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The problem of reflection and refraction phenomenon due to longitudinal
and transverse waves incident obliquely at a plane interface between uniform elastic
solid half-space and thermoelastic diffusive solid half-space has been studied. It is
found that the amplitude ratios of various reflected and refracted waves are functions
of angle of incidence, frequency of incident wave and are influenced by the elastic
properties of media. The expressions of amplitude ratios and energy ratios are ob-
tained in closed form. The amplitude ratios and energy ratios have been computed
numerically for a particular model. The variations of energy ratios with angle of
incidence are shown graphically. The conservation of energy across the interface is
verified. Some particular cases are also discussed.
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1. Introduction

In classical theory of thermoelasticity, Fourier’s heat conduction the-
ory assumes that the thermal disturbances propagate at infinite speed which
is unrealistic from the physical point of view. Two different generalizations
of the classical theory of thermoelasticity have been developed which predict
only finite velocity of propagation for heat and displacement fields. The first
one is given by Lord and Shulman [18] which incorporates a flux rate term
into the Fourier’s law of heat conduction and formulates a generalized theory
admitting finite speed for thermal signals. The second is given by Green and
Lindsay [14] which developes a temperature rate dependent thermoelasticity
by including temperature rate among the constitutive variables, which does
not violate the classical Fourier’s law of heat conduction. Lord and Shulman

[18] theory of generalized thermoelasticity have been further extended to ho-
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mogeneous anisotropic heat conducting materials recommended by Dhaliwal

and Sherief [9]. All these theories predict a finite speed of heat propaga-
tion. Chanderashekhariah [8] refers to this wave-like thermal disturbance
as second sound. A survey article of various representative theories in the
range of generalized thermoelasticity have been brought out by Hetnarski

and Ignaczak [15].
Diffusion is defined as the spontaneous movement of the particles from

a high concentration region to the low concentration region and it occurs
in response to a concentration gradient expressed as the change in the con-
centration due to change in position. Thermal diffusion utilizes the transfer
of heat across a thin liquid or gas to accomplish isotope separation. Today,
thermal diffusion remains a practical process to separate isotopes of noble
gases (e.g., xexon) and other light isotopes (e.g., carbon) for research pur-
poses. In most of the applications, the concentration is calculated using what
is known as Fick’s law. This is a simple law which does not take into con-
sideration the mutual interaction between the introduced substance and the
medium into which it is introduced or the effect of temperature on this inter-
action. However, there is a certain degree of coupling with temperature and
temperature gradients as temperature speeds up the diffusion process. The
thermodiffusion in elastic solids is due to coupling of fields of temperature,
mass diffusion and that of strain in addition to heat and mass exchange with
the environment.

Nowacki [19–22] developed the theory of thermoelastic diffusion by us-
ing coupled thermoelastic model. Dudziak and Kowalski [10] and Olesiak

and Pyryev [23], respectively, discussed the theory of thermodiffusion and
coupled quasi-stationary problems of thermal diffusion for an elastic layer.
They studied the influence of cross-effects arising from the coupling of the
fields of temperature, mass diffusion and strain due to which the thermal
excitation results in additional mass concentration and that generates addi-
tional fields of temperature. Gawinecki et al. [12] proved a theorem about
existence, uniqueness and regularity of the solution to an initial-boundary
value problem for a nonlinear coupled parabolic system. They used an en-
ergy method, method of Sobolev spaces, semigroup theory and Banach fixed
point theorem to prove the theorem. Gawinecki and Szymaniec [13] proved
a theorem about global existence of the solution to the initial-value problem
for a nonlinear hyperbolic parabolic system of coupled partial differential
equation of second order describing the process of thermodiffusion in solid
body. Uniqueness and reciprocity theorems for the equations of generalized
thermoelastic diffusion problem, in isotropic media, was proved by Sherief

et al. [25] on the basis of the variational principle equations, under restric-
tive assumptions on the elastic coefficients. Due to the inherit complexity of
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the derivation of the variational principle equations, Aouadi [4] proved this
theorem in the Laplace transform domain, under the assumption that the
functions of the problem are continuous and the inverse Laplace transform
of each is also unique. Sherief and Saleh [26] investigated the problem
of a thermoelastic half-space in the context of the theory of generalized
thermoelastic diffusion with one relaxation time. Kumar and Kansal [16]
developed the basic equation of anisotropic thermoelastic diffusion based upon
Green–Lindsay model.

