
Arch. Mech., 64, 2, pp. 177–206, Warszawa 2012

Onsager principle for nonlinear mechanical systems
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A classical mechanical system subjected to frictional forces is considered in the
limit of large frictional coefficient. Random white noise is also introduced in confor-
mity to the fluctuation-dissipation theorem. The velocity is split into a deterministic
component plus a random stochastic component consequently, the evolution operator
(generator) for the probability density in configuration space is evaluated recalling
previous work by the same author, by stochastically averaging the flux of particles.
The averages depend upon the history of the system, but memory may be eliminated
by suitably defining the drift, in the limit of large time.

The fundamental solution of the diffusion equation is recast into the form of
a Feynman path integral, and subsequently transformed into an Onsager–Machlup
path integral, whose regressive stationary solutions satisfy the minimum entropy pro-
duction principle. It is focused upon the role played by the appropriate definition of
drift velocity adopted in this approach, allowing for interpretation of the Onsager–
Machlup potential.
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1. Introduction

In previous papers it was investigated upon a stationary action principle for
dissipative mechanical systems, where various forms of the dissipative force were
considered as dependent upon the phase space variables [1, 2].

The equations of the motion considered, governing the evolution in time
of those systems, were Langevin equations, which were assumed to satisfy the
fluctuation-dissipation relations [3–5], while the corresponding configurational
transition probability densities were shown to evolve according to the Smolu-
chowski equation, which is the Fokker–Planck equation restricted to configura-
tion space [6–11]. This work, which is intended to follow this line of investigation,
is restricted to consider the case of very large frictional coefficient, so that the
resulting motion is in the overdamped regime.
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The aim of the present work is the derivation of path-integral expressions for
the fundamental solutions of the Smoluchowski equations, describing the evolu-
tion in time of the transition probability densities [12–14]. The main scope is
to prove that, if the appropriate equation for the drift is established, which is
the gradient of a velocity potential, then not only a great simplification in the
diffusion operator occurs, yielding a memoryless Markovian evolution equation,
but also the path integral solution transforms into the expression given by On-
sager and Machlup for linear systems, thus providing a natural generalization
of that theory. At the same time, a clear connection is established between the
Onsager–Machlup function and the basic physical variables characterizing the
system.

The definition of path-integrals for the solutions of these equations is rather
controversial in the nonlinear case [15–21]. This leads to uncertainty upon the
weight to be assigned to different points of each segment into which the trajectory
is subdivided [15], and consequently, to somewhat artificial adjustments over
the normalization factors, so that the required differential equations should be
satisfied.

In this work it is shown that by defining properly the weight, equivalence
between the Feynman and Onsager–Machlup path-integral results, by using an
algebraic identity due to M. Roncadelli [22]. In the present case, the action
is not simply the solution of a Hamilton–Jacobi equation for the given potential
like in [22], but rather the singular solution of a Hamilton–Jacobi–Riccati (HJR)
equation, whose potential energy function is created by the equilibrium solution
of the Smoluchowski equation (4.1′) (see Eq. (4.10)), through the drift velocity
and diffusion coefficient.

This HJR equation is identified, with leading orders of the expansion in in-
verse powers of the frictional coefficient, to that one which was proved (Eqs. (2.4),
(2.6)) to model the drift velocity of a system driven by a random force, described
by a Langevin equation. This allows to interpret and to give a correspondence be-
tween the terms appearing in the Onsager–Machlup formulation of path-integral,
as well as in the Feynman path average, with the external potential acting in
the Langevin equation (Eq. (4.13)).

It is not a trivial fact that the two procedures are exactly consistent with
each other, which is a confirmation of the exactness of the whole scheme, leading
from Langevin to the Smoluchowski equation (see Sec. 4).

2. Dynamical model for a coupled system

A non-isolated dynamical system is considered, for simplicity one-dimen-
sional, which is strongly coupled to a larger system called the bath, thereby
continuously exchanging energy with the environment. Therefore the complete
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Hamiltonian, representing the energy of the system in interaction, is written as:

(2.1) H(p, q, t) =
p2

2m
+ U(q) − qΞ(t),

where the phase coordinates of the system are q and p as usual, and m is its
mass. U(q) is the potential energy which is assumed to be a smooth function of
the arguments, Ξ(t) is a real physical force which is the result of the complete
interaction of the small system with the environment (see, for instance [23]). By
its nature it is very irregular and unpredictable, since it is the result of many
uncorrelated and independent phenomena. Consequently, it is computationally
convenient to model it as a mathematically defined random quantity (i.e. not
endowed with a definite value as a function of time, but with a distribution of
admissible values with well defined statistical properties). It is therefore assumed

that Ξ(t), t ∈ (−∞,+∞) is a stationary Gaussian stochastic process with zero
mean, whose realizations will be denoted by ξ(t). Depending upon the nature of
the physical system under consideration, the random force ξ(t) will in general
have a finite correlation time [24], which is assumed here to be so small as to be
considered vanishing on the time-scale of interest [25]. Therefore it is assumed
to be the white noise property [7]

(2.2) 〈ξ(t)ξ(s)〉 = 2mβTδ(t− s),

where the brackets denote stochastic averages of the realizations ξ(t) of the
Wiener process, t and s are time coordinates, β is the frictional coefficient,
T the absolute temperature in energy units (or natural [3] units), δ(α) being
the Dirac δ-function whose argument is α. Since the stochastic process Ξ(t),
t ∈ (−∞,+∞) is the limit of processes with nonvanishing correlation times, the
Stratonovich rules, which are the ordinary rules of calculus, may be used (see
[24, 25] and references therein). From the theorem of Callen and Welton [4],
or the second fluctuation dissipation theorem, follows that the small system
experiences a frictional force proportional to velocity

(2.3) fv = −βp.

The equations of motion for the system coupled to the environment can be
deduced from the Hamilton–Jacobi–Yasue (HJY) partial differential equation in
two independent variables q and t [1, 2, 26]:

(2.4)
1

2m

(

∂f

∂q

)2

+ U(q) − qξ(t) + βf(q,Q, t) +
∂f

∂t
= 0,

where f(q,Q, t) is the generating function of a canonical transformation of vari-
ables from (p, q) to (P,Q), where Q is a constant of the motion. In order to take



180 M. Battezzati

into account the stochastic nature of the system motion, it is convenient to split
the function f into two components:

(2.5) f(q,Q, t) = ϕ(q,Q) + f̃(q,Q, t).

Upon substitution of Eq. (2.5) into (2.4), the following pair of equations is ob-
tained by introduction of a separating function G(q,Q):

1

2m

(

∂ϕ

∂q

)2

+ U(q) + βϕ(q,Q) = G(q,Q),(2.6)

1

2m

(

∂f̃

∂q

)2

+
1

m

∂ϕ

∂q

∂f̃

∂q
− qξ(t) + βf̃(q,Q, t) +

∂f̃

∂t
= −G(q,Q).(2.6′)

Accordingly, as it was proven in [8–11], the equations of motion for the variable
q(t) follow in the form:

dq

dt
=

1

m
p(q,Q) +

1

m
p̃(q(t), Q, t),(2.7)

dp̃

dt
+

(

1

m

∂2ϕ

∂q2
+ β

)

p̃(q,Q, t) = ξ(t) − ∂G

∂q
,(2.7′)

with

(2.8) p(q,Q) =
∂ϕ

∂q
, p̃(q,Q, t) =

∂f̃

∂q
.

