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Compliance minimization of thin plates made of material

with predefined Kelvin moduli.

Part I. Solving the local optimization problem
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The paper deals with compliance minimization of a transversely homogeneous
plate, subjected to the in-plane and transverse loadings acting simultaneously. The
set of design variables includes the eigenstates of Hooke’s tensor whose eigenvalues,
i.e. Kelvin moduli fields, are assumed to be fixed on the middle plane of the plate,
but no isoperimetric condition is imposed. The optimization task reduces to an equi-
librium problem of an effective hyperelastic plate. The effective potential is explicitly
expressed in terms of the invariants of both the strain fields involved.
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1. Introduction

In the three-dimensional elasticity, the elastic properties of a material
are determined by six independent moduli of stress measure (Pa) and by fifteen
nondimensional geometric independent parameters. This characterization follows
from the spectral decomposition of Hooke’s tensor, cf. [31], where the Author
proposed to call these six elastic moduli by the name of Lord Kelvin. The theory
of spectral decomposition of Hooke’s tensors was also developed in papers by
Rychlewski [32–34], Blinowski et al. [5–7], Mehrabadi and Cowin [25],
Theocaris and Sokolis [40], Moakher and Norris [26], and Norris [27].
The meaning of moduli and geometric parameters involved in the spectral rep-
resentation is best seen if one takes a closer look at the geometric properties of
the RVE cells, while considering the theory of non-homogeneous media from the
point of view of the mechanics of composites. The mathematical structure of
Hooke’s tensor of crystals with various internal symmetries has been discussed
in [38].

In two-dimensional problems, the constitutive properties are determined by
three Kelvin moduli (λ1, λ2, λ3) and by three geometric parameters, see [6,9,10].
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In the present paper this spectral representation will be applied to describe the
stiffness distribution of a thin elastic transversely homogeneous plate, whose
model is assumed to satisfy the so-called generalized plane stress. It is worth
pointing out that both the membrane and bending stiffnesses can be determined
by one tensor A of Hooke’s symmetry.

In the present paper we attempt to construct the optimal layout of geometric
parameters of tensor A in the problem of simultaneous in-plane and transverse
deformation of a plate. Kelvin moduli of this tensor are kept fixed, i.e. they do
not undergo optimization. In general these moduli constitute the fields λ1(x),
λ2(x), λ3(x), x being an arbitrary point at the middle plane Ω. The aim of the
optimization is to minimize the compliance of a plate made from the material
of such class, which is equivalent to the stiffening of a plate with respect to the
given loading. Thus three types of loadings are discussed: (M), or membrane-
type, bending-type: (B) and a composition of both: (M-B). We shall prove that
the optimal design corresponding to the (M-B) loading comprises the cases of
(M) and (B) types and that it tends to these specific solutions if one of the
loading is absent.

To make the formulation of the minimum compliance problem well posed, it
is in many cases necessary to augment it with an isoperimetric condition usually
imposing a restriction on the volume of the material used. In the discussion
below, the isoperimetric condition is absent, which makes the problem more
universal.

However, upon solving the task considered in this paper we arrive at the
starting point for a new optimization problem in which the Kelvin moduli can
be viewed as design variables. Then it is natural to introduce an isoperimetric
condition, constraining the distribution of these moduli within the domain Ω, in
the form

(1.1)
∫

Ω

g(λ1, λ2, λ3) dx ≤ const,

and one can choose the integrand as either the Euclidean norm

(1.2) g(λ1, λ2, λ3) =
[

(λ1)
2 + (λ2)

2 + (λ3)
2
]1/2

,

or assume that

(1.3) g(λ1, λ2, λ3) = λ1 + λ2 + λ3.

Note that by (1.2) we assume the boundedness of the integral of the Frobenius
norm of tensor A, while (1.3) means that the integral of the trace of tensor A is
bounded. Such optimization problems, called free material optimization (FMO)
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or free material design (FMD), have been originated by Bendsøe et al. [2, 3]
and then developed in papers by Kočvara et al., see [22,23] and Stingl et al.

[35–37]. Its applications can be found in Gaile et al. [17], Hörnlein et al. [21].
An overview of the FMO state-of-art has been recently delivered in Haslinger

et al. [20].
The FMO setting is closely related to the optimal material modeling ad-

dressed in Ringertz [28], Banichuk [1], Rodrigues et al. [30], Taylor [39],
Du and Taylor [14] and Guedes et al. [18, 19].