Abd-alla and Alsheikh [1] studied a problem of reflection and refraction of
quasi-longitudinal waves under initial stresses at an interface of two anisotropic
piezoelectric media with different properties. Abd-alla et al. [2] discussed prop-
agation of plane vertical transverse waves at an interface of a semi-infinite piezo-
electric elastic medium under the influence of the initial stresses. Borejko [6]
discussed the reflection and transmission coefficients for three-dimensional plane
waves in elastic media. Wu and Lundberg [29] investigated the problem of
reflection and transmission of the energy of harmonic elastic waves in a bent
bar. Sinha and Elsibai [27] discussed the reflection and refraction of ther-
moelastic waves at an interface of two semi-infinite media with two relaxation
times. Sharma and Gogna [24] discussed the problem of reflection and refrac-
tion of plane harmonic waves at an interface between elastic solid and porous
solid saturated by viscous liquid. Tomar and Arora [28] studied reflection and
transmission of elastic waves at an elastic/porous solid saturated by immiscible
fluids. Kumar and Sarthi [17] discussed the reflection and refraction of ther-
moelastic plane waves at an interface of two thermoelastic media without energy
dissipation.

In the present paper, the reflection and refraction phenomenon at a plane
interface between an elastic solid medium and a thermoelastic diffusive solid
medium has been analyzed. In thermoelastic diffusive solid medium, potential
functions are introduced to represent three longitudinal waves and one transverse
wave. The amplitude ratios of various reflected and refracted waves to that of
incident wave are derived. These amplitude ratios are further used to find the
expressions of energy ratios of various reflected and refracted waves to that
of incident wave. The graphical representation is given for these energy ratios
for different direction of propagation. The law of conservation of energy at the
interface is verified.

2. Basic equations

Following Sherief et al. [25] and Kumar and Kansal [16], the basic equa-
tions of homogeneous isotropic generalized thermoelastic diffusive solid in the
absence of body forces, heat and mass diffusive sources are:
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(i) constitutive relations:

σij = 2µeij + δij [λekk − β1(T + τ1Ṫ ) − β2(C + τ1Ċ)],(2.1)

ρT0S = k + ρCE(T + αṪ ) + β1T0ekk + aT0(C + βĊ),(2.2)

P = −β2ekk + b(C + τ1Ċ) − a(T + τ1Ṫ );(2.3)

(ii) equations of motion:

(2.4) µui,jj + (λ+ µ)uj,ij − β1(T + τ1Ṫ ),i − β2(C + τ1Ċ),i = ρüi;

(iii) equation of heat conduction:

(2.5) ρCE(Ṫ + τ0T̈ ) + β1T0(ėkk + ετ0ëkk) + aT0(Ċ + γC̈) = KT,ii;

(iv) equation of mass diffusion:

(2.6) Dβ2ekk,ii +Da(T + τ1Ṫ ),ii + (Ċ + ετ0C̈) −Db(C + τ1Ċ),ii = 0,

where β1 = (3λ+2µ)αt and β2 = (3λ+2µ)αc; λ, µ are Lame’s constants, αt is the
coefficient of linear thermal expansion and αc is the coefficient of linear diffusion
expansion. a, b are, respectively, coefficients describing the measure of thermod-
iffusion and of mass diffusion effects, T = Θ−T0 is small temperature increment;
Θ is the absolute temperature of the medium; T0 is the reference temperature
of the body chosen such that |T/T0| ≪ 1, C is the concentration of the diffusive
material in the elastic body. ui are the components of the displacement vector u,
ρ is the density assumed to be independent of the time, σij , eij (= 1

2(ui,j +uj,i))
are the components of the stress and strain tensors respectively, ekk is the di-
latation, S is the entropy per unit mass, P is the chemical potential per unit
mass, CE is the specific heat at the constant strain, K is the coefficient of the
thermal conductivity, D is the thermoelastic diffusion constant, k is a material
constant. τ0, τ1 are diffusion relaxation times with τ1 ≥ τ0 ≥ 0 and τ0, τ1 are
thermal relaxation times with τ1 ≥ τ0 ≥ 0. Here α = β = k = τ1 = τ1 = 0,
ε = 1, γ = τ0 for Lord–Shulman (L-S) model and α = τ0, β = τ0, ε = 0, γ = τ0

for Green–Lindsay (G-L) model. In the above equations, a comma followed by
a suffix denotes spatial derivative and a superposed dot denotes the derivative
with respect to time.

The basic equations of homogeneous isotropic elastic solid are written as:

(2.7) µeuei,jj + (λe + µe)uej,ij = ρeüei ,

where λe, µe are Lame’s constants, uei are the components of the displacement
vector ue, ρe is density corresponding to isotropic elastic solid.
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The stress tensor σeij in the isotropic elastic solid medium is given by:

(2.8) σeij = 2µeeeij + λeeekkδij ,

where eeij (= 1
2(uei,j + uej,i)) are the components of the strain tensor, eekk is the

dilatation.