G(q,Q) being an arbitrary smooth function of the arguments to be appropriately
defined later. It will be shown (see Eqs. (3.2′), (3.8)), that through an appropriate
definition of G(q,Q), (1/m)p(q,Q) and (1/m)p̃(q,Q, t) acquire a clear physical
significance, which is the drift velocity and the diffusive velocity respectively,
while the diffusion equation for the two-time probability density is considerably
simplified into a memoryless Markovian equation.

Equations (2.7), (2.7′) are the characteristic curves of Eq. (2.6′). p̃(q,Q, t) is
given by the formal solution

(2.9) p̃(q(t), Q, t) =

t
∫

−∞

dsG(t, s)

{

ξ(s) − ∂G

∂q(s)

}

with

(2.9′) G(t, s) = exp

{

− 1

m

t
∫

s

∂p

∂q(α)
dα− β(t− s)

}

.
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Eqs. (2.7) and (2.7′) may be solved with the boundary conditions prescribed in
the quoted references, assuming that the system should be equilibrated with the
environment in temperature T , at time t0, and moreover:

(2.10) q(t0) = q0.

Eq. (2.7) bears some similarity to a Langevin equation, because the second term
on the rhs is mainly a function of time alone in the limiting case of high fric-
tional coefficient β; but in fact, it is not strictly a Gaussian random variable,
because it is the weighted sum of a collection of Gaussian random variables, plus
a trajectory-dependent term, which becomes a term dependent upon the final
point of the trajectory in that limiting case. Through the imposed boundary
conditions, p̃(t) may be regarded as a Gaussian–Markov random variable with
vanishing small correlation time, zero average and constant variance, only in the
limit of large β and by means of the appropriate definition of G(q,Q) [8–11],
explained in the next paragraph. Actually, the correlation function

(2.11)
1

m2
〈p̃(t)p̃(s)〉 −−−−−→

β→+∞
T

m
exp{−β |t− s|} −−−−−→

β→+∞
2
T

mβ
δ(t− s),

what is proved in Appendix A. Most of the following developments, however, do
not rely upon these limiting properties, which are however generally assumed in
most treatments of the Brownian noise [12, 13, 15, 19, 20].

3. The diffusion equation in configuration space

The diffusion equation in configuration space may be obtained through the
equation of continuity, and using (2.7)

(3.1)
∂

∂t
〈δ(q(t) − q)〉 = − ∂

∂q

1

m
p(q)〈δ(q(t) − q)〉 − ∂

∂q

1

m
〈p̃(q(t), Q, t)δ(q(t) − q)〉

where, using the prime to denote differentiation with respect to q [8–11]:

(3.2)
1

m
〈p̃(q(t), Q, t)δ(q(t) − q)〉 =

〈D(t, t0)δ
′(q(t) − q)〉 − 1

m

t
∫

−∞

dα

+∞
∫

−∞

dη〈δ(q(t) − q)G(t, α)δ(q(α) − η)

× [D(α, t0)p
′′(η) + g(η)]〉,

(3.2′) g(η) =
∂G

∂η
,
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with

(3.3) D(α, t0) =

α
∫

−∞

ds

max(α,t0)
∫

−∞

dσ
δq(α)

δk(σ)
G(α, s)〈ξ(s)ξ(σ)〉.

This expression holds also for α < t0, although the response functions are, in
the latter case, more involved (see [11]).

In Eq. (3.2) the first term on the rhs may easily be integrated over dq, and
the result is zero under the appropriate boundary conditions at infinity.

Upon expansion of the first term in the rhs of (3.2) into powers of the autocor-
relation function 〈ξ(s)ξ(σ)〉, this term may be recast into the form of a differential
operator acting upon the variable q, say:

(3.4) 〈D(t, t0)δ
′(q(t) − q)〉 = − ∂

∂q
D̂q(t, t0)〈δ(q(t) − q)〉.

Then, Eq. (3.2) is rearranged in the following manner:

(3.5)
1

m
〈p̃(q(t), Q, t)δ(q(t) − q)〉 = − ∂

∂q
D̂q(t, t0)〈δ(q(t) − q)〉

− 1

m

+∞
∫

−∞

dη

t
∫

t0

dα〈δ(q(t) − q)G(t, α)D̂η(α, t0)δ(q(α) − η)〉p′′(η)

− 1

m

+∞
∫

−∞

dη

t
∫

t0

dα〈δ(q(t) − q)G(t, α)δ(q(α) − η)〉g(η)

− 1

m

+∞
∫

−∞

dη

t0
∫

−∞

dα〈δ(q(t) − q)G(t, α)δ(q(α) − η)[D(α, t0)p
′′(η) + g(η)]〉.

There results further

(3.6) 〈p̃(q(t0), Q, t0)δ(q(t0) − q0)〉
= 〈p̃(q(t0), Q, t0)〉δ(q(t0) − q0)

− δ(q(t0) − q0)

+∞
∫

−∞

dη

t0
∫

−∞

dα〈G(t0, α)δ(q(α) − η)[D(α, t0)p
′′(η) + g(η)]〉

= δ(q(t0) − q0)

t0
∫

−∞

〈G(t0, s)[ξ(s) − g(q(s))]〉ds.
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Bounds on the rhs may be evaluated using (3.3) if the response functions are
conveniently bounded. A rough estimate may be obtained by putting

(3.7)

t0
∫

−∞

ds

〈

exp

{

−β(t0 − s) − 1

m

t0
∫

s

p′(q(α))dα

}

(ξ(s) − g(q(s)))

〉

∼=
β→+∞

t0
∫

−∞

ds exp

{

−
(

β +
1

m
p′(q0)

)

(t0 − s)

}

〈(ξ(s) − g(q(s)))〉

∼= −g(q0)
β + 1

mp
′(q0)

.

Consequently, in Eq. (3.5) it is possible to disregard the last term, on the ground
that the function G(t, α) = G(t, t0)G(t0, α) is a rapidly decreasing function of the
time difference t− t0.

Another approximation has been introduced in the rhs of Eq. (3.5), namely
the neglect of correlations between D(α, t0) and coordinate values at times sub-
sequent to α, which makes the operator D̂η(α, t0) acting upon the variable η
only. The Markov assumption that the subsequent evolution of the system is
determined only by the coordinate distribution at time α for α ≥ t0, is justified
by considering that, for large β, the fluctuating part of velocity decays so fast
to equilibrium1), that the subsequent evolution of the system is determined by
the sole coordinate value and the subsequent values of the force, being largely
independent of the past history. This however does not exclude the correlations
between coordinate values anterior and posterior to the time labelled α to per-
sist. However, for β tending to infinity, these correlations are assumed to decay
in a very short time interval, consequently as far as this assumption is valid2),
the second and third terms in the rhs of this equation cancel identically in both
α and η, for α≫ t0, upon defining3):

(3.8) g(η) = − lim
α→+∞

D̂tr
η (α, t0)p

′′(η).

By this tool, the memory term is also eliminated from the rhs of Eq. (3.2) in

1)From (3.4) it follows that the velocity probability distribution is dependent upon the
coordinate probability density and its derivatives.

2)This can be done only up to O(1/β4). For higher orders in 1/β, correlations with subsequent
values of time must be taken into account, and the memory term yields also corrections to the
diffusion coefficient [10].

