
Arch. Mech., 64, 1, pp. 3–19, Warszawa 2012

Electro-elastic coupled fields of the general line source
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Electro-elastic coupled fields excited by a general line source in a multilayered
anisotropic piezoelectric medium are expressed in an analytical form. The general
line source represents a combination of a straight 4D dislocation with the force and
charge, distributed along the same line. The results are obtained in the form of well-
convergent Fourier integrals. They can be considered as Green’s functions describing
electro-elastic fields created in the given medium by arbitrary 2D bulk distributions
of dislocations, forces, charges and electro-potential. The analysis is accomplished in
terms of the propagator matrix which is equally applicable to both the stratified and
graded layered media.
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1. Introduction

The modern materials are often designed for a definite function in par-
ticular devices with optimized efficiency. Requirements of nano-technology call
now for media not only anisotropic but also inhomogeneous. The artificial mate-
rials produced by methods of molecular epitaxy are often composed of different
atomic layers. The moduli of such multilayered media are continuous functions
of one coordinate. This can provide new important physical properties of solids,
but their description becomes very non-trivial and requires new methods and ap-
proaches. In this paper we shall meet the problem just of this kind, considering
electro-elastic coupled fields excited in an arbitrary layered piezoelectric medium
of unrestricted anisotropy by a general line source formed by a 4D dislocation
and/or line distributions of load and charge.

In fact, the description of the dislocation field in an arbitrary anisotropic
medium, even when it is homogeneous and purely elastic, is not an easy problem.
The progress here was attained not so long ago (see for a review [1, 2]). The first
results for homogeneous unbounded piezoelectrics were obtained in [3–5]. They
were related to a description of 2D electro-elastic fields of straight dislocations.
Much later these results were extended for bounded and piece-wise homogeneous
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piezoelectric media in the series [6–11]. The new approach to a more general
theory of arbitrary curved dislocations in unbounded piezoelectric media was
developed in paper [12], where most of fundamental results of dislocation theory
for elastic media were adopted for piezoelectrics.

In this paper we return to the 2D electro-elastic fields of a straight dislocation
(to be exact, of a general line source including the dislocation) in an infinite
anisotropic but also inhomogeneous piezoelectric medium which has material
moduli arbitrarily dependent on one coordinate. Our theoretical approach will
be based on the extension of the propagator formalism developed in [13–15] for
purely elastic multilayers. We have partially used this extension in a recent paper
[11] devoted to dislocation fields in the 3-layered piezoelectric structure formed
by the layer between two substrates. Earlier dislocation fields in piezoelectric
[16] and piezoelectric-piezomagnetic [17, 18] inhomogeneous media have been
also obtained for the other type of 1D inhomogeneity related to a dependence of
material moduli on the polar angle.

2. Statement of the problem

Consider an infinite piezoelectric medium of unrestricted anisotropy which
is inhomogeneous along one direction specified by the unit vector n. We choose
the y axis along n, so that the material moduli of the medium are functions of
this coordinate. Let us denote cijkl(y) the elastic moduli tensor, eijk(y) for the
piezoelectric moduli and εij(y) for the permittivity tensor (Fig. 1). Thus, in the
Cartesian plane xz all these moduli are constant.

Fig. 1. The multilayered piezoelectric medium, its material tensors and the general line
source in the Cartesian coordinate system.

Let us choose the general line source parallel to the z axes and passing
through the point (x′, y′). The source consists of the dislocation with Burgers
vector b, its electrostatic analog characterized by the potential jump ∆ϕ, the
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line force f and the electric charge q(both per unit length of the source). The
electrostatic dislocation is defined [5, 12] by the jump of the potential ϕ at an
arbitrary surface spanned by the dislocation line. In our case we shall choose for
such a surface the semi-plane parallel to xz : y = y′, x > x′. Following [12], it is
convenient to consider a combined 4D dislocation with the Burgers 4-vector

(2.1) B =

(

b

∆ϕ

)

.

