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THE PAPER DESCRIBES the methods and results of direct optimization of turbine
blading systems using a software package Opti_turb. The final shape of the blading
is obtained from minimizing the objective function, which is the total energy loss of
the stage, including the leaving energy. The current values of the objective function
are found from 3D RANS computations (from a code FlowER) of geometries changed
during the process of optimization. There are constraints imposed on the mass flow
rate, exit swirl angle and reactions, as well as on changes of stresses in the metal.

Among the optimized parameters are those of the blade itself (such as the blade
number and stagger angle as well as the stacking blade line parameters) and those of
the blade section (profile). Two new hybrid stochastic-deterministic methods are used
for the optimization of flow systems. The first method is a combination of a genetic
algorithm and a simplex method of Nelder—-Mead. The other method is a combina-
tion of a direct search method of Hooke-Jeeves and simulated annealing. Also two
methods of parametrization of the blade profile are described. They make use of a set
of circle arcs and Bezier functions.

In the course of optimization, the flow efficiency of a group of two low pressure
(LP) exit stages of a 50 MW turbine operating over a wide range of load is increased
by means of optimization of 3D blade stacking lines. Another practical example of
efficiency optimization of turbine blading systems is modification of low load profiles
PLK-R2 for high pressure (HP) steam turbine stages. It is shown that optimization
of geometry of turbine blading systems can give considerable efficiency gains. Opti-
mization of 3D blade stacking lines in LP turbine stages can give over a 2% efficiency
rise. Up to 1% efficiency, increase can be obtained from optimization of HP blade
profiles and their restaggering.
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1. Introduction

THE EFFICIENCY OF TURBINE STAGES can be increased by optimization of blad-
ing systems, including classical optimization of stator and rotor blade numbers
and stagger angles, as well as optimization of blade sections (profiles) and 3D
blade stacking lines. The possible large number of shape parameters of 3D tur-
bine blading requires efficient optimization techniques.

The effects of blade reprofiling and 3D blade stacking are generally known.
Change of the blade profile redistributes profile load and changes the state of
boundary layers at the blade suction surface, thus changing the distribution of
profile loss. The redistribution of profile load (making the profile front-loaded
or aft-loaded) also has an effect of redistribution of endwall/secondary flow
losses [1]. 3D blade stacking redistributes span-wise blade load, mass flow rate,
changes the state of boundary layers at the blade suction surface and at the end-
walls, and can serve as a means of controlling endwall /secondary flow and tip
leakage losses [2-5]. By 3D blade stacking it is also possible to reduce span-wise
variations of the exit velocity and swirl angle, which is likely to reduce down-
stream mixing losses and make stator/rotor matching easier. The quantitative
effect of blade reprofiling and 3D blade stacking on the overall loss coefficient
of the turbine stage depends on the way of reprofiling and blade stacking, and
varies with turbine stage geometry and operational conditions. The largest effi-
ciency gains obtained from reblading are usually achieved in low pressure (LP)
turbines, which is shown in [6, 7].

There are two main approaches to optimization of turbomachinery blading
systems. One approach concentrates on development of 3D inverse design using
Euler or Navier—Stokes codes, where the shape of the blading changes during
iterative procedures so as to reach the target distribution of, for example, blade
surface static pressure or static pressure difference [8, 9]. Another approach fo-
cuses on optimization of global characteristics of the stage and the final shape is
obtained from minimizing an objective function, for example the total enthalpy
of total pressure loss of the turbine stage. Values of the objective function for
new geometries can be found directly from 3D viscous flow computations [6, 7.

The largest costs during efficiency optimization of flow systems are connected
with the calculation of values of the objective function (flow losses of the chang-
ing flow system), which are usually obtained from a RANS solver. Therefore,
approximate models to calculate the objective function such as an artificial neu-
ral network trained over a data base of high-fidelity 3D RANS solutions are
often used [10, 11]. Among new optimization strategies are surrogate model ac-
celerated multi-objective evolutionary algorithms [12]. Particularly popular and
effective are Kriging and especially co-Kriging methods, where the response sur-
face models of the high-fidelity function are constructed from a combination of
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expensive high-fidelity and other cheap low-fidelity data [13]. New direct opti-
mization methods are also devised to choose new geometries in the optimization
process and to be effective both for single-extremum and multimodal objective
functions. Among these new methods are hybrid stochastic-deterministic algo-
rithms described in [14-16].

