2

ν
=
N2

νLB
.

That means that the actual time step in the LBM is expressed as

(2.17) ts =
D2νLB

N2ν
[s].

This result also proves that the physical time step is resolution and viscosity-
dependent. Thus, in order to achieve bigger time steps, one needs to decrease the
resolution of the computational grid (and increase the lattice viscosity νLB to
keep Re constant). This results, however, in the increased Mach number in the
flow what puts a serious limitation on the increase of the time step. Addition-
ally, the LBM is second-order accurate in time and space [25] so the time step
and lattice resolution should be kept small compared to, e.g., Spectral Element
Method used in this article.

2.4. Summary

The Lattice Boltzmann Method is conceptually a really simple tool to sim-
ulate the flow of a Newtonian fluid. The algorithm can be summarized in a few
steps:

1. Streaming – motion of particles’ populations (represented by PDF) in time
and space on the regular grid (see Fig. 3).

2. Collision – the interaction of particles’ populations during streaming with
one another.

3. Bounce back – the interaction of particles with solid walls.
Advantages of the LBM concern efficient implementation of the algorithm

and insensitivity to the complexity of geometry. Additionally, the algorithm
is purely local, what predestines the LBM to massively parallel computations.
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However, the method has a few important drawbacks. First of all, the Lattice
Boltzmann Method reproduces the behavior of Newtonian fluid in the limit of
no-compressibility [21]. That puts a very strong limitation on the method. In
practice, in order to admit higher physical velocities the computational grid has
to be refined. However, the values of flow variables are non-dimensionalized with
respect to the lattice size. Thus, every change of the lattice resolution results in
the change of the relation between the lattice and physical time steps or relation
between lattice and physical velocities. Hence, setting up an LBM simulation is
not so straightforward. Finally, the LBM memory requirements are much bigger
than in the classical CFD solvers due to the fact that, apart from velocity and
pressure/density value, all PDFs have to be stored.

The simulations for this paper were performed using the open-source code
PALABOS [22]. The PALABOS is written in C++ and it is very well scalable
on multi-core units. All simulations presented were performed on a cluster using
up to 40 processors.

3. Analysis of accuracy of the Lattice Boltzmann Method

3.1. The study of roughness effects on the quality of simulations
based on the LBM

An immediate issue which arises in the LBM is the impact of the raster form
of the geometry on the quality of the flow simulation. In order to investigate
this matter, a series of simulations of flows past an obstacle has been performed.
The confined flows past a circular and revolved square-shaped (the so-called
“diamond”) cylinders were simulated, see Fig. 8.

Fig. 8. Dimensions of the channel with immersed obstacles.
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The channel was seven units long and the blockage ratio of the obstacle (the
portion of the channel height obscured by the obstacle) was set to 0.4. The
flow was forced at the inlet section with a parabolic velocity profile. The outlet
boundary condition was set to constant pressure. The top and bottom walls
were impermeable and motionless. The Reynolds number was equal to 40: it was
based on the bulk velocity, obstacle diagonal or diameter and fluid viscosity:

(3.1) Re =
UavgH

ν
= 40.

Since the simulation was performed in the non-dimensional units, an alterna-
tive expression for the Reynolds number based on the grid dimensions is valid:

(3.2) Re =
ULB avgNobst

νLB
= 40.

The flow at this value of Reynolds number is laminar and steady. Simulations
were performed on the grids of different sizes ranging from 50 to 900 elements
across the channel height. Obviously, the finer the grid, the more accurate is the
representation of the obstacle. Figure 9 gives an idea about how a “diamond”
and a “circle” are represented in the LBM.

a)

b)

Fig. 9. The raster representation of the diamond and circular obstacle for the raster sizes
ranging from 20 lu up to 120 lu.

The only criterion of the “smoothness” of the obstacle was the pressure drop
along the channel. Each simulation was run with different viscosity so that the
Mach number and lattice velocity were kept constant:

(3.3) Uinlet max = 0.03

[

lu

ts

]

.