In Kroener’s manner [19] such a dislocation can be completely defined by the
“plastic distortion”

(2.2) U0
lK = −nlBKH(x− x′)δ(y − y′),

where nl is the component of the unit vector n ‖ y orthogonal to the layers,
H(x) is the Heaviside step function and δ(y) is the Dirac delta function.

In the same 4D space the fields of the mechanical displacements u and the
electric potential ϕ, altogether form the generalized “displacement” 4-vector

(2.3) U =

(

u

ϕ

)

.

Similarly, the force f and the charge q densities form the generalized “force”
4-vector

(2.4) F =

(

f

−q

)

.

Combinations of the mechanical stress tensor σ with the electric displacement
vector D and the elastic distortion tensor β with the electric field E give, re-
spectively, generalized “elastic” stresses (Σ) and “elastic” distortions (Uel):

(2.5) ΣiJ =

{

σij , J = j = 1, 2, 3;

Di, J = 4.
Uel

lK =

{

βlk, K = k = 1, 2, 3;

−El, K = 4;

which are represented as non-square 3×4 matrices (i, l = 1, 2, 3; J,K = 1, . . . , 4).
The relation between the above matrices is given by the generalized Hooke’s

law

(2.6) ΣiJ = CiJKlU
el
lK ,

where by definition

(2.7) CiJKl(y) =























cijkl, J,K = j, k = 1, 2, 3,

elij, J = j = 1, 2, 3, K = 4,

eikl, J = 4, K = k = 1, 2, 3,

−εil, J = 4, K = 4,
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is the extended moduli tensor, being in our case a function of y. It is easily
checked that the combination of Eqs. (2.5)–(2.7) gives the standard constitutive
relations

(2.8) σij = cijlkβkl − elijEl, Dj = ejlkβkl + εjlEl.

And vice versa, the combination of the equilibrium and Maxwell’s equations,

(2.9) div σ = −fδ(x− x′)δ(y − y′), div D = qδ(x− x′)δ(y − y′),

gives the extended equilibrium equation

(2.10) div Σ = −Fδ(x− x′)δ(y − y′).

For further applications it is convenient to rewrite Eq. (2.10) in the form

(2.11) div(Σ + Σ0) = 0,

where the tensor Σ0 is defined by a dyad with the components

(2.12) Σ0
iJ = (miFJ)H(x− x′)δ(y − y′), i = 1, 2, 3, J = 1, . . . , 4,

and mi is the component of the unit vector m ‖x (Fig. 1).
Here we must recall that in presence of the dislocation (2.2), being a part of

the general line source, the elastic distortion Uel
lK is not equal to a gradient of

the displacement vector UK . One should now distinguish between elastic (Uel
lK),

plastic (U0
lK) and total (U t

lK = UK,l) distortions, which are related to each other
through the Kroener-like [19] equation

(2.13) U t
lK ≡ UK,l = Uel

lK + U0
lK .

Substituting (2.6) into (2.10) with bearing in mind (2.13), we come to the dif-
ferential equation of the 2nd order with respect to the 4-vector U defined by
(2.3).

3. The Stroh–Barnett–Lothe alternative approach: 8D formalism

However, as it was demonstrated in [13–18], there is a much more promising
way of solving a plane elastic problem in a one-dimensionally inhomogeneous
medium. Instead of considering the system of 4 differential equations of the 2nd
order, it is more convenient to transform the problem to 8 differential equations
of the 1st order. This way was first indicated by Stroh [20] for a pure elas-
tic medium, and then its extension for piezoelectrics was given by Barnett

and Lothe [5]. Here we shall follow our approach in [11]. Let us add to the
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displacement field U(x,y) the additional unknown 4-vector field V(x,y) defined
by:

(3.1) ∂xV = −nΣ, ∂yV = (Σ + Σ0).