The approach proposed in the present paper makes it possible to formulate
the FMO problem using different methodology enabling a deep insight into the
mathematical structure of the stiffness moduli tensor. Consequently, it paves
the way for the new version of FMO, with alternative isoperimetric conditions
concerning the Kelvin moduli. Partial results of the research were announced
in [15,16,24].

The plan of the paper is as follows: The optimization task is formulated in
terms of displacements, which means that the minimum compliance problem
admits a saddle point formulation, see (2.19). This, in turn, results in the local
problem (2.23) which can be solved explicitly by using vector interpretation of
tensors from the set E

2
s (symmetric tensors of second order referred to a plane).

Compliance optimization is thus reduced to finding of an equilibrium of an ef-
fective plate with hyperelastic potential Wλ of the form (3.13). The strain fields
solving the posed problem determine the spectral representation of tensor A in
a point-wise manner. It turns out that the problem derived is well posed, the
proof being delivered in the second part of the present paper. The usual summa-
tion convention for repeated indices is adopted. The small Greek indices assume
the values 1, 2, while the Latin indices assume values 1, 2, 3.

2. Problem statement

2.1. Equlibrium equations of a transversely homogeneous plate

Consider a plate with constantly varying thickness h and the middle plane
Ω parameterized by a Cartesian system (x1, x2) with the basis (i1, i2) and write
x = (x1, x2), x ∈ Ω. Take x3 as an axis orthogonal to Ω and let the coordinate
system (x1, x2, x3) be counterclockwise. Assume that h(x) > 0, x ∈ Ω and small
if compared to the diameter of Ω. Moreover, assume that the material of a plate
is homogeneous with respect to its thickness and set x3 = const. as planes of
material symmetry. Suppose that the deformation of such defined structure is
described by the theory of thin plates, therefore the transverse deformations
are neglected in the analysis. Let the fields u(x) = (u1(x), u2(x)) and w(x)
represent the displacement fields along the axes x1, x2, x3 respectively and adopt
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the membrane and bending strain fields definitions within the linear theory of
plates: εαβ = εαβ(u), καβ = καβ(w), where

(2.1) εαβ(u) =
1

2
(uα,β + uβ,α), καβ(w) = −w,αβ

and (·),α = ∂/∂xα.
Let the tensor C = [Cαβλµ] comprise all moduli of the generalized plane

stress state and set

(2.2) Aαβλµ = hCαβλµ, Dαβλµ =
h3

12
Cαβλµ.

Stress resultants N = [Nαβ ] and couple resultants M = [Mαβ ] are linked with
the strains by linear equations

(2.3) Nαβ = Aαβλµελµ, Mαβ = Dαβλµ
κλµ.

If the plate is subjected to the in-plane and transversal loadings of intensities
p(x) = (p1(x), p2(x)) and q(x) respectively, then the virtual work of these load-
ings on the test in-plane displacements v(x) = (v1(x), v2(x)) and transverse
displacements v(x) is expressed by

(2.4) f(v, v) =

∫

Ω

(pαvα + qv) dx.

Assume that the part Γ1 of the boundary ∂Ω is clamped, i.e.

(2.5) u = 0, w = 0,
∂w

∂n
= 0 on Γ1,

where n = (n1, n2) stands for the unit vector outward normal to Γ1. The other
part of the boundary, denoted by Γ2, is free. Let V stand for a linear space of
appropriately regular fields (u, w) satisfying (2.5).

Stress resultants N and M satisfy the variational equilibrium equation within
Ω and the natural boundary conditions along Γ2

(2.6)
∫

Ω

(Nαβεαβ(v) +Mαβ
καβ(v))dx = f(v, v), ∀(v, v) ∈ V.

Substituting (2.1) and (2.3) in (2.6) gives two governing equations of Lax-
Milgram type with separated membrane and bending mode of deformation, how-
ever the optimization procedure presented in the sequel results in re-coupling ε

and κκκ in one formula.
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2.2. Compliance minimization of a plate with predefined Kelvin moduli

Second-order plane symmetric tensors, e.g. a = aαβ iα ⊗ iβ , and fourth-order
tensors of Hooke’s symmetry, e.g. A = Aαβλµ iα ⊗ iβ ⊗ iλ ⊗ iµ, constitute the
spaces denoted by E

2
s and E

4
s respectively. A certain geometrical analogy, see [33],

allows to treat the objects belonging to these spaces as vectors and second-order
tensors in R

3. Indeed, if we adopt a basis

(2.7) B1 = i1 ⊗ i1, B2 = i2 ⊗ i2, B3 =
1√
2
(i1 ⊗ i2 + i2 ⊗ i1),

then we can represent a ∈ E
2
s and A ∈ E

4
s as a = ai Bi and A = Aij Bi ⊗ Bj ,

where

(2.8)
[

ai

]

=







a11

a22√
2a12






,

[

Aij

]

=







A1111 A1122

√
2A1112

A1122 A2222

√
2A1222√

2A1112

√
2A1222 2A1212






.