The simulation was initialized with a non-physical velocity field and the com-
putations continued until the steady flow was obtained. The values of viscosity
and obtained non-dimensional pressure drop for both cases are shown in Table 1.
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Table 1. The parameters for simulations and the obtained pressure drops.

Simulation Nchannel Nobstacle νLB ∆pcircle ∆pdiamond

1 50 20 0.010 0.001027 0.001068

2 60 24 0.012 0.001015 0.001055

3 75 30 0.015 0.001018 0.001044

4 100 40 0.02 0.001014 0.001029

5 150 60 0.03 0.001010 0.001024

6 300 120 0.06 0.001006 0.001015

7 450 180 0.09 0.001006 0.001012

8 600 240 0.12 0.001005 0.001011

9 900 360 0.18 0.001004 0.001010

The pressure drops as a function of resolution of the grid are also presented in
Fig. 10. Figure 11 shows the contour maps of the velocity magnitude in both flows.

Fig. 10. The relative pressure drop in the flows past obstacles as a function of the resolution
of the grid: the reference pressure for both cases is the pressure at maximum resolution

denoted as ∆p900.

0 0.01 0.02 0.03 0.04 0.05

Fig. 11. Contour maps of the velocity magnitude of the steady symmetric flow past
a confined diamond and circular obstacles at Re = 40. Lattice resolution: 600 × 4200,

vmax diamond = 0.0471, vmax circle = 0.0473.
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The simulations show that the resistance to the flow drops with increasing
resolution of the obstacle representation. The improvement is much more signif-
icant in the case of diamond-shaped obstacle. This can be attributed to the fact
that the flow field around an obstacle with a sharp edge has (at least theoret-
ically) arbitrarily large vorticity at the side corners. That cannot obviously be
reproduced numerically (in none of the methods used in this study), but such
a rapid change of direction in the flow spoils the simulation locally and has the
effect on the overall result. In case of finer grids, this effect is more localized and
thus the flow simulation is more accurate globally.

3.2. Flow past a diamond-shaped obstacle – the influence of the compressibility
on the quality of the LBM simulation

Another test case for the Lattice Boltzmann Method was the simulation of
flow past a diamond at Reynolds number Re = 200. At this value, the von Kar-
man vortex street produced by the obstacle is very intensive and the interaction
between the vortices and the channel walls is very strong. The dimensions of
the channel were the same as before. The boundary conditions were the same
as well: parabolic velocity inlet with constant pressure outlet. The simulations
were, however, performed on huge grids, namely 300 × 2100, 450 × 3150 and
600× 4200. This time, Mach numbers varied. The control values for the simula-
tions are shown in Table 2.

Table 2. The control parameters for the flow past the diamond-shaped obstacle.
The Mach number is based on the maximum inlet velocity.

Simulation Nchannel Uinlet νLB Mach number (Ma)

1 200 0.075 0.02 0.129

2 300 0.050 0.02 0.086

3 300 0.025 0.01 0.043

4 450 0.033 0.02 0.053

5 600 0.025 0.02 0.043

The mass flow rate on the consecutive cross-sections, shown in Fig. 12, in
two phases of vortex shedding was investigated. The vortex shedding is time-
periodic and its phase is measured with respect to such instant when the vertical
component of velocity probed at the control point (the center of the channel)
changes its sign from negative to positive. This convention is applied in the whole
paper.

It was found that the mass flow rate variations in the computational domain
are most significant in case of the smallest resolution and biggest viscosity. They



438 W. Regulski, J. Szumbarski

Fig. 12. The cross-sections at which velocity profiles and mass-flow rates were taken. The
cross in the middle of the channel is the marker for probing the vertical velocity.

drop as the size of the grid increases (the Mach number drops). The mass flow
rate variations were computed every quarter of the time period of the cyclic
vortex shedding, with the time reference point as described above. Here, we
present the results only for the phase ‘0’ and the phase ‘1/4’, i.e., a quarter
of the time period after the beginning of the vortex shedding cycle. The flow
patterns for the phase ‘1/2’ and ‘3/4’ are similar modulo mirror symmetry.