With these substitutions the equilibrium equation (2.11) is satisfied automati-
cally and the “Hooke’s” law (2.6) can be rearranged into the following 8D relation:

(3.2)

(

I
∂

∂y
−N(y)

∂

∂x

)

η(x, y) = −gH(x− x′)δ(y − y′),

which is just the required differential equation with respect to the new unknown
8-vector

(3.3) η(x, y) =

(

U(x, y)

V(x, y)

)

.

In (3.2) g is the strength 8-vector of the general line source,

(3.4) g =

(

B

−F

)

,

I is the identity 8 × 8 matrix (below we shall use the same notation for a 4 × 4
identity matrix) and N is the 8 × 8 matrix

(3.5) N(y) = −
(

(nn)−1(nm) (nn)−1

(mn)(nn)−1(nm) − (mm) (mn)(nn)−1

)

,

where the 4×4 matrices (nn), (mn), (nm) and (mm) are defined by convolutions
of the type (ab)JK = aiCiJKlbl formed by the extended moduli tensor CiJKl (2.7)
with the unit vectors m and n (Fig. 1).

After the Fourier transformation in Eq. (3.2) with respect to x (i.e. along the
layers)

(3.6) η(x, y) =

∞
∫

−∞

dk exp(ikx)η(k, y), H(x− x′) =
1

2πi

∞
∫

−∞

dk

k
exp[ik(x− x′)],

one obtains the ordinary differential equation

(3.7)

(

I
∂

∂y
− ikN(y)

)

η(k, y) = −g
exp(−ikx′)

2πik
δ(y − y′).

We note that for a convergence of the Fourier expansion (3.6)2 of the Heaviside
function, we have given to k an infinitesimally small imaginary part:

(3.8) k = Re k − iε, ε→ +0,

which will be implied in all further calculations.
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4. The propagator formalism

We start the analysis of Eq. (3.7) from its homogeneous form

(4.1)
∂

∂y
η(k, y) = ikN(y)η(k, y).

This type of equations is very well known both in the linear algebra [21, 22]
and in physics [23]. For instance, the time-dependent Schroedinger equation in
quantum mechanics [23] belongs just to this particular type. Such equations are
usually solved in terms of a propagator (or transfer) matrix. It is evident that
Eq. (4.1) is satisfied by the function

(4.2) η(k, y) = W(k)(y | y0)X(k),

where X(k) is an arbitrary 8-vector and W(k)(y | y0) is the propagator 8 × 8
matrix defined by

(4.3) W(k)(y | y0) = Ord exp

(

ik

y
∫

y0

dtN(t)

)

.

This matrix contains the ordering (Ord) operator which arranges the integrands
of multiple integrals arising after expansion of the exponent in (4.3), so that
the products of non-commuting matrices N(tm)N(tm−1) . . .N(t1) would contain
arguments putting in definite order: tm > tm−1 > · · · > t1 for y > y0 or, vise
versa, tm < tm−1 < · · · < t1 for y < y0. Below, for a reference point y0 we shall
choose y0 = y′.

Let us introduce the eigenvectors (ζkα) and eigenvalues (τkα) of the propa-
gator matrix (4.3):

(4.4) W(k)(y | y′)ζkα = τkαζkα, α = 1, . . . , 8.

Basing on the arguments similar to those in [15] for purely elastic multilayers,
one can show that

(4.5) τkα = exp[ikpkα(y − y′)], p−kα = pkα,

where the set of parameters pkα forms four pairs of complex conjugates and may
be numbered as

(4.6) [pkα]∗ = pkα+4, Im pkα > 0, Im pkα+4 < 0, α = 1, . . . , 4.

The eigenvectors ζkα also have the property

(4.7) [ζ−kα]∗ = ζkα+4, α = 1, . . . , 4.
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In addition, apart from some exclusive cases of degeneracy which are beyond
this consideration, these eigenvectors are orthogonal and complete:

(4.8) ζkα · Tζ−kβ = δαβ,
8
∑

α=1

ζkα ⊗Tζ−kα = I, T =

(

0 I

I 0

)

,

where ⊗ is the dyadic product and 4×4 blocks 0 and I are zero and unit matrices
in R4.