In this paper, we describe two new stochastic-deterministic optimization
methods used in the code Opti_turb. The first method is a combination of
a genetic algorithm and simplex method of Nelder—-Mead. The other method is
a combination of a direct search method of Hooke—Jeeves and simulated anneal-
ing. Also two methods of parametrization of the blade profile are described. They
make use of a set of circle arcs and Bezier functions. As shown in the paper, these
methods allow efficient optimization of turbomachinery blading systems.

2. Optimization of turbomachinery blading systems
2.1. Objective function

Optimization is an iterative procedure that seeks for an extremum of the
objective function

min f(y(x),x) or max f(y(x),x)

assuming that ¥ € [Ymin; Ymax), T € [Tmin; Tmax), Where f is an objective function,
y — vector of the assumed flow parameters, x — vector of the assumed geometrical
parameters. In the code Opti_turb, the objective function is built based on the
flow loss coefficient. It is just the enthalpy loss of the turbine stage (stage group)
for a single-point optimization:

f:£7

where ¢ is the enthalpy loss including the exit energy (definitions of enthalpy
losses in blade rows and stages are included in the Appendix). For turbines
operating over a wide range of load, the optimum geometry is found from a multi-
point optimization procedure, where the objective function is a weighted average
of objectives for a number of selected flow regimes

f= Z wF k) where Z w®) =1.

k=1,n k=1n

In order to simultaneously improve the aerodynamic performance, heat trans-
fer processes as well as mechanical and thermal integrity of the blading, multi-
disciplinary optimization can also be switched on. An objective function is de-
fined then to gather information from different solvers representing each involved
discipline and to assure the required coupling between the disciplines.
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2.2. Shape parameters

The following parameters of blade shape can be considered during the opti-
mization for each blade row:

— blade number and stagger angle,

— blade height,

— blade linear lean angle, linear sweep angle and linear twist angle,

— compound lean parameters Az, Ay (2 at hub, 2 at tip),

— compound sweep parameters Az, Ay (2 at hub, 2 at tip),

— compound twist parameters Az, Ay (2 at hub, 2 at tip),

— a number of blade profile parameters.

As compared to the blade with the originally straight stacking line, the blade
obtained in the process of optimization can be linearly or non-linearly leaned
in the circumferential direction and swept in the axial direction. The blade can
also be linearly or non-linearly twisted about its stacking line. The idea of com-
pound lean or sweep, their parametrization by the parabolic functions and the
corresponding shape parameters are explained in the Appendix, whereas the
next subsection is concerned with the description of the applied methods of
parametrization of the blade profile.

2.3. Parametrization of blade profile

Two methods of parametrization of the blade profile are included in the code
Opti_turb to facilitate shape optimization of the blade profile. They make use
of the set of circle arcs and Bezier functions.

Circle arcs

The idea of blade profile description by means of circle arcs is well-known.
Several groups of stator and rotor profiles, such as N1-N3, PLK and R1-R3
profiles, are just built based on the set of 3 to 7 circle arcs on the pressure and
suction surface of the profile, [17]. Each arc is determined by its circle centre
coordinates and radius, see Fig. 1. Subsequent arcs remain tangent to each other,

P,

Ci+1

Fic. 1. Blade profile parametrization using circle arcs.
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which makes the pressure and suction surface of the profile smooth. The pressure
and suction surface are linked by two more circle arcs which form the leading
and trailing edge of the profile. In the course of optimization, the distribution of
circle arcs and their parameters is varied. The tangency condition implies that
the tangency point P; and the neighbouring circles’ centres cy;, c;y1 lie on the
same line.

Bezier curves

The idea of approximation of blade profiles by means of Bezier functions and
samples of blade profile optimization based on this approximation was presented
in [11]. In this work, we make use of a special form of Bezier functions, that is
a rational Bezier function [18|.

The rational Bezier curve is a parametric curve described by the following

formula:
Zi:O,n w; B; () P;
D imon WiBin(t)

where: t € (0,1), P; — control point given by coordinates {x;,y;}, w; — weight
for control point P;, B;, — Bernstein polynomial given by

Bin = <n> #i(1 — )"t
7

The shape of a Bezier curve is affected by its control points and their weights.
For a 3rd order Bezier function (n=3) each curve is defined by 4 control points
— 2 end points and 2 internal points, Fig. 2. A weight is prescribed to each

Q(t) =

Fi1c. 2. The blade profile approximation with rational Bezier curves; Py, Ps — end control
points, Pi, P> — internal control points.
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Fia. 3. The effect of weight change on the shape of a rational Bezier curve; original curve —
all weights are set to unity (left), modified curve — the weight corresponding to point P; is
increased (right).

control point. Fig. 3 exhibits the effect of sample weights’ change on the shape
of a rational Bezier curve. Subsequent Bezier curves are assumed to be tangent
to each other to make the pressure and suction surface of the profile smooth.
During the optimization, the shape of the profile is varied by varying Bezier
curves and their parameters.