The relative mass flow rate on the consecutive cross-sections in the channel,
normalized with respect to the inlet flow rate, is presented in the Fig. 13. It
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Fig. 13. Relative mass flow rate for different Mach numbers and lattice resolutions in the
channel flow. Lines with no marker – phase 0, lines with • – phase 0.25.



Numerical simulation of confined flows past obstacles 439

was obtained by integrating the horizontal component of the momentum on the
consecutive cross-sections of the channel:

(3.4) Q =

1
∫

0

uxρ dy ≈
N
∑

i=1

uxiρi.

The variations of mass flow rate along the channel reach 5% in the most
compressible case. In this case they oscillate downstream. For less-compressible
flows these oscillations do not occur. It should be noted that the Mach number
is based on the inlet velocity and locally in the flow it is higher. Thus, the
compressibility effect varies in the computational domain. To conclude, the flows
with the average Mach number below 0.05 are considered accurate enough and
grids of similar size will be used as reference in most cases in the next section.
A detailed study of accuracy of the Lattice Boltzmann Method with respect to
compressibility effects is available in [25].

4. Flow simulations by means of the Spectral Element Method

4.1. Mathematical formulation

An alternative approach to the Lattice Boltzmann method (LBM) considered
in this work is the spectral element method (SEM). As before, the aim is to find
the solution of the differential system consisting of the Navier–Stokes equation
(1.1) and the continuity equation (1.2), in the flow domain Ω depicted in Fig. 1.
The boundary conditions imposed at the inlet and the outlet sections used for
the LBM are now replaced by a special variant of the pseudo-traction boundary
conditions, usually referred to as the “deficient” of “do-nothing” formulation (see
[26], [27]). For the flow considered in this study, these conditions assume the
following form:

p− ν
∂

∂x
ux = P (t),

∂

∂x
uy = 0 at Sin,(4.1)

p− ν
∂

∂x
ux = 0,

∂

∂x
uy = 0 at Sout.(4.2)

The function P in (4.1) is not a priori known and it should be determined
in such a way that the volumetric flow rate follows a prescribed time variation,
meaning that

(4.3) Φ(u) ≡
∫

Sin

u · n ds = −
∫

Sin

uxdy = F (t),
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where function F is given. Note that neither the velocity profile nor pressure
distribution are explicitly determined for the inlet and outlet parts of the bound-
ary ∂Ω.

It can be shown that the function P (t) in the first formula in (4.1) has
a straightforward physical interpretation – it describes the time variation of the
section-averaged inlet pressure. Similarly, the first of the boundary conditions in
(4.2) implies that section-averaged outlet pressure in zero.

To obtain the complete formulation, the initial conditions must be defined,
namely

(4.4) u|t=t0 = u0.

The vector field u0 is assumed to satisfy the continuity and volumetric flow
rate conditions, i.e., ∇ · u0 = 0 and Φ(u0) = F (0).

In order to apply the spectral element method, the flow problem should be
recast to a weak form, which can be formulated as follows:

Find the velocity vector field u ∈ V = {υ ∈ [H1(Ω)]2 : υ|Γ = 0}, the
pressure field p ∈ L2(Ω) and the function P = P (t) such that

1) the equalities

(4.5)

{

(∂tu + ∇u · u,υ) + ν(∇u,∇υ) + P (t)Φ(υ) − (p,∇ · υ) = 0,

(q,∇ · u) = 0,

hold for each ∀υ ∈ V and each q ∈ L2(Ω),
2) the condition Φ(u) = F (t) holds for each time instant t ≥ 0,
3) the initial condition u|t=t0 = u0 is satisfied; the vector field u0 fulfills

the continuity constrain ∇ · u0 = 0 and the volumetric flow rate condition at
initial time, i.e., Φ(u0) = F (0).

In the equalities (4.5), the bracket symbols 〈·, ·〉 and (·, ·) denote the inner
products in, the [L2(Ω)]2 and L2(Ω) spaces, respectively. Note also that the
function P plays the role of the Lagrange multiplier, which is to be chosen such
that the constrain (4.3) is satisfied.