3)This requires some sort of uniformity in the convergence of the diffusion coefficient to the
limit value with respect to the assumed initial conditions.
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that limit, so that Eq. (3.1) results in the simple Markovian form:

∂

∂t
〈δ(q(t) − q)〉 = − ∂

∂q

1

m
p(q,Q)〈δ(q(t) − q)〉(3.9)

+
∂2

∂q2
[

lim
t−t0→+∞

D̂q(t, t0)
]

〈δ(q(t) − q)〉,

with

(3.10) 〈δ (q(t) − q)〉 = P2 (q, t/q0, t0) ,

where P2(q, t/q0, t0) is the two-time transition probability density from q0, t0 to
q, t. The main interest here is the limiting form of Eq. (3.9) as t − t0 → +∞.
Then the equation governing the two-time transition probability density is

(3.9′)
∂

∂t
P2(q, t/q0, t0) =

[

− ∂

∂q

1

m
p(q,Q) +

∂2

∂q2
D̂∞

q

]

P2(q, t/q0, t0).

The propagator for this equation K(q, t/q1, t1) with t1 ≫ t0, does not represent
the true transition probability density, but a transition probability for a substi-
tutive pseudo-Markov process, under suitable assumptions, in order to reproduce
the temporal evolution of fluctuations over a stationary state [29, 30].

Therefore, we have succeeded in describing the evolution of probability den-
sity of the system through a Markovian equation, by taking the whole probability
distribution at a single time as a set of variables, the memory term in the evo-
lution equation having been made vanishing identically. As a result, in the limit
t − t0 → +∞ the drift velocity is constrained to obey a HJY equation supple-
mented by an additional term, the Riccati term, given by Eqs. (3.2′), (3.8). If
D̂∞

q is a constant number, then Eq. (2.6) becomes a true HJYR equation in
a strict sense.

4. The propagator of the diffusion equation

In the following we shall be concerned with the limit for β → +∞ of
Eq. (3.9′), and therefore take the leading terms of the asymptotic [2, 10] expan-
sion in powers of 1/β of each coefficient of that equation. The following singular
solution of Eq. (2.6) is used (see [2, 8–10]), which does not contain arbitrary
parameters or constants of the motion:

(4.1) p(q,Q) = −U
′(q)
β

+O

(

1

β3

)

.

There results

(4.1′)
∂P2

∂t
=

[

∂

∂q

1

mβ
U ′ +

∂2

∂q2
T

mβ

]

P2(q, t/q0, t0).
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Equation (4.1′), as it has been already stated, describes a pseudo-Markovian
stochastic process, in the limit t − t0 ≫ 1/β. The steady-state solution of this
equation with vanishing flux of particles is

(4.2) Pe(q) ∝ exp

{

−U(q)

T

}

,

which is assumed to be real. Then, on putting

(4.3) P2(q, t) = ψ(q, t)Pe(q)
1/2 = ψ(q, t)ψe(q),

there results from (4.1′) that ψ(q) obeys, to the same order of approximation,
the equation similar to the heat equation:

(4.4) − 2T 2

mβ2
ψ′′(q, t) +

[

U ′2

2mβ2
− TU ′′

mβ2

]

ψ(q, t) = −2T

β

∂ψ

∂t
,

which has the same form of the Schroedinger equation, with the only difference
that the coefficient of the time-derivative is real. Then, upon looking for solutions
of the form

(4.5)
∂ψ

∂t
= −λβψ,

Eq. (4.4) is transformed into the eigenvalue equation

(4.6) − 2T 2

mβ2
ψ′′(q) +

[

U ′2

2mβ2
− TU ′′

mβ2

]

ψ(q) = 2Tλψ(q),

whose eigenvalues 2Tλn are assumed to be bounded from below and discrete, the
function ψe(q) corresponding to the lowest eigenvalue λ0 = 0 [27]. The solution
to Eq. (4.4) with boundary conditions δ(q − q0) as t → t0 is representable as
a linear combination of normalized eigenfunctions

(4.7) k(q, t/q0, t0) =

∞
∑

n=0

ψn(q)ψ̄n(q0) exp{−λnβ(t− t0)},

where ψ̄n is the time-reversed solution to Eqs. (4.4), (4.5). This requires a re-
versed sign on the rhs of those equations. Since the boundary conditions are
real, ψ̄n is the c.c. to ψn, so that it satisfies Eq. (4.6) with c.c. coefficients. The
corresponding propagator for Eq. (4.1′) is

(4.8) K(q, t/q0, t0) =
∞
∑

n=0

ψn(q)ψ̄n(q0)
ψ̄e(q)

ψ̄e(q0)
exp{−λnβ(t− t0)},
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which satisfies the proper boundary conditions. Following R. Feynman and
A. Hibbs [14], the kernel (4.7) is representable as a path integral:

(4.9) k(q, t/q0, t0) =

q,t
∫

q0,t0

Dq(α) exp

{

−mβ
4T

t
∫

t0

dα

[

q̇2 +
2

m
V (q(α))

]}

,

where

(4.10) V (q) =
U ′2

2mβ2
− TU ′′

mβ2
.

There results from (4.9) the path-integral representation

(4.11) K(q, t/q0, t0) =

q,t
∫

q0,t0

Dq(α) exp

{

−mβ
4T

t
∫

t0

dα

[

q̇2 +
2

m
V (q(α))

]

− 1

2T

t
∫

t0

dα q̇
dU

dq(α)

}

.

By applying Roncadelli’s identity [22] to the rhs of Eq. (4.11), there results

(4.12) K(q, t/q0, t0) =

q,t
∫

q0,t0

Dq(α) exp

{

− mβ

4T

t
∫

t0

dα

[

q̇ +
1

mβ

dU

dq(α)

]2

+
β

2T

t
∫

t0

dα

[

1

2mβ2

(

dU

dq(α)

)2

− V (q(α))

]}

=

q,t
∫

q0,t0

Dq(α) exp

{

− mβ

4T

t
∫

t0

dα

[

q̇ +
1

mβ

dU

dq(α)

]2

+
1

2mβ

t
∫

t0

dα
d2U

dq(α)2

}

.

Some remarks are in order for Eqs. (4.11), (4.12). Equation (4.11) is the path-
average of the “action-production” integral, multiplied by the weight factor

exp

{

− 1

2T
(U(q) − U(q0))

}

,

which is of course path-independent [15, 19, 20]. It is formally the same as the
averaged exponential of the entropy-production integral introduced by L. On-

sager [12, 28], and extended to dissipative dynamical systems by S. Machlup

and L. Onsager [13, 20, 21], except for a constant factor with dimension of time.
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The second term in the argument of the exponential of the rhs of Eq. (4.12)
plays a role in the correct definition of the path integral, as it will be explained in
the next paragraph. Surprisingly enough, it does not appear in Roncadelli’s

developments [22], and is disregarded as “unphysical” by B. H. Lavenda [19].
From the definition (4.10) of the potential V (q) it follows trivially that ϕe(q)
must obey a Hamilton–Jacobi–Riccati equation with potential energy V (q). How-
ever notice that, from the definition of ϕe(q) adopted here (Eqs. (2.6), (3.2′)
(3.8)), follows that

(4.13) V (q) = −U(q) − βϕe(q) +O

(

1

β4

)

,

which yields an interpretation of the Onsager–Machlup Lagrangian for the pro-
cess described by Eqs. (4.1′), (4.9) through the HJYR Eq. (2.6), and vice-versa.