3. Formulation of the problem

We consider an isotropic elastic solid half-space lying over a homogeneous
isotropic, generalized thermoelastic diffusive solid half-space. The origin of the
Cartesian coordinate system (x1, x2, x3) is taken at any point on the plane sur-
face(interface) and x3-axis points vertically downwards into the thermoelastic
diffusive solid half-space. The elastic solid half-space occupies the region x3 ≤ 0
(medium I) and the region x3 ≥ 0 is occupied by the dissipative thermoelastic
diffusive solid half-space (medium II) as shown in Fig. 1. We consider plane waves
in the x1–x3 plane with wave front parallel to the x2-axis. For two-dimensional
problem, the displacement vectors ue in medium I and u in medium II are taken
as:

(3.1) ue = (ue1, 0, u
e
3), u = (u1, 0, u3).

Fig. 1. Geometry of the problem.
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We define the following dimensionless quantities:

x′1 =
w∗

1x1

c1
, x′3 =

w∗
1x3

c1
, u′1 =

w∗
1u1

c1
, u′3 =

w∗
1u3

c1
,

ue
′

1 =
w∗

1u
e
1

c1
, ue

′

3 =
w∗

1u
e
3

c1
, t′ = w∗

1t,

T ′ =
β1T

ρc21
, C ′ =

β2C

ρc21
,(3.2)

τ ′0 = w∗
1τ0, τ ′1 = w∗

1τ1, τ0′ = w∗
1τ

0, τ1′ = w∗
1τ

1,

σ′ij =
σij
β1T0

, σe
′

ij =
σeij
β1T0

, P ∗′

ij =
P ∗
ij

β1T0c1
, P ∗e′ =

P ∗e

β1T0c1
,

where w∗
1 = ρCEc

2
1/K, c1 =

√

(λ+ 2µ)/ρ.
Upon introducing the quantities (3.2) in Eqs. (2.4)–(2.6) with the aid of (3.1)

and after suppressing the primes, we obtain:

(3.3) (1 − δ2)[u1,11 + u3,13] + δ2[u1,11 + u1,33] − τ1
t T,1 − τ1

cC,1 = ü1,

(3.4) (1 − δ2)[u1,13 + u3,33] + δ2[u3,11 + u3,33] − τ1
t T,3 − τ1

cC,3 = ü3,

(3.5) T,11 + T,33 = τ0
t Ṫ + ζ1τ

0
c Ċ + ζ2τ

0
e [u̇1,1 + u̇3,3],

(3.6) q∗1[u1,111 + u1,133 + u3,111 + u3,333]

+ q∗2τ
1
t [T,11 + T,33] − q∗3τ

1
c [C,11 + C,33] + τ0

f Ċ = 0,

where

c2 =

√

µ

ρ
, δ2 =

c22
c21
,

ζ1 =
aT0c

2
1β1

w∗
1Kβ2

, ζ2 =
β2

1T0

ρKw∗
1

,

q∗1 =
Dw∗

1β
2
2

ρc41
, q∗2 =

Dw∗
1β2a

β1c21
, q∗3 =

Dw∗
1b

c21
,

τ1
t = 1 + τ1

∂

∂t
, τ1

c = 1 + τ1 ∂

∂t
, τ0

t = 1 + τ0
∂

∂t
,

τ0
c = 1 + γ

∂

∂t
, τ0

e = 1 + ετ0
∂

∂t
, τ0

f = 1 + ετ0 ∂

∂t
.

We introduce the potential functions φ and ψ through the relations:

(3.7) u1 =
∂φ

∂x1
− ∂ψ

∂x3
, u3 =

∂φ

∂x3
+
∂ψ

∂x1
,
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where φ and ψ are the displacement potentials of longitudinal and transverse
waves.

Substituting equation (3.7) in Eqs. (3.3)–(3.6), we obtain:

∇2φ− τ1
t T − τ1

cC = φ̈,(3.8)

∇2ψ − ψ̈

δ2
= 0,(3.9)

∇2T = τ0
t Ṫ + ζ1τ

0
c Ċ + ζ2τ

0
e∇2φ̇,(3.10)

q∗1∇4φ+ q∗2τ
1
t ∇2T − q∗3τ

1
c∇2C + τ0

f Ċ = 0,(3.11)

where

∇2 ≡ ∂2

∂x2
1

+
∂2

∂x2
3

.

Assuming the motion to be harmonic, we can write:

(3.12) {φ, ψ, T,C}(x1, x3, t) = {φ̄, ψ̄, T̄ , C̄}e−ιωt,

where ω is the angular frequency of vibrations of material particles. Substituting
the expressions of φ, ψ, T , C into Eqs. (3.8)–(3.11), we obtain:

[∇2 + ω2]φ̄− τ11
t T̄ − τ11

c C̄ = 0,(3.13)
[

∇2 +
ω2

δ2

]

ψ̄ = 0,(3.14)

−ζ2τ10
e ∇2φ̄+ [∇2 − τ10

t ]T̄ − ζ1τ
10
c C̄ = 0,(3.15)

q∗1∇4φ̄+ q∗2τ
11
t ∇2T̄ − [q∗3τ

11
c ∇2 − τ10

f ]C̄ = 0,(3.16)

where

τ11
t = 1 − ιωτ1, τ11

c = 1 − ιωτ1, τ10
t = −ιω(1 − ιωτ0),

τ10
c = −ιω(1 − ιωγ), τ10

e = −ιω(1 − ιωετ0), τ10
f = −ιω(1 − ιωετ0).