4.2. The solution method

We will briefly summarize the solution method of the flow problem formulated
in the previous section. The exposition will be limited to the description of the
sequence of numerical problems to be solved during each time step of the flow
simulation. We will not discuss details of the spectral element discretization,
which is standard, i.e., it uses the quadrilateral elements with the local basic
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polynomials based on the Legendre collocation grids. For details of this approach
the Reader should refer to the standard monographs like [28], [29] or [30]. We
enumerate here the most important features of the in-house solver used in the
current study:

1. The second-order Backward Differentiation Formula (BDF) combined with
the Operator-Integration-Factor Splitting (OIFS) approach to the nonlin-
ear terms in the Navier–Stokes equations is used [31].

2. The Conjugate Gradients Method (CGM) with an efficient bi-level precon-
ditioning, developed after [32], is applied in the pressure solver. On the
level of individual spectral elements, the Fast Diagonalization Method is
used.

3. The CGM iterations are initialized with the use of the orthogonal projec-
tion method proposed by Fisher [33].

A detailed description of all technical details of the solver as well as relevant
implementation issues can be found in the papers [34] and [35].

The key problem, in each time step of the numerical simulation is the deter-
mination of such an average inlet pressure P = P (t), where the instantaneous
velocity field satisfies the flow rate constrain (4.3). Fortunately, the OIFS ap-
proach to convective terms renders the problem linear and the constrain (4.3)
can be fulfilled by superposing solutions to appropriately chosen Stokes prob-
lems.

The first of these problems can be formulated as follows:

Find the vector field w ∈ V = {υ ∈ [H1(Ω)]2 : υ|Γ = 0}, the scalar field
ζ ∈ L2(Ω) such that the following equalities

(4.6)







β0

∆t
〈w,υ〉 + ν〈∇w,∇υ〉 + Φ(υ) − (ζ,∇ · υ) = 0,

(∇ · w, q) = 0,

hold for each ∀υ ∈ V and each q ∈ L2(Ω).

In the above, the quantity β0 is the coefficient at the implicit term in the
mth-order backward differentiation formula for the first derivative (see [35])

(4.7) ∂tη|t=tn+1
≈

m−1
∑

k=0

βkη(tn+1−k).

For the second-order method used in the current study the coefficients in the
formula (4.7) are β0 = 3/2, β1 = −2 and β2 = 1/2.

Note that the solution of the problem (4.6) depends only on the geometry of
the domain (we assume that the time step is fixed), thus it can be found once
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and forever prior to the main simulation. We will need also the corresponding
flow rate

(4.8) FW = Φ(w).

The computational algorithm for the velocity and pressure fields during each
time step can be now explained. Assume that the flow evolution up to the time
instant t = tn is already known and one wants to update the solution to time
t = tn+1 = tn + ∆t. The procedure (relevant for the second-order method)
consists of the following three steps:

Step 1 (integration of the convective terms accordingly to the OIFS approach)

The following „ordinary” initial value problems (the spatial variables are
treated as the parameters)

(4.9)







d

dt
û1 = −(û1 · ∇) û1, t ∈ [tn, tn+1],

û1|t=tn = u(tn),

(4.10)







d

dt
û2 = −(û2 · ∇) û2, t ∈ [tn−1, tn+1],

û2|t=tn−1
= u(tn−1),

are integrated numerically by the fourth-order Runge–Kutta method using the
time step equal ∆tRK4 = ∆t/M . In the current study, the number of the fine
steps performed by RK4 procedure per each major step ∆t is M = 5. As a result,
one obtains the vector fields û1(tn+1) and û2(tn+1).

Step 2 (solution of the main Stokes problem)
The following weakly formulated Stokes problem is solved:

Find the vector field v ∈ V = {υ ∈ [H1(Ω)]2 : υ|Γ = 0}, the scalar field
ξ ∈ L2(Ω) such that the following equalities

(4.11)



















3

2∆t
〈v,υ〉 + ν〈∇v,∇υ〉 − (ξ,∇ · υ)

=
1

∆t
[2〈û1(tn+1),υ〉 −

1

2
〈û2(tn+1),υ〉],

(∇ · v, q) = 0,

hold for each ∀υ ∈ V and each q ∈ L2(Ω).