Obviously, components of such defined representations depend on the choice of
basis in Ω. For brevity of further derivation, define the following operations on
objects from E

2
s and E

4
s:

(2.9)

a · b =
3
∑

i=1
ai bi, a ∈ E

2
s,b ∈ E

2
s,

A : B =
3
∑

i=1

3
∑

j=1
Aij Bij , A ∈ E

4
s,B ∈ E

4
s,

(Ab)i =
3
∑

j=1
Aij bj, A ∈ E

4
s,b ∈ E

2
s,

(AB)ik =
3
∑

j=1
Aij Bjk, A ∈ E

4
s,B ∈ E

4
s.

The first and second equation in Eqs. (2.9) denote scalar products in the cor-
responding spaces. Respective norms are thus defined as ‖a‖ = (a · a)1/2 and
‖A‖ = (A : A)1/2.

Due to the transversal symmetry of a plate, the components of tensor A are
constant in this direction, thus they are treated as fields referred to Ω. Spectral
decomposition of A admits the following form, see [31,33,34] and [6],

(2.10) A = λ1 P1 + λ2 P2 + λ3 P3,

where λ1 > λ2 > λ3 stand for the Kelvin moduli and

(2.11) P1 = ω1 ⊗ ω1, P2 = ω2 ⊗ ω2, P3 = ω3 ⊗ ω3

denote the eigentensors of A having the properties of projection operators.
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Tensors ωj , j = 1, 2, 3 stand for the eigenstates, or proper states, of A

satisfying the orthogonality conditions

(2.12) ωi · ωj = δij .

The unit tensor I4 in the space E
4
s of tensors obeying the Hooke’s symmetry can

be decomposed as

(2.13) I4 = P1 + P2 + P3.

Eigenstates ω1, ω2, ω3 are determined by three angular parameters, see [9].
In the present paper no use is made of these parameters, hence there is no need
to recall their representations here.

Denote the set of Hooke’s tensors of the given Kelvin moduli λ1, λ2, λ3 and
arbitrary eigenstates ω1, ω2, ω3 by Tλ. Next, let Tλ(Ω) stand for the set of
Hooke’s tensor fields determined at each point x ∈ Ω by the Kelvin moduli
λ1(x), λ2(x), λ3(x) and arbitrary eigenstates ω1(x), ω2(x), ω3(x).

Assuming that the values of moduli λ1(x) > λ2(x) > λ3(x) > 0 are fixed
within Ω and the orientation of ω1, ω2, ω3 is unknown, consider the following
optimum design problem: at each point x ∈ Ω find such orientation of tensors
ωi that minimizes the compliance C = f(u, w).

Making use of the theorem on the minimum of the total elastic potential of
the plate, define the functional

(2.14) J(A,v, v) =
1

2

∫

Ω

[

ε(v) · (Aε(v)) +
h2

12
κκκ(v) · (Aκκκ(v))

]

dx− f(v, v).

In order to get the optimal orientation of the eigenstates thus minimizing the
total plate compliance, it is necessary to find the solution to the following equa-
tion:

(2.15) C0 = min
A∈Tλ(Ω)

C(A),

where C(A) = f(u(A), w(A)) and (u(A), w(A)) solves the equilibrium problem
governed by Eqs. (2.6) and (2.3). By combining (2.6) with (2.14) one obtains

(2.16) f(u(A), w(A)) = −2J(A,u(A), w(A))

where

(2.17) J(A,u(A), w(A)) = min
(v,v)∈V

J(A,v, v).
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Rewriting (2.15) as a maximization problem leads to

(2.18) C0 = − max
A∈Tλ(Ω)

{−f(u(A), w(A))}

or

(2.19) C0 = −2 max
A∈Tλ(Ω)

min
(v,v)∈V

J(A,v, v).