Equations (3.15) and (3.16) of this system are solved into two relations, given
by:

(3.17) {[q∗3τ11
c ζ2τ

10
e + q∗1ζ1τ

10
c ]∇4 − ζ2τ

10
e τ

10
f ∇2}φ̄

= {q∗3τ11
c ∇4 − [q∗3τ

11
c τ

10
t + τ10

f + q∗2τ
11
t ζ1τ

10
c ]∇2 + τ10

t τ
10
f }T̄ ,

(3.18) {q∗1∇6 + [q∗2τ
11
t ζ2τ

10
e − q∗1τ

10
t ]∇4}φ̄

= {q∗3τ11
c ∇4 − [q∗3τ

11
c τ

10
t + τ10

f + q∗2τ
11
t ζ1τ

10
c ]∇2 + τ10

t τ
10
f }C̄.



300 R. Kumar, T. Kansal

Using relations (3.17) and (3.18) in Eq. (3.13), we obtain:

(3.19) [G1∇6 +G2∇4 +G3∇2 +G4]φ̄ = 0,

where

G1 = (q∗1 − q∗3)τ
11
c ,

G2 = τ10
f + (q∗1 + q∗2)ζ1τ

10
c τ

11
t + (q∗2 + q∗3)ζ2τ

11
t τ

10
e τ

11
c

− (q∗1 − q∗3)τ
10
t τ

11
c − q∗3τ

11
c ω

2,

G3 = τ10
f (ω2 − τ10

t − ζ2τ
11
t τ10

e ) + q∗3τ
10
t τ

11
c ω

2 + q∗2ζ1τ
10
c τ

11
t ω

2,

G4 = −ω2τ10
f τ

10
t .

The general solution of Eq. (3.19) can be written as:

(3.20) φ̄ = φ̄1 + φ̄2 + φ̄3,

where the potentials φ̄i, i = 1, 2, 3 are solutions of wave equations, given by:

(3.21)

[

∇2 +
ω2

V 2
i

]

φ̄i = 0, i = 1, 2, 3.

Here V1, V2 and V3 are the velocities of three longitudinal waves, that is, P, MD
(Mass Diffusive) and T (Thermal) waves and derived from the roots of cubic
equations in V 2, given by:

(3.22) G4V
6 −G3ω

2V 4 +G2ω
4V 2 −G1ω

6 = 0.

From Eq. (3.14), we obtain:

(3.23) [∇2 +
ω2

V 2
4

]ψ̄ = 0,

where V4 = δ is the velocity of transverse wave.
Making use of Eq. (3.20) in Eqs. (3.17) and (3.18) with the aid of Eqs. (3.12)

and (3.21), the general solutions for φ, T and C are obtained as:

(3.24) {φ, T,C} =

3
∑

i=1

{1, ni, ki}φi,

where

ni =
[q∗3τ

11
c ζ2τ

10
e + q∗1ζ1τ

10
c ]ω4 + ζ2τ

10
e τ

10
f ω

2V 2
i

τ10
t τ

10
f V

4
i + [q∗3τ

11
c τ

10
t + τ10

f + q∗2τ
11
t ζ1τ

10
c ]ω2V 2

i + q∗3τ
11
c ω

4
,
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ki =
−q∗1ω6 + [q∗2τ

11
t ζ2τ

10
e − q∗1τ

10
t ]ω4V 2

i

V 2
i [τ10

t τ
10
f V 4

i + [q∗3τ
11
c τ

10
t + τ10

f + q∗2τ
11
t ζ1τ

10
c ]ω2V 2

i + q∗3τ
11
c ω

4]
, i = 1, 2, 3.

Applying the dimensionless quantities (3.2) in Eq. (2.7) with the aid of (3.1) and
after suppressing the primes, we obtain:

(αe
2 − βe

2
)

c21
[ue1,11 + ue3,13] +

βe
2

c21
[ue1,11 + ue1,33] = üe1,(3.25)

(αe
2 − βe

2
)

c21
[ue1,13 + ue3,33] +

βe
2

c21
[ue3,11 + ue3,33] = üe3,(3.26)

where αe =
√

(λe + 2µe)/ρe, βe =
√

µe/ρe are velocities of longitudinal and
transverse waves corresponding to medium I, respectively.