In fact, given a potential energy function V (q) and requiring that (4.13) should
be satisfied, implies

(4.14)
1

2mβ2

(

dU

dq

)2

− T

mβ2

d2U

dq2
+ U(q) + βϕe(q) = O

(

1

β4

)

,

so that ϕe(q) satisfies a HJYR equation up to O(1/β2).
The identification (4.13) is not trivial since the two members of the equal-

ity have been obtained following the completely independent arguments: the lhs
from the Smoluchowski or the related heat equation, the rhs from Hamilton–
Jacobi–Yasue theory of equations of motion, with the adopted definition of g(q)
in order to eliminate memory terms. It is therefore remarkable that Eq. (4.14)
yields the exact expansion of ϕε(q) up to O(1/β3), since this is a direct conse-
quence of Eqs. (2.6), (3.2′), (3.8) without having recourse to the Smoluchovski
equation, which may be derived by entirely independent arguments. This proves
that the definition of g(q) which has been adopted is the correct one. Insertion
of these terms into Eq. (4.1′) determines corrections to the diffusion coefficient,
by the condition that the equilibrium probability distribution should be propor-
tional to exp{−U(q)/T} and in turn, new terms of the drift can be obtained, by
a recursive procedure. In this way it may be obtained (terms O(1/β2) in D(q)
have been put equal to zero):

(4.15) D(q) =
T

mβ
+

T

m2β3
U ′′(q) + h.o.t.

and by substituting into the derivative of Eq. (2.6)

p(q) = −U
′

β
− 1

mβ3
(U ′U ′′ − TU ′′′)(4.16)

− 1

m2β5
(U ′2U ′′′ + 2U ′U ′′2 − 2TU ′U ′′′′ − 5TU ′′U ′′′ + T 2U ′′′′′).
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The leading terms of this expansion were first obtained by G. Wilemski [31], by
projection of the full phase-space Fokker–Planck equation onto the configuration
space. A more exhaustive deduction directly in coordinate space was carried out
in [9, 10].

5. Discretization of the path integral

The path-integral averages which are introduced in Eqs. (4.11), (4.12) need to
be defined as the proper limit of multidimensional integrals, by subdividing the
interval (t0, t) into a finite number of segments, whose maximum length is made
decreasing toward zero. It is assumed for simplicity that all the N segments have
equal length ε. The origin of each segment is numbered from zero to N − 1. The
path function q(α), t0 ≤ α ≤ t, is then approximated by a polygonal curve, while
the derivative q̇(α) assumes the value of the slope of the straight line connecting
two contiguous points q(αi), q(αi+1). Then, Eq. (4.11) is written as follows:

K(q, t/q0, t0) = lim
ε→0

+∞
∫

−∞

dq1 . . .

+∞
∫

−∞

dqN−1NN(5.1)

× exp

{

−mβ
4T

N−1
∑

i=0

ε

[(

qi+1 − qi
ε

)2

+
V (qi+1) + V (qi)

m

]

− 1

4T

N−1
∑

i=0

(qi+1 − qi)(U
′(qi+1) + U ′(qi))

}

= lim
ε→0

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−2

(

4πTε

mβ

)−N/2

× exp

{

−mβ
4T

N−1
∑

i=0

ε

[(

ηi

ε

)2

+
V (qi+1) + V (qi)

m

]

− 1

4T

N−1
∑

i=0

ηi(U
′(qi+1) + U ′(qi))

}

,

where qi is shorthand for q(αi) and

(5.1′)











qi+1 = q0 +

i
∑

j=0

ηi, i = 0, . . . , N − 1,

qN = q,

(5.1′′)

∣

∣

∣

∣

∂(η0, . . . , ηN−2)

∂(q1, . . . , qN−1)

∣

∣

∣

∣

= 1,
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N being the normalization factor, which has been fixed so as to be correct for
leading order in the limit ε→ 0. For every partition into N segments, integration
of the expression under integral sign in (5.1) over one single variable qi yields,
because of the Chapman–Kolmogorov equation, a reduced probability density in
N − 2 variables:

(5.2)

+∞
∫

−∞

dqi exp

{

− mβ

4T
ε

[(

qi+1 − qi
ε

)2

+
V (qi+1) + V (qi)

m

]}

× exp

{

− mβ

4T
ε

[(

qi − qi−1

ε

)2

+
V (qi) + V (qi−1)

m

]}

=

+∞
∫

−∞

dqi exp

{

− mβ

4T

[

2

ε

(

qi −
qi+1 + qi−1

2

)2

+
1

2ε
(qi+1 − qi−1)

2

+ ε
V (qi+1) + V (qi−1) + 2V (qi)

m

]}

=

[

2πTε

β(m+ ε2V̄ ′′
i )

]1/2

× exp

{

−mβ
4T

2ε

[(

1 − ε2

2m
V̄ ′′

i

)(

qi+1 − qi−1

2ε

)2

+
V (qi+1) + V (qi−1)

m

]}

× exp

{

βε3

4T

V̄ ′2
i

(2m+ ε2V̄ ′′
i)

}

,

where

(5.2′) V̄i = V

(

qi+1 + qi−1

2

)

has been expanded up to second-order in the argument. By repeating this pro-
cedure, a family of multivariate probability densities is deduced, which shows
that Kolmogorov compatibility conditions for a multivariate probability distri-
bution function [32] are satisfied, as it is necessary, in the limit ε → 0. Upon
subdivision of each interval into two equal subintervals repeatedly, the procedure
may be continued to ε so small at will, which shows that in this limit, an un-
derlying stochastic process possibly exists for the infinite family of compatible
probability distribution functions, from the fundamental theorem of A. N. Kol-

mogorov [32].
A proof for the convergence (simple convergence [33]) of this multiple-integral

to a probability distribution function, which is an average upon the Wiener
measure over the paths, may be found in [34] under mild conditions of regularity
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upon V (q). The proof is based on measurability properties of the functional to
be averaged, proved by N. Wiener. Convergence rates in the mean square error
norm were estimated in [35].

The evolution equation for the kernel K(q, t/q0, t0) is to be evaluated as
follows [14], taking into account the fact that the ηi are independent random
variables, the process being Markovian [36] (or rather pseudo-Markovian [29, 30])
in the configurational variable q: the Chapman–Kolmogorov [36] equation for the
kernelK(q, t/q0, t0), whose validity in the limit ε→ 0 has been established above,
is written

(5.3) K(q, t/q0, t0)

= lim
ε→0

√

mβ

4πTε

+∞
∫

−∞

dηN−1

× exp

{

−mβε
4T

[(

ηN−1

ε

)2

+
V (q) + V (qN−1)

m

]

− ηN−1
U ′(q) + U ′(qN−1)

4T

}

×K(qN−1, t− ε/q0, t0)

= lim
ε→0

√

mβ

4πTε

+∞
∫

−∞

dηN−1 exp

{

−mβ

4Tε
η2

N−1

}

×
{

1 − βε

4T
(V (q) + V (q − ηN−1)) −

1

4T
ηN−1(U

′(q) + U ′(q − ηN−1))

+
1

32T 2
η2

N−1(U
′(q) + U ′(q − ηN−1))

2 + h.o.t.

}

K(q − ηN−1, t− ε/q0, t0).