2.4. Optimization constraints

Optimization of blading systems should be conducted as constrained opti-
mization. Constraints refer both to geometric parameters, which are the opti-
mized parameters, as well as to flow and structure parameters, which are not
directly optimized so as to assure that they do not fall beyond the allowed range
of variation. The following sample flow/structure parameters can be considered
during optimization: exit flow angle, mean reaction, reaction at the root and tip,
mass flow rate and stresses in the metal.

Geometric and flow parameters to be controlled during optimization are con-
strained in two ways. Stiff constraints are used with respect to the exit angle,
reactions and stresses in the metal, meaning that the objective function acquires
a certain large value if the allowed range of variation of these parameters is
exceeded:

f=¢& if the parameters fall within the allowed range of variation,
f =00 otherwise or if flow calculations do not converge,

where ¢ is a value of the objective function (enthalpy loss coefficient) obtained
from CFD computations.

Beside stiff constraints, weak constraints are also considered during the op-
timization process. In this type of constraint, usually applied to the mass flow
rate (resultant for a flow solver assuming the pressure drop across the stage
as a boundary condition — see the next subsection), a penalty is assigned to
the objective function if a flow characteristic falls beyond the required interval
|G_,G4| around a design value of flow rate G:
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f:E lfG_SGSG—H
f=¢&+min[(G — G1)? /e otherwise,

where ¢ is the penalty coefficient, usually prescribed in a way that the objective
function sharply rises to infinity with the increasing distance from the limits of
the assumed range of variation. As the pressure drop during optimization is kept
constant and the mass flow rate is constrained in a very narrow range of variation,
any change of power of the optimised stage is due to the reduced flow losses only.

The above formula used during single-point optimization is modified for the
case of multi-point optimization

=Y whe® if for cach kG® < a® < @,

k=1n
f= Z wPe® 4 mgx(min[(G(k) - G@)Q])/e otherwise,
k=1n

where G(®) is the current mass flow rate calculated at a point (load) k and

[ch), GSf)] is the allowed narrow interval of flow rate change around the design
value at this point (load) k.

2.5. Flow and structure solvers

Flow computations of turbomachinery geometries are made with the help of
a computer code FlowER [19, 20|, where turbulent flow of compressible viscous
gas is described by 3D RANS equations with the perfect gas equation. Turbulence
effects are modeled using the k-w SST (shear stress transport) model [21]. This
two-equation eddy-viscosity model (blend of k-w in the near-wall region and
k-e in the wake region) has been proved to be successful in 2D and 3D test
computations of flows over bodies and aerodynamic surfaces, giving the right
rate of production and dissipation of turbulent kinetic energy in boundary layers,
wakes and separation regions. Discretization of governing equations is made by
the finite volume method. A numerical scheme of second-order accuracy in time
and space is used. This is an upwind scheme of Godunov type with an ENO
formula for the calculation of convective fluxes. To accelerate the process of
convergence, an implicit operator § of Beam—Warming is used.

The calculations are carried out in one blade-to-blade passage of the stator
and rotor on an H-type grid refined near the endwalls, blade walls (y™ = 1-2),
leading and trailing edges. Typically, 12-16 points are used in the boundary
layer. The total number of grid points per one blade-to-blade passage (of a single
blade row) exceeds 400000 (92 axially x 76 radially x 60 circumferentially).
The calculations converge to a steady state. A mixing plane approach is used
to treat the relative motion of the stator and rotor, based on circumferential
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averaging of flow parameters in the axial gaps between the blade rows. The
calculation domain also extends on the radial gaps above the unshrouded rotor
blades (tip leakage region). The assumed boundary conditions are typical for
turbomachinery calculations, including no slip and zero heat flux at the walls, as
well as spatial periodicity at the borders of the flow channel. The pressure drop
across the stage (stage group) is imposed. Therefore, for a given flow geometry,
the mass flow rate is resultant.

The assumed structure solver WYKA |22, 23| was originally elaborated for
numerical analysis of deformations of marine propellers. It is based on finite
elements of medium-thickness shells — eight-node isoparametric elements whose
shape functions are second-order polynomials. The solver enables the static anal-
ysis of main and reduced stresses, calculation of frequencies and modes of natural
vibrations as well as enables the calculation of deformations and wear analysis
of material subject to unsteady load. By means of an interface system it is inte-
grated with the flow solver and optimization package [24].