The components ue1 and ue3 are related by the potential functions as:

(3.27) ue1 =
∂φe

∂x1
− ∂ψe

∂x3
, ue3 =

∂φe

∂x3
+
∂ψe

∂x1
,

where φe and ψe satisfy the wave equations as:

(3.28) ∇2φe =
φ̈e

α′2
, ∇2ψe =

ψ̈e

β′2
,

where α′ = αe/c1 and β′ = βe/c1.

4. Reflection and refraction

We consider a harmonic wave (P or SV) propagating through the isotropic
elastic solid half-space and is incident at the interface x3 = 0 as shown in Fig. 1.
Corresponding to this incident wave, two homogeneous waves (P and SV) are re-
flected in isotropic elastic solid half-space and four inhomogeneous waves (P, MD,
T and SV) are refracted in isotropic thermoelastic diffusive solid half-space.

In elastic solid half-space, the potential functions satisfying Eq. (3.28) can
be written as

φe = Ae0e
[ιω{(x1 sin θ0+x3 cos θ0)/α′−t}] +Ae1e

[ιω{(x1 sin θ1−x3 cos θ1)/α′−t}],(4.1)

ψe = Be
0e

[ιω{(x1 sin θ0+x3 cos θ0)/β′−t}] +Be
1e

[ιω{(x1 sin θ2−x3 cos θ2)/β′−t}].(4.2)

The coefficients Ae0, B
e
0, A

e
1 and Be

1 represent the amplitudes of the incident P
(or SV), reflected P and reflected SV-waves, respectively.
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Following Borcherdt [5], in isotropic thermoelastic diffusive solid half-
space, the potential functions satisfying Eqs. (3.21) and (3.23) can be written
as:

{φ, T,C} =
3
∑

i=1

{1, ni, ki}Bie(Ai.r)e{ι(Pi.r−ωt)},(4.3)

ψ = B4e
(A4.r)e{ι(P4.r−ωt)}.(4.4)

The coefficients Bi, i = 1, 2, 3, 4 represent the amplitudes of refracted P, MD,
T and SV-waves, respectively. The propagation vector Pi, i = 1, 2, 3, 4 and
attenuation factor Ai, i = 1, 2, 3, 4 are given by:

(4.5) Pi = ξRx̂1 + dViRx̂3, Ai = −ξI x̂1 − dViI x̂3, i = 1, 2, 3, 4,

where

(4.6) dVi = dViR + ιdViI = p.v.

(

ω2

V 2
i

− ξ2
)1/2

, i = 1, 2, 3, 4.

and ξ = ξR + ιξI is a complex wave number. The subscripts R and I denote
the real and imaginary parts of the corresponding complex quantity and p.v.
stands for the principal value of the complex quantity obtained after square
root. ξR ≥ 0 ensures propagation in the positive x1-direction. The complex
wave number ξ in the isotropic thermodiffusive elastic solid medium is given by:

(4.7) ξ = |Pi| sin θ′i − ι |Ai| sin(θ′i − γi), i = 1, 2, 3, 4,

where γi, i = 1, 2, 3, 4 is the angle between the propagation and attenuation
vector and θ′i, i = 1, 2, 3, 4 is the angle of refraction in medium II.

5. Boundary conditions

The boundary conditions to be satisfied at the interface x3 = 0 are:
(i) continuity of stress components:

σe33 = σ33,(5.1)

σe31 = σ31;(5.2)

(ii) continuity of displacement components:

ue1 = u1,(5.3)

ue3 = u3;(5.4)
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(iii) thermally insulated boundary:

(5.5)
∂T

∂x3
= 0;

(iv) impermeable boundary:

(5.6)
∂C

∂x3
= 0.

Making the use of potentials given by Eqs. (4.1)–(4.4), we find that the boundary
conditions are satisfied if and only if:

(5.7) ξR =
ω sin θ0
V0

=
ω sin θ1
α′

=
ω sin θ2
β′

,

and

(5.8) ξI = 0,

where

(5.9) V0 =

{

α′, for incident P-wave,
β′, for incident SV-wave.

It means that waves are attenuating only in x3-direction. From Eq. (4.7), it
implies that if |Ai| 6= 0, then γi = θ′i, i = 1, 2, 3, 4, that is, attenuated vectors
for the four refracted waves are directed along the x3-axis.