It is required that the above equality holds up to O(ε). Therefore,

(5.4) K(q, t/q0, t0) −K(q, t− ε/q0, t0)

=

√

mβ

4πTε

+∞
∫

−∞

dη exp

{

− mβ

4Tε
η2

}{

− ηK ′(q, t/q0, t0) +
1

2
η2K ′′(q, t/q0,t0)

− βε

2T
V (q)K(q, t/q0,t0) −

1

2T
ηU ′(q)[K(q, t/q0,t0) − ηK ′(q, t/q0,t0)]

+
1

4T
η2U ′′K(q, t/q0,t0) +

1

8T 2
η2U ′2K(q, t/q0, t0) + h.o.t.

}

= ε

{

T

mβ

∂2

∂q2
+

1

mβ

∂

∂q

∂U

∂q

}

K(q, t/q0, t0) + h.o.t.

There follows, by going to the limit ε→ 0 in Eq. (5.4), that K(q, t/q0,t0) defined
as the limit as ε → 0 in Eq. (5.3) after integrating first over dηN−1, verifies
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Eq. (4.1′), and consequently, the Kolmogorov consistency conditions for multi-
variate distribution functions of the limiting process are verified in agreement
with Eq. (5.2).

The following remark is in order about the discretization procedure: the last
factor in Eq. (4.11) is path-independent, therefore its average is independent of
the measure and must give an invariant result, consequently the time-derivative
of this factor is equally known from the heat equation (4.4). These properties
require that the weights should be assigned as in Eq. (5.1). Therefore the def-
inition (5.1) of the path integral is correct, and may be applied to the rhs of
Eq. (4.12) in order to obtain the desired generalization of the Onsager prin-
ciple. The calculations have been displayed in some detail in order to com-
pare this path integral representation of the propagator with the following one,
which has been remodeled into the form of Onsager theory of minimum entropy
production.

6. Generalized Onsager–Machlup principle

Using the rhs of Eq. (4.12), and considering the leading constant part of the
diffusion coefficient as in Eq. (4.1′), the alternative discretized formulation of the
kernel K(q, t/q0, t0) results:

(6.1) K(q, t/q0, t0)

= lim
ε→0

〈

exp

{

− mβ

4T

N−1
∑

i=0

ε

[

qi+1 − qi
ε

+
U ′(qi+1) + U ′(qi)

2mβ

]2

+

N−1
∑

i=0

ε

4mβ
(U ′′(qi+1) + U ′′(qi))

}〉

= lim
ε→0

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−2

(

4πTε

mβ

)−N/2

exp

{

− mβ

4T

N−1
∑

i=0

[

η2
i

ε
+

ε

m2β2
U ′(qi)

2

]

− 1

2T

N−1
∑

i=0

[

ηiU
′(qi) +

1

2
η2

iU
′′(qi)

]

+
N−1
∑

i=0

ε

2mβ
U ′′(qi) + o(ε)

}

,

where only one out of the ηi, i = 1, 2, . . . , N − 1 (at free choice) is defined by
Eqs. (5.1′). The convergence of the integrals requires bounds upon the derivatives
of the potential energy function U(q):

(6.1′)
mβ

ε
> U ′′(qi), ∀i.
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Therefore it can be deduced (see Appendix B)

(6.2) K(q, t/q0, t0) = lim
ε→0

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−2

(

4πTε

mβ

)−N/2

× exp

{

−mβ
4T

N−1
∑

i=0

ε

[

ηi

ε
+

1

mβ
U ′(qi)

]2}

where, according to (5.1′)

(6.2′) ηN−1 = q − q0 −
N−2
∑

i=0

ηi, t = t0 +Nε.

The exactness of Eq. (6.2) may be proved straightforwardly by evaluating the
time-derivative of the kernel, which yields the same equation (4.1′) or (5.4), in
the limit ε → 0 . In order to prove the assertion, Eq. (6.2) is rewritten in the
form of Chapman–Kolmogorov equation, where terms are retained up to O(ε).

(6.3) K(q, t/q0, t0)

=

(

4πTε

mβ

)−1/2
+∞
∫

−∞

dηN−1 exp

{

− mβ

4Tε

[

ηN−1 +
ε

mβ
U ′(qN−1)

]2}

×K(q − ηN−1, t− ε/q0, t0)

=

(

4πTε

mβ

)−1/2
+∞
∫

−∞

dη

{

− mβ

4Tε
η2

}

×
{

1 − η

2T
U ′(q − η) − ε

4Tmβ
U ′(q − η)2 +

η2

8T 2
U ′(q − η)2 + o(ε)

}

×
{

K(q, t/q0, t0) − ηK ′(q, t/q0, t0)

+
η2

2
K ′′(q, t/q0, t0) − ε

∂

∂t
K(q, t/q0, t0) + o(ε)

}

= K(q, t/q0, t0)

(

1 +
ε

mβ
U ′′(q)

)

+
ε

mβ
U ′(q)K ′(q, t/q0, t0)

+
Tε

mβ
K ′′(q, t/q0, t0) − ε

∂

∂t
K(q, t/q0, t0) + o(ε),

which is Eq. (5.4) in the limit ε→ 0 . Consequently, the path average in the rhs
of Eq. (6.2) obeys, in the limit ε→ 0, the same second-order partial differential
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equation in the variables q and t than the path average in the rhs of Eq. (5.1).
Given the same boundary conditions, these averages are therefore identical by
virtue of the existence and uniqueness theorem due to S. V. Kovalevskaia [37].

The interest in Eq. (6.2) is that it may be rewritten:

(6.5) K(q, t/q0, t0) = lim
ε→0

(

4πmT

βε

)−N/2

×
+∞
∫

−∞

. . .

+∞
∫

−∞

dπ̃(α0) . . . dπ̃(αN−2) exp

{

− βε

4mT

N−1
∑

i=0

π̃(αi)
2

}

,

where it has been put

(6.6)
q(αi+1) − q(αi)

ε
= − 1

mβ
U ′(q(αi)) +

1

m
π̃(αi).

The family of normally distributed random variables π̃(αi) verify the Kolmogorov
consistency conditions [32] and therefore, they define a Wiener process w̃(α)
[34, 35, 36]. Consequently, Eq. (6.6) may be rewritten [35, 38]:

(6.6′) dq = − 1

mβ
U ′(α)dα+

1

m
dw̃(α).

The random increment dw̃(α) is denoted by differential notation π̃(α)dα with
the limiting property

(6.6′′) 〈π̃(α)π̃(γ)〉 =
2mT

β
δ(α− γ),

π̃(α) being a Gaussian random variable with zero mean and variance 2mT/β,
which is uncorrelated with position (see Appendix C)4). These properties fol-
low from the definition of the Feynman path integral in Eqs. (4.11), (5.1). Its
identification with p̃(q(t), Q, t) of Eq. (2.7) would necessitate a proof that all
these requirements are satisfied by that variable. Consequently, there is in gen-
eral a certain sort of inconsistency between the representation of the stochastic
process developed here through Eqs. (2.7) and the following ones, and the differ-
ent one appearing in the path integral formulation, because Eq. (3.1) would give
vanishing diffusive term if equation of motion (6.6′) is used in place of (2.7). It is
however not surprising that (2.7) with definitions (4.1) and (6.6′), correspond to

4)These properties are similar to those of ξ(t) in Eq. (2.4). It should be appreciated however
that ξ(t) is intended to represent a real physical variable, while π̃(t) is a purely abstract tool,
notationally convenient, without obvious physical counterpart (see [12]). In fact, almost all
realizations of w̃(t) are nowhere differentiable [34].
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the same differential equation for the evolution of the probability density, since it
is well known that the Ito and Stratonovich interpretation of stochastic calculus
are equivalent for purely additive stochastic differential equations. It is therefore
obvious that a different type of calculus is needed in order to handle equations
like (6.6′) [38].