Note that the appropriate linear combination of the auxiliary vector fields
û1(tn+1) and û2(tn+1) found in Step 1 appears on the right-hand side of (4.11).
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Next, the volumetric flow rate corresponding to the vector field v is calculated:

(4.12) FV = Φ(v)

Step 3 (updating the section-averaged inlet pressure, construction of the final
solution)

The final solution at the time instant t = tn+1 = tn + ∆t can be written as
the superposition of the solutions to the Stokes problems (4.6) and (4.11):

(4.13) un+1 = v + Pn+1w, pn+1 = ξ + Pn+1ζ.

The value of the average inlet pressure Pn+1 at the time instant t = tn+1 is such
that the volumetric flow rate constrain (4.3) is satisfied. Since

(4.14) Φ(un+1) = FV + Pn+1FW = F (tn+1)

one immediately gets

(4.15) Pn+1 = [F (tn+1) − FV ]/FW .

It can be easily checked that the updated solution satisfies the following weakly
posed problem

(4.16)
3

2∆t
〈un+1,υ〉 + ν〈∇un+1,∇υ〉 − (pn+1,∇ · υ) − Pn+1Φ(υ)

=
1

∆t

[

2〈û1(tn+1),υ〉 −
1

2
〈û2(tn+1),υ〉

]

which is exactly the second-order BDF/OIFS approximation of the Navier–
Stokes equation. Moreover, the velocity field un+1 satisfies the flow rate condition
(4.3) at t = tn+1 as required.

5. Comparison of the results of the LBM and the SEM simulations

5.1. Flows past a diamond- and cylinder-shaped obstacles

The aim of the simulations was to cross-validate the Lattice Boltzmann
Method versus the Spectral Element Method. Again, the flows at Reynolds num-
bers of 10, 50, 100 and 200 past a diamond and a cylindrical obstacle were simu-
lated. The flows were compared with respect to the pressure drop and Strouhal
number of the vortex street, defined as

(5.1) St =
fD

Ubulk
=
fLBNobstacle

Ubulk LB
,
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where f and fLB are the frequencies (dimensional and non-dimensional) of the
vortex shedding. The obtained results are presented in the Tables 3 and 4. It
can be observed that both pressure drops and the dimensionless vortex shedding
frequencies (Strouhal numbers) obtained from the LBM and SEM simulations
are very much similar – the relative discrepancies remain within the range of
several percent. Basically, the flow past a “diamond” obstacle seems to be “more
difficult” case and the differences are generally larger (especially in terms of the
pressure drop) than in the case of the flow past the circular contour. It is also
worth noting that the hydraulic losses computed for diamond obstacle are about
40% larger that for the circular obstacle. This effect has been expected and it
can be explained by the fact that the vicinity of the side corners serves as the
source of very strong vorticity layers which contribute immensely to the local
dissipation of mechanical energy and inflict large pressure drops.

Table 3. Comparison of pressures obtained in LBM and SEM for both types
of obstacles. In case of LBM, the pressures are rescaled with δx = 1/300 cm,
δt = 1/45000 s, νLB = 0.02, ν = 1 cm2/s2, except for diamond at Re = 200, where

δx = 1/600 cm.

Pressure drop
∆pavg

ρ

h

cm2

s2

i

circle diamond

Re LBM SEM LBM SEM

10 0.487 0.492 0.436 0.435

50 3.346 3.310 3.480 3.400

100 8.663 8.603 10.307 10.114

200 25.232 24.620 35.716 35.250

Table 4. Strouhal number of the von Karman vortex street behind the cylinder.