Using Eqs. (4.1)–(4.4) in the boundary conditions (5.1)–(5.6) with the aid of
Eqs. (3.7), (3.27), (5.7)–(5.9), we get a system of six non-homogeneous equations
which can be written as:

(5.10)

6
∑

j=1

dijZj = gi,

where Zj = |Zj | eιψ
∗
j , |Zj | , ψ∗

j , j = 1, . . . , 6 represent amplitudes ratios and phase
shift of reflected P-, reflected SV-, refracted P-, refracted MD-, refracted T- and
refracted SV-waves to that of incident wave, respectively.

d11 = 2µe
(

ξR
ω

)2

− ρec21, d12 = 2µe
ξR
ω

dVβ′

ω
,

d16 = 2µ
ξR
ω

dV4

ω
, d21 = 2µe

ξR
ω

dVα′

ω
,

d22 = µe
[(

dVβ′

ω

)2

−
(

ξR
ω

)2]

, d26 = µ

[(

ξR
ω

)2

−
(

dV4

ω

)2]

,



304 R. Kumar, T. Kansal

d31 =
ξR
ω
, d32 =

dVβ′

ω
, d36 =

dV4

ω
,

d41 = −dVα′

ω
, d42 =

ξR
ω
, d46 = −ξR

ω
,

d51 = d52 = d56 = 0, d61 = d62 = d66 = 0,

d1j = λ

(

ξR
ω

)2

+ ρc21

(

dVj
ω

)2

+
ρc21(njτ

11
t + kjτ

11
c )

ω2
, d2j = 2µ

ξR
ω

dVj
ω
,

d3j = −ξR
ω
, d4j = −dVj

ω
, d5j = nj

dVj
ω
, d6j = kj

dVj
ω
, j = 3, 4, 5,

dVα′

ω
=

(

1

α′2
−
(

ξR
ω

)2)1/2

=

(

1

α′2
− sin2 θ0

V 2
0

)1/2

,
dVβ′

ω
=

(

1

β′2
− sin2 θ0

V 2
0

)1/2

,

and
dVj
ω

= p.v.

(

1

V 2
j

− sin2 θ0
V 2

0

)1/2

, j = 1, 2, 3, 4.

Here p.v. is evaluated with restriction dVjI ≥ 0 to satisfy decay condition in
thermoelastic diffusive medium. The coefficients gi, i = 1, 2, 3, 4 on the right
side of the Eq. (5.10) are given by:

(i) for incident P-wave:

(5.11) g1 = −d11, g2 = d21, g3 = −d31, g4 = d41, g5 = 0, g6 = 0;

(ii) for incident SV-wave:

(5.12) g1 = d12, g2 = −d22, g3 = d32, g4 = −d42, g5 = 0, g6 = 0.

Now we consider a surface element of unit area at the interface between two
media. The purpose is to calculate the partition of energy of the incident wave
among the reflected and refracted waves on the both sides of surface. Following
Achenbach [3], the energy flux across the surface element, that is, rate at which
the energy is communicated per unit area of the surface is represented as:

(5.13) P ∗ = σlmlmu̇l,

where σlm is the stress tensor, lm are the direction cosines of the unit normal l̂

outward to the surface element and u̇l are the components of the particle velocity.
The time average of P ∗ over a period, denoted by 〈P ∗〉, represents the average

energy transmission per unit surface area per unit time. Thus, on the surface
with normal along x3-direction, the average energy intensities of the waves in
the elastic solid half-space are given by:

(5.14) 〈P ∗e〉 = Re〈σ〉e13 Re(u̇e1) + Re〈σ〉e33 Re(u̇e3).
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Following Achenbach [3], for any two complex functions f and g, we have:

(5.15) 〈Re(f).Re(g)〉 =
1

2
Re(f.ḡ).

The expressions for energy ratios Ei, i = 1, 2 for the reflected P- and reflected
SV are given by:

(5.16) Ei = −〈P ∗e
i 〉

〈P ∗e
0 〉 , i = 1, 2,

where

〈P ∗e
1 〉 =

ω4ρec21
α′

|Z1|2 Re(cos θ1), 〈P ∗e
2 〉 =

ω4ρec21
β′

|Z2|2 Re(cos θ2),

and
(i) for incident P-wave:

(5.17) 〈P ∗e
0 〉 = −ω

4ρec21
α′

cos θ0;

(ii) for incident SV-wave:

(5.18) 〈P ∗e
0 〉 = −ω

4ρec21
β′

cos θ0;

are the average energy intensities of the reflected P-, reflected SV-, incident P-
and incident SV-waves respectively. In Eq. (5.16), negative sign is taken because
the direction of reflected waves is opposite to that of incident wave.

For thermoelastic diffusive solid half-space, the average energy intensities of
the waves on the surface with normal along x3-direction, are given by:

(5.19) 〈P ∗
ij〉 = Re〈σ〉(i)13 Re(u̇

(j)
1 ) + Re〈σ〉(i)33 Re(u̇

(j)
3 ).