In going from (5.1) to (6.2), the terms proportional to U ′′ have been preav-
eraged over the Maxwellian distribution of velocities. This does not modify the
value of the path average (see Appendix B).

The maximum value of the exponent in Eq. (6.5) is of course attained for
π̃(α) identically zero, which is also the most probable value. This value is also
stationary. However, the stationary values of the arguments of exponentials in
Eqs. (5.1) and (6.2) are exactly the same only in the limit of low temperature,
because the preaveraged term vanishes in this limit.

The stationary value of the argument of exponential in the rhs of Eq. (4.11)
follows from the Euler–Lagrange equation5)

d

dt

∂L
∂q̇

− ∂L
∂q

= 0,(6.7)

L =
m

2

[

q̇2 +
2

m
V (q)

]

(6.7′)

and leads to the equation of motion

(6.8) q̈ =
1

m
V ′(q) = − ∂

∂q
[U(q) + βϕe(q,Q)] +O

(

1

β4

)

because of (4.13). The same result is obtained by the stationary condition applied
to (4.12). Therefore the equations of motion read

(6.9) q̈ =
1

m2β2
(U ′′U ′ − TU ′′′),

Equation (6.9) characterizes the paths where the action is stationary, which are
the paths followed by the spontaneous evolution of the system from a given
configuration (minimum entropy production), or the paths joining two arbitrary
points in configuration space (arbitrary fluctuations). The spontaneous evolu-
tion from a given configuration follows, on the average, Eq. (4.1), whose time
derivative yields, averaging each infinitesimal step, Eq. (6.9), because6)

5)The Euler–Lagrange equations presuppose that the integration over time in the exponent
may be interchanged with path average.

6)If the probability density distribution is concentrated in one point, then the averaged
fluctuating velocity vanishes there, because of Eq. (3.4) and the boundary conditions. But p̃(t)
is still correlated with position, so that the average change of p(q) in one infinitesimal step is
given by (6.10).
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〈q̈(t)δ(q(t) − q)〉 =

〈[

d

dt

1

m
p(q)

]

δ(q(t) − q)

〉

(6.10)

=
1

m2
p′(q)p(q)〈δ(q(t) − q)〉 +

1

m2
〈p′(q)p̃(t)δ(q(t) − q)〉

=
1

m2
[p′(q)p(q) + D̂∞tr

q p′′(q)]〈δ(q(t) − q)〉

=
1

m2
[p′(q)p(q) − g(q)]〈δ(q(t) − q)〉.

In Eq. (6.10) it has been used the fact that, as t− t0 → +∞, after cancellation
of the memory terms

(6.11) 〈p̃(t)δ(q(t) − q)〉 = 〈δ(q(t) − q)〉D̂∞tr
q

∂

∂q

in the sense of distribution theory [33]. Using (4.1), this yields Eq. (6.9). At
variance with this result, upon averaging and differentiating Eq. (6.6′) over time
the last term would be missing, because π̃(t) is not correlated with position. In
fact, preaveraging in Eq. (6.2) has changed the stationary paths.

7. Connection with Machlup–Onsager theory

The Hamilton–Jacobi–Yasue equation (2.4) yields, by the condition of sta-
tionarity of the action, the second-order differential equation which may be writ-
ten, following [13], in a form reminiscent of Eq. (2.7):

(7.1) q̇ = − U ′

mβ
− 1

mβ
[mq̈ − ξ(t)].

On putting ξ(t) = 0 and substituting from (6.9) the first-order equation with
respect to time, follows

(7.2) q̇ = −U
′

β
− 1

m2β3
(U ′U ′′ − TU ′′′).

Upon comparing this equation with (4.14), it is possible to identify mdq/dt with
the drift pe(q), expanded up to O(1/β3). The solutions to Eq. (7.2) are the
curves which, at each infinitesimal step, regress from a given configuration with
the average velocity, which is the drift (see footnote 6)). This type of regression
is different from that which was defined in [12], except for the linear case.

Equation (6.9) is a second-order equation, therefore the solutions are able to
connect two arbitrary points in configuration space. By retaining ξ(t) in (7.1) it
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is possible to identify, by combining (2.7) and (4.1), the equation with

(7.3) q̇ =
1

m
[p(q) + p̃(t)] = − U ′

mβ
+

1

m
p̃(t) +O(β−3).

These trajectories spread around the most probable one (6.9) and yield, upon
averaging over the paths, the exponential of the action (4.11) or (4.12), the
fundamental solution of the asymptotic diffusion equation (4.1′), which is (4.8).

At variance with this result, L. Onsager and S. Machlup [12] write
Eq. (6.6′), where π̃(t) is assumed to be uncorrelated with position. The propaga-
tor is then given by (6.2) as a path average and the most probable path satisfying
the boundary conditions is

(7.4) q̈ =
1

m2β2
U ′′U ′,

which is symmetrical under time inversion.
S. Machlup and L. Onsager [13] write the Lagrangian function

(7.5) LMO = mβ

(

q̇ +
U ′

β
+
q̈

β

)2

,

whose minimum value yields the equation of motion (7.1) (with vanishing random
force, yielding the regression curve), while the Euler–Lagrange equation results
in a fourth-order equation in time, whose solutions verify both Eq. (7.1) with
vanishing ξ(t), and its mirror image by time inversion. As it is well known, their
approach is bound to consider only linear systems, however, Lagrangian (7.5)
does not appear to be exempt from interpretation ambiguities.

8. Summary and conclusions

In this work, a classical mechanical system acted upon by frictional forces
and stochastic random forces has been considered in the limit of large frictional
coefficient. The system is subjected to boundary conditions at time t′0 → −∞,
such that at the time t0 is found in a definite configuration, in equilibrium with
the random field [8].

The velocity is split into a deterministic plus a fluctuating random compo-
nent, accordingly the flux of particles is evaluated by stochastically averaging
over each component, inside a small spatial interval. The moments of the fluc-
tuating random velocity may in principle be computed in terms of stochastic
averages over the trajectories, from which the entire probability distribution fol-
lows. It is found that the averaged fluctuating component of velocity at time t
and position q is in general dependent upon the total probability distribution
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in configuration space, plus a memory term, which is an average over the tra-
jectories from q0 to q. In the limit of short correlation time of velocities, it is
proven that this term can be made vanishing identically by forcing the drift to
obey a Hamilton–Jacobi–Yasue equation (see (2.4)), supplemented by a term
of Riccati type (Eqs. (2.6), (3.8)). This term can be interpreted as an averaged
stochastic kinetic energy density of the system, interacting with the environment.
In fact, from Eq. (3.5) it is obtained

(8.1)
1

m
〈p(q(t)), Q)p̃(q(t), Q, t))δ(q(t) − q)〉

= −p(q,Q)
∂

∂q
D̂(q)〈δ(q(t) − q)〉 + memory terms.

Leading order coefficients of the operator D̂(q) up to 1/β3 are [10]

(8.2) D(q) =
T

mβ

(

1 +
1

mβ2
U ′′(q)

)

,

therefore by an integration by parts, using the boundary conditions at infinity,
there results the kinetic energy density

(8.3)
1

m
〈p(q(t), Q)p̃(q(t), Q, t))δ(q(t) − q)〉

=
T

mβ

(

1 +
U ′′(q)
mβ2

)

p′(q,Q)〈δ(q(t) − q)〉

= −G(q,Q)〈δ(q(t) − q)〉 +O

(

1

β4

)

,

because the memory terms cancel exactly to this order of approximation. Thus
this energy acts as a potential energy density term in the equation for the drift
velocity (2.6), but only to the leading order. There does not seem to be an
obvious interpretation for this limitation.