A spectral decomposition of the propagator matrix has the form:

(4.9) W(k)(y | y′) =

8
∑

α=1

ζkα ⊗ Tζ−kα exp[ikpkα(y − y′)],

which can be further conveniently decomposed into two submatrices

(4.10) W(k)(y | y′) = w(k)(y | y′) + [w(−k)(y | y′)]∗,
where in view of (4.9) and (4.5)2–(4.7) one has

(4.11) w(k)(y | y′) =

4
∑

α=1

ζkα ⊗Tζ−kα exp[ikpkα(y − y′)].

By their definition, both the submatrices in the right-hand side of (4.10) manifest
quite different behavior at ±∞ limits of the product k(y − y′):

lim
k(y−y′)→∞

w(k)(y | y′) = 0, lim
k(y−y′)→∞

[w(−k)(y | y′)]∗ = ∞,(4.12)

lim
k(y−y′)→−∞

w(k)(y | y′) = ∞, lim
k(y−y′)→−∞

[w(−k)(y | y′)]∗ = 0.(4.13)

Thus, a general solution of homogeneous Eq. (4.1) can be expressed in the
form

(4.14) ηgen(k, y) = W(k)(y | y′)C(k),

where C(k) is the unknown 8-vector which will be found below from the require-
ment of convergence of the Fourier integral and natural conditions at infinities
y → ±∞.

5. Finding the electro-elastic fields of the general line source

Now it is time to return to initial inhomogeneous equation (3.7). Its complete
solution is formed by a sum of general solution (4.14) and any partial solution
of Eq. (3.7). For the latter, one can choose the function

(5.1) ηpart(k, y) = −exp(−ikx′)
2πik

H(y − y′)W(k)(y | y′)g,
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where we have taken into account the identity W(k)(y′ | y′) = I. Combining
(4.14) and (5.1) it is convenient to renormalize the 8-vector C(k) in accordance
with the relation

(5.2) C(k) = c(k) exp(−ikx′)
2πik

.

The result is

(5.3) η(k, y) =
exp(−ikx′)

2πik
W(k)(y | y′)[c(k) − gH(y − y′)].

In order to avoid divergences of the Fourier integral (3.6)1 due to an exponential
growth of the functions w(k) and [w(−k)]∗ at k → ±∞, Eqs. (4.12)2 and (4.13)1,
one has to choose the appropriate 8-vector c(k) providing finite magnitudes of
the integrand at both infinities y → ±∞.

We shall suppose that the considered inhomogeneous medium is characterized
by definite limits of the eigenvectors and eigenvalues of the propagator matrix
at y → ±∞:

(5.4) lim
y→±∞

ζkα(y | y′) = ζ±kα, lim
y→±∞

pkα(y | y′) = p±kα, α = 1, . . . , 8.

Let us now decompose the unknown 8-vector c(k) into its projections along the
eigenvectors of the complete set {ζ−kα}:

(5.5) c(k) =
8
∑

α=1

ckαζ
−
kα.

In these terms, bearing in mind the radical difference in limiting properties of
the two submatrices of the decomposition (4.10), the limit of function (5.3) at
y → ∞ acquires the form

(5.6) η(k, y → −∞)

=
exp(−ikx′)

2πik

{ 4
∑

α=1

ckαζ
−
kα exp(ikp−kαy) +

8
∑

α=5

ckαζ
−
kα exp(ikp−kαy)

}

.

By Eq. (5.6), with accepted rule (4.6) of numeration of eigenvalues, we come to
the following requirements with respect to the unknown coefficients ckα in (5.5):

(5.7) ckα =

{

0, k > 0, α = 1, . . . , 4

0, k < 0, α = 5, . . . , 8.
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In order to find the nonvanishing components ckα, consider the opposite limit of
the function (5.3):

(5.8) η(k, y → ∞)

=
exp(−ikx′)

2πik

{ 4
∑

α=1

c′kαζ
+
kα exp(ikp+

kαy) +
8
∑

α=5

c′kαζ
+
kα exp(ikp+

kαy)

}

,

where the new notation is introduced

(5.9) c′kα =

8
∑

γ=1

M (k)
αγ (ckγ − gkγ), M (k)

αγ = ζ+
−kα · Tζ−kγ , gkγ = ζ−−kγ · Tg.