The expressions for energy ratios Eij , i, j = 1, 2, 3, 4 for the refracted P-, re-
fracted MD-, refracted T- and refracted SV-waves are given by:

(5.20) Eij =
〈P ∗

ij〉
〈P ∗e

0 〉 , i, j = 1, 2, 3, 4,

where

〈P ∗
ij〉 = −ω4Re

[{

2µ
dVi
ω

ξR
ω

ξ̄R
ω

+

{

λ

(

ξR
ω

)2

+ ρc21

(

dVi
ω

)2

+
ρc21(niτ

11
t + kiτ

11
c )

ω2

}

d̄V j

ω

}

Zi+2Z̄j+2

]

,
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〈P ∗
i4〉 = −ω4Re

[{

− 2µ
dVi
ω

ξR
ω

¯dV4

ω

+

{

λ

(

ξR
ω

)2

+ ρc21

(

dVi
ω

)2

+
ρc21(niτ

11
t + kiτ

11
c )

ω2

}

ξ̄R
ω
}Zi+2Z̄6

]

,

〈P ∗
4j〉 = −ω4Re

[{

µ

((

ξR
ω

)2

−
(

dV4

ω

)2) ξ̄R
ω

+ 2µ
ξR
ω

dV4

ω

d̄V j

ω

}

Z6Z̄j+2

]

,

〈P ∗
44〉 = −ω4Re

[{

− µ

((

ξR
ω

)2

−
(

dV4

ω

)2) d̄V 4

ω
+ 2µ

ξR
ω

dV4

ω

ξ̄R
ω

}

Z6Z̄6

]

,

i, j = 1, 2, 3.

The diagonal entries of energy matrix Eij in Eq. (5.20) represent the energy
ratios of P, MD, T and SV waves, respectively, whereas sum of the non-diagonal
entries of Eij gives the share of interaction energy among all the refracted waves
in the medium and is given by

(5.21) ERR =
4
∑

i=1

(

4
∑

j=1

Eij −Eii

)

.

The energy ratios Ei, i = 1, 2, diagonal entries and sum of non diagonal entries
of energy matrix Eij , that is, E11, E22, E33, E44 and ERR yield the conservation
of incident energy across the interface, through the relation:

(5.22) E1 + E2 + E11 + E22 +E33 + E44 +ERR = 1.

6. Particular cases

1. In the absence of diffusion effect, that is, if we take a = β2 = 0 in the
Eqs. (5.10) and (5.20), we obtain the corresponding expressions for amplitude
and energy ratios of reflected P-, reflected SV-, refracted P-, refracted T- and
refracted SV-waves to that of incident wave. In these expressions the velocities
V1 and V3 are derived from the roots of quadratic equation in V 2, given by:

(6.1) τ10
t V

4 + (ω2 − τ10
t − ζ2τ

11
t τ

10
e )V 2 − ω2 = 0,

and the coupling coefficients ni, i = 1, 3 are given as

ni =
ζ2τ

10
e ω

2

τ10
t V

2
i + ω2

, i = 1, 3.
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2. Further, in the absence of thermal and diffusion effects, that is, if we take
a = β1 = β2 = 0 in Eqs. (5.10) and (5.20), we obtain the corresponding ex-
pressions for amplitude and energy ratios of reflected P-, reflected SV-, refracted
P-, and refracted SV-waves to that of incident wave which are similar to as ob-
tained in Ewing et al. [11] by changing dimensionless quantities into physical
quantities.

7. Numerical results and discussion

With the view of illustrating theoretical results obtained in the preceding
sections and comparing these in the context of various theories of thermoelastic
diffusion, we now represent some numerical results for copper material[26], the
physical data for which is given below:

λ = 7.76 × 1010 Kg m−1s−2, µ = 3.86 × 1010 Kg m−1s−2,

T0 = 0.293 × 103 K, CE = 0.3831 × 103 JKg−1K−1,

αt = 1.78 × 10−5 K−1, αc = 1.98 × 10−4 Kg−1m3,

a = 1.2 × 104 m2s−2K−1, b = 9 × 105 Kg−1m5s−2,

D = 0.85 × 10−8 Kg s m−3, ρ = 8.954 × 103 Kg m−3,

K = 0.383 × 103 Wm−1K−1.

The relaxation times are:

τ0 = 0.2 s, τ1 = 0.9 s, τ0 = 0.3 s, τ1 = 0.8 s.

Following Bullen [7], the numerical data of granite in elastic medium is given
by:

ρe = 2.65 × 103 Kg m−3, αe = 5.27 × 103 ms−1, βe = 3.17 × 103ms−1.

The software Matlab 7.0.4 has been used to determine the values of energy
ratios Ei, i = 1, 2 and an energy matrix Eij , i, j = 1, 2, 3, 4 defined in the
previous section for different values of incident angle (θ0) ranging from 0◦ to 90◦

for fixed frequency ω = 2 × π × 100 Hz. Corresponding to incident P and SV
waves, the variations of these energy ratios with respect to angle of incidence
have been plotted in Figs. 2–8 and Figs. 9–15, respectively. In all the figures, the
vertical and horizontal lines correspond to L-S(LSD) and G-L(GLD) theories of
thermoelastic diffusion.
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Fig. 2. Variations of energy ratio (E1) with respect to angle of incidence (θ0) for P-wave.