The next step of the analysis requires switching the “min” and “max” in (2.19).
The justification of this interchange is given in Sec. 3.4 of Part II of the present
paper. Assuming that this is possible, set

(2.20) Ĉ0 = −2 min
(v,v)∈V

max
A∈Tλ(Ω)

J(A,v, v),

introduce the functional

(2.21) Jλ(v, v) = max
A∈Tλ(Ω)

J(A,v, v)

and pass with the “max” operation under the integral sign in (2.14), thus obtain-
ing

(2.22) Jλ(v, v) =

∫

Ω

Wλ(x) (ε(v),κκκ(v)) dx− f(v, v),

where

(2.23) Wλ(x)(ε,κκκ) =
1

2
max

A∈Tλ(x)

{

ε · (Aε) +
h2

12
κκκ · (Aκκκ)

}

.

The equivalence of Eqs. (2.21) and (2.22) follows from the Rockafellar theorem,
see [29].

The minimum compliance problem (2.20) assumes the form

(2.24) Ĉ0 = −2 min
(v,v)∈V

Jλ(v, v) (P ∗)

equivalent to the equilibrium problem of an effective plate with hyperelastic
constitutive properties. Indeed, the condition of stationarity imposed on the
functional (2.22) leads to (2.6) with

(2.25) N =
∂Wλ(x)(ε,κκκ)

∂ε

, M =
∂Wλ(x)(ε,κκκ)

∂κκκ
.

The stress resultants N, M in (2.25) are linked with the strain measures in (2.1)
which in turn are dependent on the displacement fields according to the formulae
known from the linear plate theory.
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The solution to (P ∗) will be denoted by N̂, M̂, ε̂, κ̂κκ, û, ŵ. The equality
C0 = Ĉ0 will be proved in Part II.

Derivation of the potential (2.23) in its explicit form is the goal of this part of
the paper. Thus the obtained solution of the problem in (2.24) gives the complete
information on the distribution of the fields ω1, ω2, ω3 within Ω, in this way
determining the spatial distribution of all components of tensor C.

3. Explicit formulation of the compliance minimization problem

3.1. Deformation energy potential of an optimal plate

The aim of this section is to find the potential (2.23) and the effective con-
stitutive equations (2.25) in their explicit forms. To this end, by using represen-
tation (2.10), write

(3.1) ε · (Aε) =
3

∑

k=1

λk(ωk · ε)2, κκκ · (Aκκκ) =
3

∑

k=1

λk(ωk · κκκ)2

and to make the units of deformation tensors uniform, set

(3.2) κ =
h√
12

κκκ

which allows to rewrite (2.23) in the equivalent form

(3.3) Wλ(ε,κκκ) = Wλ

(

ε,

√
12

h
κ

)

= 2U∗
λ(ε,κ),

where

(3.4) 2U∗
λ(ε,κ) =

1

2
max
A∈Tλ

{ε · (Aε) + κ · (Aκ)}

with the argument x being omitted since further discussion is pointwise in Ω.
Formula (3.4) is equivalent to

(3.5) 4U∗
λ(ε,κ) = max

{

3
∑

k=1

λk

[

(ωk · ε)2 + (ωk · κ)2
]

∣

∣

∣

ωi ∈ E
2
s, ωi · ωj = δij

}

and the following representations

(3.6) ||ε||2 =
3

∑

k=1

(ωk · ε)2, ||κ||2 =
3

∑

k=1

(ωk · κ)2
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are inferred from (2.13). Consequently,

(3.7)
3

∑

k=1

λk(ωk · ε)2 = λ3||ε||2 + µ1(ω1 · ε)2 + µ2(ω2 · ε)2

where

(3.8) µ1 = λ1 − λ3, µ2 = λ2 − λ3

and a similar formula holds for κ. Rearranging of (3.5) gives

(3.9) 4U∗
λ(ε,κ) = λ3

(

‖ε‖2 + ‖κ‖2
)

+ 4U∗
1 (ε,κ)

with

(3.10) 4U∗
1 (ε,κ) = max

ωα·ωβ=δαβ

ωα∈E
2
s

{ 2
∑

α=1

µα

[

(ωα · ε)2 + (ωα · κ)2
]

}

and α, β = 1, 2. Calculations in (3.9) and (3.10) lead to

2U∗
λ(ε,κ) =

1

4
(λ1 + λ2)(||ε||2 + ||κ||2)(3.11)