Due to the same rule (4.6), the finiteness of (5.8) is guaranteed if

(5.10) c′kα =

{

0, k > 0, α = 1, . . . , 4

0, k < 0, α = 5, . . . , 8.

Combining (5.9) with (5.10) and keeping in mind (5.7), one obtains the two
systems of equations with respect to the nonvanishing components ckα:

4
∑

γ=1

M (k)
αγ ckγ =

8
∑

γ=1

M (k)
αγ gkγ , k < 0, α = 1, . . . , 4,(5.11)

8
∑

γ=5

M (k)
αγ ckγ =

8
∑

γ=1

M (k)
αγ gkγ , k > 0, α = 5, . . . , 8.(5.12)

Let us now express in (5.11), (5.12) the sets {ckγ} and {gkγ} as 8-component
vectors, each in the block form of a pair of 4-vectors:

(5.13)
{ck1, . . . , ck4; ck5, . . . , ck8}T = (c

(1)
k ; c

(2)
k )T,

{gk1, . . . , gk4; gk5, . . . , gk8}T = (g
(1)
k ;g

(2)
k )T,

where the superscripts T stand for transposition. And decompose 8 × 8 matrix
Mk = {M (k)

αγ } also in the block form:

Mk =

(

M11
k M12

k

M21
k M22

k

)

(5.14)

≡
(

{ζ+
−kα · Tζ−kγ} {ζ+

−kα · Tζ−∗
−kγ}

{ζ+∗
kα · Tζ−kγ} {ζ+∗

kα · Tζ−∗
−kγ}

)

, α, γ = 1, . . . , 4,
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where we have made use of the property (4.7). We draw attention to the following
useful properties of the introduced 4 × 4 block matrices:

(5.15) M11
k = (M22

−k)
∗, M12

k = (M21
−k)

∗,

which follow from Eq. (4.7).
In terms of (5.13), (5.14), system (5.11), (5.12) acquires the form

M11
k c

(1)
k = M11

k g
(1)
k + M12

k g
(2)
k , k < 0;(5.16)

M22
k c

(2)
k = M21

k g
(1)
k + M22

k g
(2)
k , k > 0.(5.17)

These equations together with (5.7) are solved by

c
(1)
k = [g

(1)
k + (M11

k )−1M12
k g

(2)
k ]H(−k),(5.18)

c
(2)
k = [g

(2)
k + (M22

k )−1M21
k g

(1)
k ]H(k).(5.19)

The found solutions are conveniently combined to the initial scalar coefficients

(5.20) ckα =

(

gkα +

8
∑

γ=1

m(k)
αγ gkγ

)

H(−k Im p−kα), α = 1, . . . , 8,

where the new 8 × 8 matrix mk = {m(k)
αγ } is introduced:

(5.21) mk =

(

0 (M11
k )−1M12

k

(M22
k )−1M21

k 0

)

.

Substituting (5.20) with (5.9)3 into (5.5), one obtains

(5.22) c(k) =

8
∑

β,γ=1

ζ−kβ(ζ−−kγ · Tg)(δβγ +m
(k)
βγ )H(−k Im p−kβ),

which together with (5.3), (4.9) and (3.19)1 leads to the final solution

(5.23) η(x, y) =
1

2πi

∞
∫

−∞

dk

k
exp[ik(x− x′)]W(k)(y | y′)

×
8
∑

β,γ=1

ζ−kβ(ζ−−kγ · Tg)
{

δβγH [k(y − y′)Im p−kβ] sgn(y′ − y) +m
(k)
βγH(−kIm p−kβ)

}

.