There follows that the average value of the total velocity cannot vanish and
therefore the velocity distribution cannot be Maxwellian, unless the system has
reached configurational equilibrium, because the velocity distribution in a given
point is, generally speaking, dependent upon the total probability distribution
in configuration space at the same value of time. In other words, the velocity
probability distribution depends not only on the configurational coordinate of
the particle, but upon the coordinate distribution of the whole ensemble of par-
ticles under consideration. This is somewhat in contradiction with the Maxwell–
Boltzmann law, which postulates the complete independence of velocity distribu-
tion from localization in configuration space, because in the present framework
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the equilibrium probability distribution of velocities requires the contemporary
equilibrium distribution of configurations.

The cancellation of memory terms allows to write a memoryless Markovian
equation governing the evolution of probability density from time t0 onwards,
but only in the limit of large time7).

The fundamental solution of this limiting equation may assume the form of
a Feynman path integral, whose Lagrangian contains a potential energy which
is a function of the drift velocity and its derivatives (Onsager–Machlup poten-
tial), such that the drift velocity satisfies a HJ-Riccati equation with this po-
tential. This equation results to be matching exactly the equation previously
derived for the drift under the identification (4.13), so it is possible to claim that
the true modified Hamilton–Jacobi equation characterizing the drift has been
obtained.

The Feynman path integral can be transformed, using an identity due to
M. Roncadelli [22] (see also [19]), into that form belonging to the formulation
of the Onsager and Machlup–Onsager [12, 13, 28] minimum entropy pro-
duction principle, in such a way that the most probable path is varied, but the
result of functional integration is invariant. We have therefore obtained a gen-
uinely pseudo-Markovian representation of the stochastic process, which is valid
in the limit of large time. The corresponding Langevin equation is (6.6′), which
is to be confronted with (2.7). It should be noticed that the steps which lead
from (2.7) to the large-time asymptotic Smoluchowski equation (4.1′), and con-
sequently to the Feynman integral representation of the fundamental solution
(4.11) or (5.1), involve several approximations, consequently the equations of
motion (2.7) and (6.6′) need not be completely equivalent.

The singular solution that we have used (Eq. (4.1)) is the one which is com-
monly used in overdamped diffusive systems, and was studied in [2] including the
time-dependent case. However, it was proven in [30] that also other solutions play
a role in the description of diffusive systems. Actually, an equation with time-
dependent coefficients obtained in [39] was shown [30] to be linear combination
of equations obtained from different solutions of the HJYR equation (2.6).
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Appendix A. Proof of Equation (2.11)

Using eq. (2.9), there follows that

(A.1) 〈p̃(t)p̃(s)〉 =

t
∫

−∞

dτ

s
∫

−∞

dσ〈G(t, τ)G(s, σ)[k(τ) − g(q(τ))][k(σ) − g(q(σ))]〉;

now, upon substitution from (4.1), (2.9′) we obtain

(A.2) G(t, τ) = exp

{

−β(t− τ) +O

( |U ′′|
β

)}

and similarly for G(s, σ). Consequently, on substituting from (3.8), we obtain

〈p̃(t)p̃(s)〉 =

t
∫

−∞

dτ

s
∫

−∞

dσ exp

{

−β(t+ s− τ − σ) +O

( |U ′′|
β

)}

(A.3)

×
[

〈ξ(τ)ξ(σ)〉+ T

mβ
〈ξ(τ)p′′(q(σ))〉 +

T

mβ
〈ξ(σ)p′′(q(τ))〉

+

(

T

mβ

)2

〈p′′(q(τ))p′′(q(σ))〉
]

.

Making use of Furutsu–Novikov theorem [40, 41], we obtain:

〈ξ(τ)p′′(q(σ))〉 = 2mβT

t
∫

−∞

dt1δ(t1 − τ)

t
∫

−∞

dt2

〈

p′′′(q(σ))
δq(σ)

δξ(t2)

〉

δ(t1 − t2)(A.4)

= 2mβT

〈

p′′′(q(σ))
δq(σ)

δξ(τ)

〉

.

We are interested in the evaluation of expression (A.3) in the limit t ≫ t0,
and consequently, the initial data may be neglected, by considering only time
coordinates posterior to t0. Using Eq. (4.6) of [11] it follows

(A.5)
δq(σ)

δξ(τ)
=

1 − e−β(σ−τ)

mβ
h(σ − τ) +O

( |U ′′|
β2

)

,

where h(α) is a heaviside function of argument α. Upon introducing this expres-
sion into Eq. (A.3), and simplifying the boundary conditions as explained above,
there follows
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(A.6)

t
∫

t0

dτ

s
∫

t0

dσ exp

{

−β(t+ s− τ − σ) +O

( |U ′′|
β

)}〈

p′′′(q(σ))
δq(σ)

δξ(τ)

〉

=
−T

2m2β4

min(t,s)
∫

t0

dσ〈U ′′′′(q(σ))〉 exp{−β(t+ s− 2σ)}

− T

m2β4

s
∫

t

dσ〈U ′′′′(q(σ))〉[exp{−β(s− σ)} − exp{−β(s− t)}]h(s− t)

+ h.o.t.

In a similar way the remaining terms of Eq. (A.3) can be evaluated, so there is
left, to the leading order

(A.7) 〈p̃(t)p̃(s)〉 ∼ mT exp{−β|t− s|} −→
β→+∞

2mT

β
δ(t− s),

where simple convergence is understood in sense of the distribution theory [33].

Appendix B. Proof of Equation (6.2)

As ε → 0, the constraint (6.2′) does not modify significantly the Gaussian
distribution of the N −1 remaining variables ηi’s, (like in a perfect gas, the total
fixed momentum does not modify appreciably the Maxwellian distribution of the
velocities of each particle). Accordingly, it is licit to integrate over the variables
free from constraints, and consequently, two sums in the argument of the expo-
nential in the rhs of Eq. (6.1) average out to zero, leaving the sum in Eq. (6.2).

Substituting from (6.2′), Eq. (6.1) is rewritten in the following form, by choos-
ing variables η0, η1, . . . , ηN−2, q in place of η0, η1, . . . , ηN−1, where the Jacobian
of the linear transformation is of modulus 1:

(B.1) K(q, t/q0, t0) = lim
ε→0

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−2

(

4πTε

mβ

)−N/2

× exp

{

−mβ

4Tε

N−1
∑

i=0

[

ηi +
ε

mβ
U ′(qi)

]2

+
N−1
∑

i=0

(

ε

2mβ
− η2

i

4T

)

U ′′(qi)

}

and making use of the algebraic identity:

(B.2) exp

{

−mβ

4Tε

[

(ηN−n−1 + an)2 +
1

n
(ηN−n−1 + bn)2

]}

= exp

{

−(n+ 1)mβ

4nTε

[

ηN−n−1 +
1

n+ 1
(nan + bn)

]2

+
mβ

4nTε
(an − bn)2

}

,
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where it has been defined

(B.2′)



















an =
ε

mβ
U ′(qN−n−1),

−bn = q − qN−n−1 +
ε

mβ

n
∑

i=1

U ′(qN−i).