+
1

4
(λ1 − λ2)[(||ε||2 − ||κ||2)2 + 4(ε · κ)2]1/2,

4U∗
1 (ε,κ) =

1

2
(µ1 + µ2)(||ε||2 + ||κ||2)(3.12)

+
1

2
(µ1 − µ2)[(||ε||2 − ||κ||2)2 + 4(ε · κ)2]1/2,

thus determining the potential Wλ(ε,κκκ) by (3.3), or explicitly

Wλ(ε,κκκ) =
1

4
(λ1 + λ2)

(

||ε||2 +
h2

12
||κκκ||2

)

(3.13)

+
1

4
(λ1 − λ2)

[(

||ε||2 − h2

12
||κκκ||2

)2

+
h2

3
(ε · κκκ)2

]1/2

.

The remainder of this section is dedicated to the derivation of (3.12) in full
details.

Assume that ‖ε‖ 6= 0, ‖κ‖ 6= 0; introduce the tensors of unit norms

(3.14) ε̂ =
ε

||ε|| , κ̂ =
κ

||κ||
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and an auxiliary tensor

(3.15) κ̃ =

{

κ̂ if ε̂ · κ̂ > 0,

−κ̂ if ε̂ · κ̂ < 0.

Obviously, U∗
λ(ε̂, κ̂) = U∗

λ(ε̂, κ̃). Next, define a non-dimensional invariant

(3.16) ξ(ε,κ) =
‖κ‖2

‖ε‖2
,

obtaining in this way

(3.17) 4U∗
1 (ε,κ) = µ1‖ε‖2 max

ωα·ωβ=δαβ

ωα∈E
2
s

U∗(ε̂, κ̃).

where α, β = 1, 2 and

(3.18) U∗(ε̂, κ̃) = (ω1 · ε̂)2 + d(ω2 · ε̂)2 + ξ(ε,κ)(ω1 · κ̃)2 + dξ(ε,κ)(ω2 · κ̃)2,

with

(3.19) d =
µ2

µ1
, d =

λ2 − λ3

λ1 − λ3
.

Note that d ∈ (0, 1).
In order to perform the maximization in (3.17), it is convenient to represent

tensors from E
2
s as vectors belonging to R

3, see (2.8), as follows:

(3.20) ωα =







ω11
α

ω22
α√

2ω12
α






, ε̂ =







ε̂11

ε̂22√
2ε̂12






, κ̃ =







κ̃11

κ̃22√
2κ̃12






,

and to consider two planes: Π12 spanned by vectors ω1, ω2 and Πεκ determined
by vectors ε̂, κ̃ with the unit vector n, denoting the vector at the edge of both
planes, see Fig. 1.

Assume that vector n⊥ belongs to Π12, it is orthogonal to n and such that
ω2 · n⊥ > 0. Similarly, suppose that vector m belongs to Πεκ, it is orthogonal
to n and such that m · ε̂ > 0. Moreover, set β = ∢(n⊥,m), α1 = ∢(n,ω1) and
α2 = π/2 − α1. Next, decompose ω1, ω2, ε̂ and κ̃ in the basis (n,n⊥)

(3.21)
ω1 = cosα1 n + sinα1 n⊥, ε̂ = cos γ n + sin γm,

ω2 = cosα2 n + sinα2 n⊥, κ̃ = cos δ n + sin δm,

and compute the scalar products
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Fig. 1. Juxtaposition of vectors ε̂, κ̃, ω1, ω2.

(3.22)

ω1 · ε̂ = cosα1 cos γ + sinα1 sin γ cosβ,

ω2 · ε̂ = cosα2 cos γ + sinα2 sin γ cosβ,

ω1 · κ̃ = cosα1 cos δ + sinα1 sin δ cosβ,

ω2 · κ̃ = cosα2 cos δ + sinα2 sin δ cosβ,

where α2 = α1 + π/2. Substitution of (3.22) into (3.18) gives

(3.23) U∗(ε̂, κ̃) = g(cosβ)

with g being a second-order polynomial

(3.24) g(z) = az2 + bz + c

with a > 0. The explicit formulae for a(α1, γ, δ), b(α1, γ, δ), c(α1, γ, δ) are not
necessary in the calculations, hence their derivation is omitted. Note that

(3.25) max
ωα·ωβ=δαβ

ωα∈E
2
s

U∗(ε̂, κ̃)