Here we have made use of the identity

(5.24) H(a) −H(b) = H(−ab) sgn(a).
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The found solution (5.23) can be transformed to a more compact form. Let
us introduce the new 8 × 8 matrices

(5.25)

uk =

4
∑

β=1

ζ−kβ ⊗Tζ−−kβ ,

vk =

4
∑

β,γ=1

ζ−∗
−kβ ⊗ [(M22

k )−1M21
k ]βγTζ

−
kγ .

In these terms, basing on Eqs. (4.7) and (5.15), one can express the second line
of (5.23) in the form

(5.26)
8
∑

β,γ=1

ζ−kβ(ζ−−kγ · Tg)

×
{

δβγH [k(y − y′) Im p−kβ] sgn(y′ − y) −m
(k)
βγH(−k Im p−kβ)

}

=
(

sgn(y′ − y){uH
k [k(y − y′)] + u∗

−kH [−k(y − y′)]} + vH
k (k) + v∗

−kH(−k)
)

g.

Accordingly, Eq. (5.23) is transformed to

(5.27) η(x, y) =
1

π
Im

∞
∫

0

dk

k
exp[ik(x− x′)]W(k)(y | y′)(IH(y′ − y) − u+

k vk)g,

where the identity uk + u∗
−k = I by (4.8)2 was taken into account.

Constructing the above solution, we have chosen the set {ckα} in such a way
that the integral in (5.23) would be well convergent at its both infinite limits
of integration, for the point y situated at any of infinities y = ±∞. One can
check that convergence retains also for any intermediate positions of y. Here we
omit a bulky but straightforward analysis, which would be analogous to that
in [14] for pure elasticity with a similar conclusion: the integrand in (5.23) is
exponentially small at k → ±∞ for any y, y′ if all summations are accomplished
before integration.

But at k → 0 the same integral is logarithmically divergent, even with our
implied imaginary addition −iε to Re k in (3.8). This divergence leads to an
addition of the term ∼ ln ε tending to infinity but independent of coordinates.
Fortunately, such divergence has no physical consequences because the func-
tion η(x, y) is sort of a potential defined to any constant, even infinite. Only
derivatives of the function η(x, y), Eqs. (2.13) and (3.1), determine physically
measurable values. Formally, each such derivative provides in the integrands of
(5.22) and (5.27) the additional factor k which excludes the divergence at k → 0.
This problem is very well known in the theory of dislocations for purely elastic
media, both homogeneous [2] and layered [13].
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6. Limiting transition to a homogeneous medium

Let us consider the transition from the electro-elastic field (5.27) of the gen-
eral line source in an arbitrary layered piezoelectric medium to the case of a hom-
ogeneous solid. When the matrix N becomes independent of coordinates, the
propagator (4.3) takes the form

(6.1) W(k)(y | y′) = exp[ikN(y − y′)] =

8
∑

α=1

ξα ⊗Tξα exp[ikpα(y − y′)],

where ξα and pα are the eigenvectors and eigenvalues of the matrix N. Compar-
ing (6.1) with (4.9) one concludes that for homogeneity everywhere, including
infinities y → ±∞, there must be:

(6.2) ζkα = ξα, pkα = pα.

Consequently, due to the orthogonality relation (4.8)1, the non-diagonal block-
matrices in (5.14)–(5.18) vanish: M12 = M21 = 0. Therefore the matrix mk

(5.20) is an identical zero, which means that also m(k)
αγ = 0 in (5.21) and (5.22).

In the same way, the matrices vk and v∗
−k in (5.25)–(5.27) also must vanish.