Fig. 3. Variations of energy ratio (E2) with respect to angle of incidence (θ0) for P-wave.

Incident P-wave

It is clear from Fig. 2 that for both LSD and GLD theories, the values of
energy ratio E1 decrease with the increase of the angle of incidence (θ0) from
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Fig. 4. Variations of energy ratio (E11) with respect to angle of incidence (θ0) for P-wave.

Fig. 5. Variations of energy ratio (E22) with respect to angle of incidence (θ0) for P-wave.

0◦ to 63◦, and then increase as θ0 increases further. Figure 3 shows that the
values of energy ratio E2 increase up to at θ0 = 69◦ and thereafter decrease
continuously. Figure 4 indicates that for LSD theory, initially for a small range,
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Fig. 6. Variations of energy ratio (E33) with respect to angle of incidence (θ0) for P-wave.

Fig. 7. Variations of energy ratio (E44) with respect to angle of incidence (θ0) for P-wave.

the value of energy ratio E11 increases slightly, but then decreases dramatically.
On the other hand, for GLD theory, value of E11 decreases for all values of θ0.
Figure 5 depicts that the values of energy ratio E22 increase up to half-stage and
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Fig. 8. Variations of energy ratio (E44) with respect to angle of incidence (θ0) for P-wave.

after that decrease rapidly. From Fig. 6, it is evident that initially, the values
of energy ratio E33 fluctuate as θ0 increases, but finally decrease. From Fig. 7,
it is noticed that values of energy ratio E44 increase to their highest values at
θ = 72◦ and then decrease continuously. Figure 8 shows that initially, the values
of energy ratio ERR show oscillating behavior in the initial stage, but after that
decrease slowly and steadily. It is noticed that the sum of the values of energy
ratios E1, E2, E11, E22, E33, E44 and ERR is found to be exactly unity at
each value of θ0 which proves the law of conservation of energy at the interface.
However, if we examine Figs. 2–8 closely, we find that sum does not look to be
unity. The reason is that we are plotting 3D graphs in origin software. On the
other hand, if we plot 2D graphs in any other software, the sum will come out
exactly as unity. If we compare two theories in all figures, we find that the values
of E1, E2, E22, ERR are higher in GLD theory in comparison to LSD theory
and the values of E11, E33, E44 are more in LSD theory as compared to GLD
theory.

Incident SV-wave

From Fig. 9, it is evident that there is a rapid increase in the values of
energy ratio E1 initially, but after θ = 36◦ and onwards, values of energy
ratio E1 decrease and become negligible small. Figure 10 depicts that the
values of energy ratio E2 initially fluctuate, but finally reach to nearly unity.



312 R. Kumar, T. Kansal

Fig. 9. Variations of energy ratio (E1) with respect to angle of incidence (θ0) for SV-wave.

Fig. 10. Variations of energy ratio (E2) with respect to angle of incidence (θ0) for SV-wave.

Figure 11 indicates that the values of energy ratio E11 decrease continuously
for both LSD and GLD cases. Figures 12 and 13 show that the values of
energy ratios E22 and E33 oscillate up to a certain stage and after that
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Fig. 11. Variations of energy ratio (E11) with respect to angle of incidence (θ0) for SV-wave.

Fig. 12. Variations of energy ratio (E22) with respect to angle of incidence (θ0) for SV-wave.

become very small. Due to small values of E11 and E22, the values of E11

and E22 are magnified by 105 and 103, respectively. We notice from Figs. 14
and 15 that firstly, the values of energy ratios E44 and ERR show fluctuating
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Fig. 13. Variations of energy ratio (E33) with respect to angle of incidence (θ0) for SV-wave.

Fig. 14. Variations of energy ratio (E44) with respect to angle of incidence (θ0) for SV-wave.

behavior and then decrease continuously. Like in case of incident P-wave,
the sum of all energy ratios is also found to be unity in case of incident
SV-wave.
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Fig. 15. Variations of energy ratio (ERR) with respect to angle of incidence (θ0) for SV-wave.

8. Conclusions

In the present article, the phenomenon of reflection and refraction of obliquely
incident elastic waves at the interface between an elastic solid half-space and
a thermoelastic diffusive solid half-space has been studied. The four waves in
thermoelastic diffusive medium are identified and explained through different
wave equations in terms of displacement potentials. Due to the presence of dis-
sipation, the waves in thermoelastic diffusive medium are considered to be inho-
mogeneous waves. The energy ratios of different reflected and refracted waves to
that of incident wave are computed numerically and presented graphically with
respect to the angle of incidence.

From numerical results, we conclude that the effect of angle of incidence on
the energy ratios of the reflected and refracted waves is significant. The sum
of all energy ratios of the reflected waves, refracted waves and interference be-
tween refracted waves is verified to be always unity which ensures the law of
conservation of incident energy at the interface.
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