2.6. Direct optimization or neural network

The largest costs during efficiency optimization of flow systems are connected
with the calculation of values of the objective function (flow losses of the chang-
ing flow system calculated from a RANS solver). Due to time restrictions, RANS
computations in the course of optimization are carried out on coarse grids, also
using faster and less expensive turbulence models. After optimization, the orig-
inal and optimized geometries are recalculated on refined grids. In validation of
the optimization results, more advanced turbulence models available in the code
ANSYS Fluent [25] can also be used. As shown in [26], Reynolds stress models,
such as the LRR model [27], can provide additional insight to the development
of secondary flows. Intermittency v based models [28] can improve the prediction
of transitional flows.

One way to speed up the optimization procedure is to use approximate models
to calculate the objective function such as an artificial neural network trained
over a data base of RANS solutions. In the code Opti_turb, the back-propagation
method is used to train the neural network (in the MATLAB environment) [24].
New direct optimization methods are also devised to choose new geometries
in the optimization process and to be effective both for single-extremum and
multimodal objective functions.

2.7. Deterministic or stochastic optimization methods

Typical deterministic methods of optimization such as the direct search
method of HOOKE-JEEVES [29] and the simplex method of NELDER-MEAD [30]
are effective for objective functions having a single extremum. However, they may
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not be effective in the case of multimodal functions having a number of extrema
as they tend to reduce the range of search and hold on to a local extremum.
Stochastic methods such as genetic algorithms [31] and simulated annealing [32]
are very reliable in finding global extrema of multimodal functions. Unfortu-
nately, the stochastic methods clearly exhibit a low rate of convergence in the
vicinity of the extremum, which largely increases computational costs of opti-
mization. A solution may be the application of hybrid stochastic-deterministic
schemes [14-16].

2.8. Genetic algorithm with a simplex

This hybrid method starts with a genetic algorithm so as to approach the
vicinity of the global extremum. The real coding with the modified selection,
cross-over and mutation operators are used. The initial population is found in
the process of evenly random generation within the search domain. To reduce
the computational costs, two worst elements are removed from the population
after each iteration. Typical entry data for the genetic algorithm are:

n — number of parameters (dimension of the objective function),
Ximin, Ximax — lower and upper boundaries of the search region,

Npop = 50-200 — population,

P, =0.8-0.9 - cross-over probability,

P, = 0.01-0.02 — mutation probability,

RanGen — model of random number generator,

M — maximum number of iterations.

After a prescribed number of iterations, the best point is selected and an
initial simplex for the Nelder—-Mead method is built around it. Typical entry
data for the Nelder-Mead method are:

n — number of dimensions,

X(O), Lgimp — initial point and width of the regular simplex,

a, v, B, o — reflection, expansion, contraction and reduction coefficient,
€ — termination criterion.

The effectiveness of this hybrid method was first tested on a chained Rosen-
brock (banana-valley) function and on a multimodal trigonometric function [31],
typical test functions used for testing optimization algorithms. The n-dimen-
sional Rosenbrock function has a form:

n
F(z1,29,...,2,) = Z [100(z?_; — 22) + (27, — 1), n — even number.

i—
1=2

This function has a single extremum F' = 0 at a point (1,1,...,1). A standard
difficult starting point of the optimization algorithm for this function is e.g.
ro — (.TZ), Toi—1 = —1.2, Tro; = 1.0.
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The chosen trigonometric function has the form:

n
F(z1,72,...,2n) = 0.025 > (2 — Tmin)”
=1

+ sin? (Z(

n

=1

n
T; — xmin) + Z (-Tz
i=1

=1

— xmin)Q) + sin? (z": (x; — xmin)>.

The trigonometric function contains an infinite number of local minima and

one global minimum F = 0 at (Zmin, Tmins Tmin; - -

<y Tmin ). Assuming zp, = 1

implies that the global minimum is located at (1,1,...,1). A standard starting
point for the optimization algorithm for this function is also chosen as: zy = (z;),
To;—1 — —1.2, To; — 1.0

Typical results of searching for the extremum of the chained Rosenbrock
function (for n = 8) using the hybrid genetic algorithm /simplex method, are
shown in Tab. 1. Here, after 7 iterations of the genetic algorithm (above 1000

Table 1. Searching for the extremum of the chained Rosenbrock function (n = 8)
using the genetic algorithm/Nelder—Mead method; Npop = 150, P, = 0.8,
P, =00l/a=1,y=2, 8=0.5, c =0.5.