Strouhal number St

circle diamond

Re LBM SEM LBM SEM

100 0.421200 0.420390 0.39120 0.39216

200 0.391500 0.387409 0.37928 0.38095

Additionally to flow resistance and the frequency analysis of the vortex shed-
ding, the comparison of the instantaneous velocity profiles at the Reynolds num-
ber Re = 200 has been performed. The velocity profiles were determined for
the cross-sections given in Fig. 12. The profiles were computed at four equally
spaced time instants within one cycle of the vortex shedding , i.e., every quarter
of the time duration of this cycle. The beginning of the probing time has been
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set in accordance with the vertical velocity component computed at the control
point, as described in Sec. 3. All the LBM simulations except for the flow past
the “diamond” at Re = 200 were performed on the grid whose dimensions are
given in Fig. 14. The flow past a diamond at Re = 200 was simulated on the
twice denser grid (600 × 4200 nodes).

Fig. 14. The shape of the channel with dimensions in lattice units. Either a circle or
a diamond are located in the channel. They occupy 40% of the channel’s height.

In case of the LBM, the parabolic profile of the inlet velocity has been en-
forced explicitly by the boundary condition. In case of the SEM, the velocity
profile evolves by itself towards the parabolic shape as the result of the “do-
nothing” boundary conditions with imposed volumetric flow. It is worth noting
that the vertical component of inlet velocity in the SEM computations is not ex-
actly zero but it is smaller by several orders of magnitude than the stream-wise
component. Thus, one can conclude that the upstream influence of the obstacle’s
presence on the flow structure at this distance is negligible (see Figs. 15 and 16).

Fig. 15. The profiles of x (left) and y (right) inlet (cross-section P1) velocity components in
the flow past a diamond obstacle. The following legend is valid for the Figs. 15–26: ∗ – LBM,

T = 0, × – LBM, T = 0.25, � SEM, T = 0; • – SEM, T = 0.25.
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Fig. 16. The profiles of x (left) and y (right) inlet (cross-section P1) velocity components in
the flow past the circular obstacle.

Coming closer to the obstacle, the deviations from parabolic profile be-
comes more noticeable and the vertical component of the velocity grows. The
agreement between instantaneous velocity profiles obtained by both methods
in consecutive cross-sections of the channel is really good (cross-section P2,
Fig. 17, 18).

Fig. 17. The profiles of x (left) and y (right) velocity components in the flow past
a diamond obstacle, computed in the channel’s section P2.
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Fig. 18. The profiles of x (left) and y (right) velocity components in the flow past a circular
obstacle, computed in the channel’s section P2.

Just at the obstacle (cross-section P3, Figs. 19, 20) one can observe a huge
vertical gradient of the vertical velocity component. It is steeper in case of “dia-
mond” due to the fact that geometry is not smooth. In case of circle, one can
notice a very good symmetry of the horizontal velocity component. It is not the

Fig. 19. The profiles of x (left) and y (right) velocity components in the flow past a dia-
mond obstacle, computed in the channel’s section P3. Note that in the range of y between 0.3

and 0.7 the section P3 penetrates the obstacle.
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Fig. 20. The profiles of x (left) and y (right) velocity components in the flow past a circular
obstacle, computed in the channel’s section P3. Note that in the range of y between 0.3 and

0.7 the section P3 penetrates the obstacle.

case of the flow past the “diamond”. The LBM and SEM still, however, give very
similar results.

In the wake behind the cylinder, one can observe the vortex street. Its pres-
ence in the velocity profiles is marked by large variations of the vertical velocity
component (Figs. 21, 22). The results from both methods start to exhibit slight
differences.

Fig. 21. The profiles of x (left) and y (right) velocity components in the flow past
a diamond obstacle, computed in the channel’s section P4.
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Fig. 22. The profiles of x (left) and y (right) velocity components in the flow past a circular
obstacle, computed in the channel’s section P4.

Further downstream one continues to observe the vortices (Figs. 23, 24).
From the magnitude of the vertical velocity one can state that the intensity of
the vortex street shed from the diamond obstacle is much stronger. The agree-
ment between the LBM and SEM is much worse in the case of vertical velocity
for circular cylinder (Fig. 24). Better accuracy for the “diamond” should be at-
tributed to higher resolution of the case.

Fig. 23. The profiles of x (left) and y (right) velocity components in the flow past
a diamond obstacle, computed in the channel’s section P5.
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Fig. 24. The profiles of x (left) and y (right) velocity components in the flow past a circular
obstacle, computed in the channel’s section P5.