Thus, one easily obtains, instead of (5.27),

(6.3) η(x, y) = − 1

π
Im

4
∑

α=1

ξα(ξα · Tg)

∞
∫

0

dk

k
exp{±ik[x− x′ + pα(y − y′)]},

where by (4.6)2 we imply that Im pα > 0 and the notation ± = sgn(y − y′) is
accepted. Now the integral in (6.3) can be explicitly taken. Denote

(6.4) J±(t) =

∞
∫

0

dk

k
exp(±ikt),

where t = x−x′+pα(y−y′). One can easily obtain the result that the derivative
of J±(t) is equal to J±(t) = −1/t. Therefore, to an arbitrary constant one has
J±(t) = − ln t. This gives the expression

(6.5) η(x, y) =
1

π
Im

4
∑

α=1

ξα(ξα · Tg) ln[x− x′ + pα(y − y′)],

which is equivalent to the classical results of the dislocation theory obtained for
homogeneous media, purely elastic [1, 2] or piezoelectric [5, 12].
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7. Physical fields

In accordance with (2.13) and (3.1), the found potential field η(x, y) (5.27)
allows one to express all electro-elastic physical fields excited in the considered
layered medium in the form:

Uel =

(

m
∂

∂x
+ n

∂

∂y

)

⊗ U,(7.1)

Σ =

(

m
∂

∂y
− n

∂

∂x

)

⊗ V.(7.2)

Substituting here the decomposed potential field η(x, y) = [U(x, y),V(x, y)]T

(5.27), we obtain

(7.3)

(

Uel(x, y)
Σ(x, y)

)

=
1

π
Re

∞
∫

0

dk
8
∑

α=1

(

(m + pkαn) ⊗Ukα(y | y′)
(pkαm − n) ⊗ Vkα(y | y′)

)

× exp{ik[x− x′ + pkα(y − y′)]}{ζkα(y | y′) · [T(IH(y′ − y) − uk + vk)]g}.

Basing on Eq. (5.23) one can get an alternative form for this relation:

(7.4)

(

Uel(x, y)
Σ(x, y)

)

=
1

2π

∞
∫

−∞

dk

8
∑

α,β,γ=1

(

(m + pkαn) ⊗ Ukα(y | y′)
(pkαm − n) ⊗Vkα(y | y′)

)

× exp{ik[x− x′ + pkα(y − y′)]}(ζ−kα(y | y′) · Tζ−kβ)(ζ−−kγ · Tg)

× {∓δβγH(±k Im p−kβ) −m
(k)
βγH(−k Im p−kβ)},

where for brevity we again introduce ± = sgn(y − y′) and ∓ = sgn(y′ − y).
The integrals in (7.3), (7.4) are well convergent with no singularities of the
integrands anywhere. But we suppose here that at x > x′, the coordinate y may
be arbitrarily close to y′, however y 6= y′. In this case the values U0

lK (2.2) and
Σ0

iJ (2.12) automatically vanish and the relations (2.13) and (3.1) are simplified,
which is reflected in Eqs. (7.1), (7.2).

The 8D eigenvectors ζkα are decomposed in (7.3), (7.4) into 4-vectors: ζkα =
[Ukα,Vkα]T. In addition, let us also decompose each of these 4-vectors into
a 3-vector and a scalar:

(7.5) Ukα = [Akα, ϕkα]T, Vkα = [Lkα,Dkα]T.

In these terms, the convolution involving in (5.23) the source strength g, can be
expressed as
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ζ−−kγ · Tg = −U−
−kγ · F + V−

−kγ · B(7.6)

= −A−
−kγ · f + ϕ−

−kγq + L−
−kγ · b +D−

−kγ∆ϕ.

Certainly, all four components of the source strength are independent and can
be free varied in (7.6). For instance, the electric field E excited by the ordinary
3D dislocation coming through the point (x′, y′) with the Burgers vector b in
the considered layered medium, is equal

(7.7) E(x, y) =
1

2π

∞
∫

−∞

dk
8
∑

α,β,γ=1

[m + npkα(y | y′)]ϕkα(y | y′)

× exp{ik[x− x′ + pkα(y − y′)]}(ζ−kα(y | y′) · Tζ−kβ)(L−
−kγ · b)

× {∓δβγH(±k Im p−kβ) −m
(k)
βγH(−k Im p−kβ)}.