The above expression may be recast into the form

K(q, t/q0, t0) = lim
ε→0

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−2

(

4πTε

mβ

)−N/2

(B.3)

×
N−1
∏

n=1

exp

{

−(n+1)mβ

4nTε

[

ηN−n−1+
nε

(n+1)mβ
U ′(qN−n−1)

− 1

n+1

(

q−qN−n−1+
ε

mβ

n
∑

i=1

U ′(qN−i)

)]2}

×exp

{

− mβ

4NTε

[

q−q0+
ε

mβ

N
∑

i=1

U ′(qN−i)

]2}

×exp

{N−1
∑

i=0

(

ε

2mβ
− η2

i

4T

)

U ′′(qi)

}

.

Expression (B.3) is exact. It shows that the statistical distribution of the ηi is
somewhat narrowed by the imposed constraint (5.1′), by a factor close to one,
and moreover it is polarized in the direction of the final configuration, by an
amount which is dependent on n, differing from the perfect gas model, in which
all the molecules are a priori equivalent8). Moreover, there is introduced by the
constraints, a small correlation between the variables ηi’s, originating from the
term (ε/(n+ 1))

∑n
i=1 U

′(qN−i). This correlation is considered negligible in the
following. Therefore it is obtained, for n = 1, 2, . . . , N − 1:

(B.4)

+∞
∫

−∞

dηη2
N−n−1 exp

{

−(n+ 1)mβ

4Tnε

[

ηN−n−1 +
n

n+ 1
an +

1

n+ 1
bn

]2}

=

(

4πTnε

(n+ 1)mβ

)1/2[ 2Tnε

mβ(n+ 1)
+

(

n

n+ 1
an +

1

n+ 1
bn

)2]

.

8)It would be different if the velocities of the molecules were measured successively, practi-
cally at the same instant of time. Then the distribution of velocities would be similar to (B.3),
with U ′ = const. Conditional Wiener integrals were also considered in [34].
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The rhs of Eq. (B.3) may be evaluated by expanding the last factor in cumulants
up to O(ε). This yields

(B.5) K(q, t/q0, t0) = lim
ε→0

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−2

(

4πTε

mβ

)−N/2

× exp

{N−1
∑

i=0

[

ε〈U ′′(qi)〉
(N − i)2mβ

+

〈(

q − qi
N − i

+O(ε)

)2U ′′(qi)
4T

〉]}

×
N−1
∏

n=1

exp

{

−(n+ 1)mβ

4nTε

[

ηN−n−1 +
nε

(n+ 1)mβ
U ′(qN−n−1)

− 1

n+ 1

(

q − qN−n−1 +
ε

mβ

n
∑

i=1

U ′(qN−i)

)]2}

× exp

{

− mβ

4NTε

[

q − q0 +
ε

mβ

N
∑

i=1

U ′(qN−i)

]2}

.

In the evaluation of Eq. (B.5), the ηi are considered as independent random
variables, normally distributed with mean values determined by the constraints.

Considering that the system coordinate has bounded second moments [35],
there follows the estimate

∣

∣

∣

∣

〈 (1−µ)N
∑

i=1

(

q − qi
N − i

)2

U ′′(qi)

〉∣

∣

∣

∣

≤
N
∑

k=µN

∣

∣

∣

∣

〈(

q − qN−k

k

)2

U ′′(qN−k)

〉∣

∣

∣

∣

(B.6)

≤ sup
N−k

|〈(q − qN−k)
2U ′′(qN−k)〉|

N
∑

k=µN

1

k2

<
1

µ2N
sup
N−k

|〈(q − qN−k)
2U ′′(qN−k)〉|,

which shows that

(B.6′)

〈(1−µ)N
∑

i=1

(

ε

2mβ
− η2

i

4T

)

U ′′(qi)

〉

−→
N→∞

0, ∀µ, 0 < µ < 1.

On the other hand, the process being purely continuous [36], there follows that
the sum
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(B.7)
µN
∑

k=1

|〈(q − qN−k)
2U ′′(qN−k)〉|
k2

≤
µN
∑

k=1

2T

mβ

kε+ o(kε)

k2
sup
N−k

|U ′′(qN−k)|

=
2T supN−k |U ′′(qN−k)|

mβ

µN
∑

k=1

ε+ o(ε)

k

≤ 2T [ε+ o(ε)] supN−k |U ′′(qN−k)|
mβ

µN
∑

k=1

1

k
−→
ε→0

0.

The notation “supN−k” means: supremum value over all the subdivisions and
realizations of the process (see Eq. (6.1′))9). Therefore, the rhs can be made
small at will by choosing µ and ε sufficiently small (if µN is not an integer, the
nearest integer number should be substituted in its place).

In order to check the change of variables that has been introduced, we write
down the expression for the kernel (6.1). If U ′(q) = const, the integrations may
be performed immediately, yielding:

(B.8) K(q, t/q0t0)

= lim
ε→0

(

4πTε

mβ

)−N/2 N−1
∏

n=1

(

(n+ 1)mβ

4πTnε

)−1/2

× exp

{

− mβ

4NTε

[

q − q0 +
ε

mβ

N
∑

i=1

U ′(qN−i)

]2}

=

(

4πT (t− t0)

mβ

)−1/2

exp

{

− mβ

4T (t− t0)

[

q − q0 +
U ′

mβ
(t− t0)

]2}

,

where it has been put: Nε = t − t0. It is remarkable that all the exponen-
tial factors, except for the last one, in the rhs of Eq. (B.5), converge to δ-
functions of the arguments, while the last factor represents a Gaussian whose
width is independent of ε, therefore the integrations can be performed imme-
diately, by considering the last factor as a constant in the relevant integration
range. It is therefore possible to argue that this expression for the kernel would
be useful in more complicated potentials, though its use is out of scope in this
work.

9)The necessity of smoothness conditions on the potential U(q) was also pointed out in
[31, 42].
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9. Appendix C. Proof of Equations (6.6), (6.6′)

From Eq. (5.1′) it is obtained

(C.1) qi+1 − qi = ηi,

then from Eq. (6.6)

(C.2) επ̃i = mηi +
ε

β
U ′(qi);

consequently

〈π̃iπ̃j〉 =

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−1

(

4πTε

mβ

)−N/2[mηi

ε
+

1

β
U ′(qi)

]

(C.3)

×
[

mηj

ε
+

1

β
U ′(qj)

]

exp

{

−mβ
4T

N−1
∑

k=0

ε

[

ηk

ε
+

1

mβ
U ′(qk)

]2}

=
2mT

βε
δij −→

ε→0

2mT

β
δ(ti − tj),

with tk = t0 + kε, k = 1, 2, . . . , N − 1. Convergence is understood as simple in
the sense of the distribution theory [33]. The same limit is obtained if the time
coordinates are kept fixed while the subdivision of the interval is made finer. In
the same way it is proven that π̃(tj) is uncorrelated with any function of q(tj):

(C.4) 〈f(qj)π̃j〉 =

+∞
∫

−∞

dη0 . . .

+∞
∫

−∞

dηN−1

(

4πTε

mβ

)−N/2

f(qj)

×
[

mηj

ε
+

1

β
U ′(qj)

]

exp

{

−mβ
4T

N−1
∑

i=0

ε

[

ηi

ε
+

1

mβ
U ′(qi)

]2}

= 0,

because qj does not depend upon ηk, for k ≥ j.
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