At the outlet of the channel the vertical component of velocity is set to zero
in case of the LBM due to the construction of the outlet boundary condition. The
horizontal components of velocity, however, are still in almost perfect agreement
for the diamond (Fig. 25) and only slightly deviate from one another in the case
of the circular obstacle (Fig. 26).

Fig. 25. The profiles of x (left) and y (right) velocity components in the flow past
a diamond obstacle, computed in the channel’s outlet section P6.
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Fig. 26. The profiles of x (left) and y (right) velocity components in the flow past a circular
obstacle, computed in the channel’s outlet section P6.

To sum up, both test cases prove a really good capability of the Lattice
Boltzmann Method to reproduce the complex phenomena in unsteady lam-
inar regime of the flow. The instantaneous flow structures computed using
the LBM and SEM techniques are in very good agreement, especially in the
vicinity of the obstacle and in the close wake. Some differences observed further
downstream appear mostly due to the difference in the formulation of the outlet
boundary conditions in both methods. As one should expect, a better resolu-
tion in case of the diamond shaped obstacle results in a better accuracy of the
simulation.

In the end of this section, we present the instantaneous patterns of the
wall-confined flow past the “diamond” obstacle. The form contour maps of the
velocity magnitude and instantaneous streamlines, computed for two time in-
stants separated by the quarter of the time period of the vortex shedding are
presented in Fig. 27. Except the large separation zones and related vortices
just behind the obstacle, the big separation bubbles induced by the vorticity
shed from the obstacle and rolling along both walls can be seen. This type of
flow pattern is very characteristic for the confined flow with moderate blockage
ratios.

In Figure 28, the corresponding pressure field is depicted. One can easily
notice the street of local minima of pressure that correspond to instantaneous
positions of shed vortices. These locations match very well with the regions of
large positive and negative vorticity seen in the contour map presented in Fig. 29.
Yet another characteristic feature of the wall-confined flows past obstacles is also
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a)

b)

Fig. 27. The contour maps of the magnitude of instantaneous velocity field and the corre-
sponding streamlines pattern, computed for: a) at time instant when the y-component of the
velocity field at the control point in the wake behind the obstacle changes sign from negative
to positive, b) at the time instant later by a quarter of the vortex shedding period. Flow field

obtained with SEM.

a)

b)

Fig. 28. The instantaneous patterns of the pressure field of the confined flow past the diamond
obstacle. The time instants have been chosen in the same way as for the velocity field presented

in Fig. 27. Flow field obtained with SEM.
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a)

b)

Fig. 29. The instantaneous patterns of the vorticity field of the confined flow past the diamond
obstacle. The time instants have been chosen in the same way as for the velocity field presented
in Fig. 27. Shades of red and blue colors correspond, respectively, to positive and negative

vorticity. Flow field obtained with SEM.

evident: the von Karman vortex street is actually reversed, i.e., the vortices shed
from the obstacle’s lower side corner are advected towards the top wall and
vice versa.

6. Summary and conclusions

The Lattice Boltzmann Method with detailed description of the BGK col-
lision model has been presented and its capabilities to simulate laminar flow
of a Newtonian fluid have been verified on the test case of flow in a two-
dimensional channel. The influence of compressibility and stair-case represen-
tation of geometry on the flow quality has been investigated. Furthermore, the
simulations with the LBM have been validated with use of the Spectral Element
Method: the flow characteristics such as Strouhal number have been compared
and very good agreement between the two methods has been observed. Addi-
tionally, instantaneous velocity profiles at various cross-sections of the channel
have been compared. Again, the results obtained in both simulation techniques
match very well – both in terms of the flow physics and quantitative charac-
teristics – even though the inlet/outlet condition used within the LBM and
SEM computations were different. It should be noted that the current version
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of the PALABOS package does not incorporate the “do-nothing” variant of the
inlet/outlet conditions. On the other hand, further progress in this respect can
be expected as the formulation of such conditions for the LBM has recently been
proposed [36].
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