The generalized stress ΣiJ given by (7.2) does not contain the component ΣzJ .
The latter can be found from the Hooke’s law (2.6). However, in some cases
it is sufficient to know only the above two components of the stress tensor. In
particular, the corresponding components of an ordinary mechanical stress tensor
σ excited by the same 3D dislocation and given by Eq. (7.4), have the form

(7.8) mσ(x, y) =
1

2π

∞
∫

−∞

dk

8
∑

α,β,γ=1

pkα(y | y′)Lkα(y | y′)

× exp{ik[x− x′ + pkα(y − y′)]}(ζ−kα(y | y′) · Tζ−kβ)(L−
−kγ · b)

× {∓δβγH(±k Im p−kβ) −m
(k)
βγH(−k Im p−kβ)},

(7.9) nσ(x, y) = − 1

2π

∞
∫

−∞

dk
8
∑

α,β,γ=1

Lkα(y | y′) exp{ik[x− x′ + pkα(y − y′)]}

× (ζ−kα(y | y′) · Tζ−kβ)(L−
−kγ · b){∓δβγH(±k Im p−kβ) −m

(k)
βγH(−k Im p−kβ)}.

In the same way one can find the contributions to physical fields from all the
considered source types described by Eq. (7.6). General solutions (7.3), (7.4) may
also be used as Green’s functions for a determination of fields of continuously
distributed bulk sources of the same type. If, instead of the line 8D source g,
there is a given distribution g(x, y) of sources, one should just substitute this
distribution into the found expression (7.3) or (7.4) as a function g(x′, y′) and
make additional integration with respect to x′ and y′. For instance, the 2D force
distribution f(x, y) excite in the considered layered piezoelectric medium the
electroelastic field
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(7.10)

(

Uel(x, y)
Σ(x, y)

)

=
1

2π

∞
∫

−∞

∞
∫

−∞

dx′dy′
∞
∫

−∞

dk

8
∑

α,β,γ=1

(

(m + pkαn) ⊗ Ukα(y | y′)
(pkαm − n) ⊗Vkα(y | y′)

)

× exp{ik[x− x′ + pkα(y − y′)]}(ζ−kα(y | y′) · Tζ−kβ)(A−
−kγ · f(x′, y′))

× {∓δβγH(±k Im p−kβ) −m
(k)
βγH(−k Im p−kβ)},

where the given force distribution f(x, y) must satisfy the standard conditions
of self-equilibrium.

8. Conclusions

The found solution is general in a sense that it is applicable to any layered
medium, graded or stratified, but under important limitation: the eigenvectors
and eigenvalues of the propagator matrix W(k)(y | y′) must have definite limits at
y → ±∞. The description is implicit: all the obtained analytical expressions for
electroelastic fields of the general line source are given in terms of those eigenvec-
tors and eigenvalues, which are supposed to be additionally computed as func-
tions of y. This is the price which has to be paid for an analytical solution of such
a complex problem, when an arbitrary anisotropy of the medium is accompanied
by its arbitrary layering, and elasticity is coupled with an electric polarization.

Fortunately, for modern computers determination of eigenvectors and eigen-
values of any matrices is quite a standard problem. Finding the propagator ma-
trix itself is also a routine procedure but only for the case of stratified (piece-vise
homogeneous) media. A propagator matrix for graded (continuously inhomoge-
neous) multilayers is reduced to an ordering operator (matricant [21, 22]) and its
explicit determination is less trivial. However, the latter problem was recently
widely studied and new efficient numerical approaches have been developed [24].

The other important aspect is associated with possible degeneracies of the
propagator matrix, its eigenvectors and eigenvalues, due to symmetry of the
medium. In this paper we ignored such a possibility supposing that unrestricted
anisotropy of the medium excludes any degeneracy. On the other hand, as was
recently indicated in [25], such degeneracies really arise in cases of high symme-
try of the medium, and for some symmetric boundary problems could strongly
influence the convergence of Fourier integrals. So, they need a special care at
numerical analysis.
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