= max
α1,γ,δ,β∈R

{

a(α1, γ, δ) cos2 β + b(α1, γ, δ) cosβ + c(α1, γ, δ)
}

= max
α1,γ,δ∈R

max {a(α1, γ, δ) ± b(α1, γ, δ) + c(α1, γ, δ)} ,

since maximum is attained for cosβ = ±1.
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The result above implies thatΠ12 andΠεκ are coplanar, thus vectors ω1, ω2,
ε̂ and κ̃ belong to the same plane. Moreover, the arbitrariness of the directions
of ω1, ω2 leads to the assumption that the juxtaposition of ω1, ω2, ε̂ and κ̃

shown in Fig. 2 is possible. Let α = ∢(ε̂, κ̃) and note that α ∈ (0, π/2).

Fig. 2. Juxtaposition of vectors ε̂, κ̃, ω1, ω2 after maximization over β.

Let x = ∢(ε̂,ω1). Then

(3.26)
ω1 · ε̂ = cosx, ω2 · ε̂ = − sinx,

ω1 · κ̃ = cos(x− α), ω2 · κ̃ = − sin(x− α)

which gives

(3.27) U∗(ε̂, κ̃) = H(x),

see (3.18), where

(3.28) H(x) = cos2 x+ ξ cos2(x− α) + d sin2 x+ dξ sin2(x− α)

with ξ and α depending on ε̂ and κ̃.
The next task is to maximize (3.28) with respect to x, since it is easily seen

that

(3.29) max
{

U∗(ε̂, κ̃) | ωα · ωβ = δαβ, ωα ∈ E
2
s, α, β = 1, 2

}

= max {H(x) | x ∈ R} .

To perform this maximization set

(3.30) H(x) = H̃(2x), H̃(y) =
1

2
[(1 + ξ)(1 + d) + (1 − d)f(y)]
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where

(3.31) f(y) = cos y + ξ cos(y − y0)

and y0 = 2α. By

(3.32) max{H(x) | x ∈ R} = max{H̃(y) | y ∈ R}

one obtains

(3.33) max{H(x) | x ∈ R} =
1

2
(1 + ξ)(1 + d) +

1

2
(1 − d) max

y∈R

f(y).

Applying (A.2), see Appendix A, leads to

(3.34) max
y∈R

f(y) =
[

1 + 2ξ cos(2α) + ξ2
]1/2

which determines the potential

4U∗
1 (ε,κ) =

1

2
(µ1 + µ2)

(

‖ε‖2 + ‖κ‖2
)

+(3.35)

+
1

2
(µ1 − µ2)

[

‖ε‖4 + 2‖ε‖2‖κ‖2 cos(2α) + ‖κ‖4
]1/2

,

where cosα = ±(ε · κ/‖ε‖ ‖κ‖), hence the sign of cosα does not affect (3.35)
thus proving (3.12).

Remark. The discussion in this paper is based on the assumed equivalence
between Eqs. (2.19) and (2.20), which will be proved in Part II of the present
paper.

3.2. Representation of the optimal material and its constitutive properties

The following question arises: which eigenstates ω1, ω2, ω3 realize their
maxima in (3.5)? In this section the general case of ‖ε‖ 6= 0, ‖κ‖ 6= 0 is analyzed.
Two extreme cases ε = 0 and κ = 0 are treated separately in the sequel.

Introduce ε
⊥, see Fig. 2, co-planar with ε̂, ω1, ω2, orthogonal to ε̂ and such

that the angle ∢(ω1, ε
⊥) is acute. Next, assume that α 6= 0. In this way ε

⊥ can
be expressed as

(3.36) ε
⊥ = − cotα ε̂ +

1

sinα
κ̃.

Decomposition of κ̃, ω1, ω2 in the basis (ε̂, ε⊥) takes the form

(3.37)

κ̃ = cosα ε̂ + sinα ε
⊥,

ω1 = cosx0 ε̂ + sinx0 ε
⊥,

ω2 = − sinx0 ε̂ + cosx0 ε
⊥,
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with x0 being the maximizer in (3.29), hence one may express the angle x0 by
formula (A.3), see Appendix A, or

(3.38) tan(2x0) =
ξ sin(2α)

1 + ξ cos(2α)
.

Substituting (3.37) in (3.36) gives

(3.39) ω1 = γ1 ε̂ + γ2 κ̃, ω2 = δ1 ε̂ + δ2 κ̃,

where

(3.40)
γ1 = cosx0 − cotα sinx0, γ2 =

sinx0

sinα
,

δ1 = − sinx0 − cotα cosx0, δ2 =
cosx0

sinα
,

with x0 given by (3.38). Note that both x0 and x0 + π/2 solve (3.38) with
the latter case resulting in switching ω1 with ω2, and the definition of ω3 is
unnecessary here since ω3 ⊗ω3 was eliminated from the calculations by (2.13).

Assume now that α = 0. Then ε̂ = κ̃ and by (3.18) one obtains

(3.41) U∗(ε̂, κ̃) = (1 + ξ)
[

(ω1 · ε̂)2 + d(ω2 · ε̂)2
]

.

Inserting (3.26) into (3.41) and taking into account that α = 0 leads to

(3.42) U∗(ε̂, κ̃) = (1 + ξ)[cos2 x+ d sin2 x]

or

(3.43) U∗(ε̂, κ̃) =
1

2
(1 + ξ)[(1 + d) + (1 − d) cos 2x].

Since 1− d > 0, the maximum in Eq. (3.29) is attained for cos 2x = 1. Then
x = 0 or x = π, hence ω1 = ±ε̂ and ω2 · ε̂ = 0, therefore

(3.44) max
x∈R

U∗(ε̂, κ̂) = (1 + ξ),

which is compatible with (3.29)–(3.34) provided α = 0.
It follows that the optimal choice of ω1, ω2 is given by

ω1 =

{

±(γ1ε̂ + γ2κ̃) if ∢(ε̂, κ̂) 6= 0,

±ε̂ if ∢(ε̂, κ̂) = 0,
(3.45)

ω2 =











±(δ1ε̂ + δ2κ̃) if ∢(ε̂, κ̂) 6= 0,

arbitrary vector
perpendicular to ε̂ if ∢(ε̂, κ̂) = 0

(3.46)

and ω3 = ω1 × ω2.
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Consequently, by substituting the defined ω1, ω2 in (2.10), one may con-
struct tensor A in two following cases:

(a) Case of ∢(ε̂, κ̂) 6= 0,

A = (λ1 − λ3)(γ1ε̂ + γ2κ̃) ⊗ (γ1ε̂ + γ2κ̃)(3.47)

+ (λ2 − λ3)(δ1ε̂ + δ2κ̃) ⊗ (δ1ε̂ + δ2κ̃) + λ3I4

with ω2 being arbitrary and orthogonal to ε̂, and
(b) Case of ∢(ε̂, κ̂) = 0,

(3.48) A = (λ1 − λ3)ε̂ ⊗ ε̂ + (λ2 − λ3)ω2 ⊗ ω2 + λ3I4.

Making use of (3.2) and (3.3) one may find the explicit expressions for the
constitutive Eqs. (2.25)

(3.49) N = 2
∂U∗

λ(ε,κ)

∂ε

, M = 2
h√
12

∂U∗
λ(ε,κ)

∂κ

.

For the brevity of notation, define the following scalar functions:

(3.50)
φ(ε,κ) =

‖ε‖2 − ‖κ‖2

G(ε,κ)
, ψ(ε,κ) =

2 (ε · κ)

G(ε,κ)
,

G(ε,κ) =
(

(‖ε‖2 − ‖κ‖2)2 + 4 (ε · κ)2
)1/2

.

Then write

(3.51) 8U∗
λ(ε,κ) = (λ1 + λ2)Ũ

∗(ε,κ)

where

(3.52) Ũ∗(ε,κ) = ‖ε‖2 + ‖κ‖2 + νG(ε,κ).

Obviously,

(3.53) Ũ∗(ε,κ) = Ũ∗(κ, ε), Ũ∗(ε,κ) ≥ 0.

Note that the dependence on λ has been suppressed, while the ratio

(3.54) ν =
λ1 − λ2

λ1 + λ2

satisfies: 0 < ν < 1, since λ1 > λ2 > 0.
The following rules of differentiation will be frequently used in the sequel

(3.55)
∂‖ε‖2

∂ε

= 2ε,
∂(ε · κ)

∂ε

= κ

leading to

(3.56)
∂G(ε,κ)

∂ε

= 2L(ε,κ)



36 G. Dzierżanowski, T. Lewiński

with

(3.57) L(ε,κ) = φ(ε,κ)ε + ψ(ε,κ)κ.

Consequently, one may write

(3.58) N =
1

4
(λ1 + λ2)

∂Ũ∗(ε,κ)

∂ε

, K =
1

4
(λ1 + λ2)

∂Ũ∗(ε,κ)

∂κ

where K =

√
12

h
M or, by (3.55)–(3.57),

(3.59) N =
1

2
(λ1 + λ2) [ε + νL(ε,κ)] , K =

1

2
(λ1 + λ2) [κ + νL(κ, ε)] .

It is worth mentioning that formulae (3.49) make sense if and only if G(ε,κ)
6= 0 in (3.50). For ε, κ such that ||ε||2 − ||κ||2 = 0 and ε · κ = 0, it is easily seen
from (3.52), (3.51) and (3.49) that (3.59) become

N =
1

2
(λ1 + λ2)ε, K =

1

2
(λ1 + λ2)κ.

3.3. Extreme cases of ε = 0 or κ = 0

For analyzing whether (3.11) applies in the case of ε = 0, κ 6= 0, one has to
turn back to (3.9), (3.10), thus obtaining

(3.60) 4U∗
1 (ε,κ) = max

ωα·ωβ=δαβ ,

ωα∈E
2
s

{

µ1(ω1 · κ)2 + µ2(ω2 · κ)2
}

.

Choosing ω1 = κ̂, see Eq. (3.14), gives ω2 · κ̂ = 0 and

(3.61) µ1(ω1 · κ)2 + µ2(ω2 · κ)2 = µ1‖κ‖2.

Indeed, let x = ∢(κ̂,ω1). Then

(3.62) ω1 · κ̂ = cosx, ω2 · κ̂ = cos
(π

2
+ x

)

= − sinx.

Next, by making use of µ1 > µ2, one can estimate

µ1(ω1 · κ)2 + µ2(ω2 · κ)2 ≤ µ1

[

(ω1 · κ)2 + (ω2 · κ)2
]

(3.63)

= µ1‖κ‖2
[

(ω1 · κ̂)2 + (ω2 · κ̂)2
]

= µ1‖κ‖2

and it is obvious by (3.61) that this bound is attainable for ω1 = κ̂. This implies

(3.64) 4U∗
1 (0,κ) = µ1‖κ‖2, 4U∗

λ(0,κ) = λ1‖κ‖2

which is compatible with (3.35) and (3.11).



Compliance minimization of thin plates. . . 37

By analogy,

(3.65) 4U∗
1 (ε,0) = µ1‖ε‖2, 4U∗

λ(ε,0) = λ1‖ε‖2

which is also compatible with (3.35). We thus conclude that (3.35) and (3.11)
hold for arbitrary ε and κ.

Final remarks

The free material optimization problem (2.15) has been reduced to the equi-
librium problem (P ∗) or (2.24) of a hyperelastic plate with an effective potential
expressed by (3.13). The relevant constitutive equations (2.25) have been trans-
formed to the form (3.59). The convexity of the potential (3.13) will be proved in
the second part of the present paper. The mentioned convexity property implies
strict monotonicity of the constitutive equations, which implies uniqueness of
the solutions of the optimization problem discussed.
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Appendix A

Let ζ > 0 and define the function

(A.1) f(y) = cos y + ζ cos(y − y0).

Then

(A.2) max
y
f(y) = (1 + 2ζ cos y0 + ζ2)1/2

the maximizer being

(A.3) y = arc tan

(

ζ sin y0

1 + ζ cos y0

)

.

To prove (A.3) it is sufficient to solve the equation f ′(y) = 0. The formula (A.2)
has a geometric interpretation shown in Fig. 3.
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Fig. 3. Expression (A.2) represents the length of the longer diagonal of a parallelogram of
sides 1 and ζ and angle y0.

The result (A.2) can be inferred from the rule

(A.4) A1 cos(x+ ϕ1) +A2 cos(x+ ϕ2) = A cos(x+ ϕ)

where

A = (A2
1 +A2

2 + 2A1A2 cos(ϕ1 − ϕ2))
1/2,(A.5)

tanϕ =
A1 sinϕ1 +A2 sinϕ2

A1 cosϕ1 +A2 cosϕ2
,(A.6)

see [8]. Note that (A.4) attains its maximum for x+ϕ = 0. Problem (A.2) admits
A1 = 1, A2 = ζ, ϕ1 = 0, ϕ2 = −y0 and (A.3) follows from (A.6).
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