GA

ITER

NUM_F

F

X[1]

X[2]

X[3]

X[4]

150

0.481304E+003

—0.703430E-+000

0.108514E+001

—0.408735E-+000

0.251600E—001

448

0.216897E+003

0.109331E4-001

0.634627E+-000

0.126386E+-000

0.922287E+-000

738

0.120122E+003

0.106995E+-001

0.581012E+-000

0.331034E4-000

0.890497E+000

| o w

1020

0.601066E+002

0.103055E4-001

0.736448E+-000

0.761536E4-000

0.110106E+001

NM

ITER

X[5]

X{6]

X[7]

X8|

1 | —0.666257TE+000

0.651096E+000

0.384433E4-000

0.130870E+001

0.504271E+-000

0.556767E+000

0.104408E+-001

0.650910E+000

0.676535E+-000

0.359990E+000

0.612750E4-000

0.438051E+-000

3
5
7

0.106005E+-001

0.116355E+001

0.124722E4-001

0.118540E+-001

ITER

NUM_F

F

X[1]

X[2]

X[3]

X[4]

0.601066E-+002

0.103055E+-001

0.736448E+000

0.761536E+000

0.110106E+001

50

84

0.172511E4-002

0.985756E-+000

0.831754E+000

0.843429E+000

0.973664E-+000

105

175

0.961207E-+000

0.952637E-+000

0.951463E+000

0.957433E+000

0.157723E+001

170

270

0.100508E-+001

0.977154E+-000

0.976662E-+000

0.976375E+000

0.625150E-+000

200

317

0.100282E-+001

0.100347E+-001

0.993324E+000

0.990686E+000

0.607854E-001

ITER

X[5]

X[6]

X[7]

X[§]

1

0.106005E+001

0.116355E+001

0.124722E+001

0.118540E+-001

50

0.942047E+000

0.108663E-+001

0.126807E+001

0.149645E+-001

105

0.100713E+001

0.105729E+001

0.111670E+001

0.125121E4-001

170

0.100639E+001

0.102702E+001

0.102121E+001

0.104471E+-001

200

0.997619E+000

0.999060E+000

0.992528E+000

0.975497E+-000
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calculations of the function) and 200 iterations of the Nelder-Mead method
(above 300 calculations of the function), the function value can be reduced by
4 orders of magnitude. In Table 2, the case of the trigonometric function (for
n = 10) is illustrated. Here, after 4 iterations of the genetic algorithm (below
800 calculations of the function) and 200 iterations of the Nelder-Mead method
(350 calculations of the function), the function is also reduced by 4 orders of
magnitude. The subsequent columns of the presented tables give the number of
iterations (ITER), number of calculations of the objective function (NUM _F),
value of the objective function (F) and values of the coordinates (X|[I]).

Table 2. Searching for the global extremum of the trigonometric function
(n = 10) using the genetic algorithm /Nelder-Mead method; Npop = 200, P, = 0.8,
P, =00l/a=1,y=2, 3=05, ¢ =0.5.

GA

ITER

NUM_F

F

X[1]

X[2]

X[3]

X[4]

1 200

0.131903E-+001

0.145763E-+001

0.101102E+001

0.144413E+001

0.133822E+001

400

0.904608E--000

0.202245E+000

0.182581E+001

0.171015E+001

0.183924E+001

598

0.757878E-+000

0.486811E-+000

0.110099E-+001

0.835161E-+000

0.788966E-+000

2
3
4 794

0.463378E+000

0.155080E+001

0.722796E-+000

0.102589E+001

0.754722E-000

ITER

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

0.745425E+000

0.199738E-+001

0.105864E+001

0.498509E-000

0.187955E+001

0.196547E+001

0.117716E-+001

0.864176E-+000

0.122678E+001

0.114751E+001

0.165614E+001

0.124589E+001

0.139465E+001

0.475123E+000

0.393143E-+000

0.117504E-+001

-0.273289E+000

0.614738E-+000

> W

0.485169E-+000

0.895392E-+000

0.920030E+000

0.997540E+000

0.116690E+001

0.107523E+001

NM

ITER |NUM_F

F

X[

X[2]

X3

X[4]

1 11

0.463378E-+000

0.155080E-+001

0.722796E-+000

0.102589E+001

0.754722E+000

49 110

0.122838E-001

0.102242E-+001

0.107326E+001

0.996109E-000

0.978358E-+000

78 163

0.105178E-002

0.980918E--000

0.104317E+001

0.100193E+001

0.998394E+000

125 231

0.109636E-003

0.100460E-001

0.100474E+001

0.999193E+-000

0.996552E+000

200 350

0.327654E-004

0.100527E-+001

0.100057E+001

0.100187E+001

0.999157E+000

ITER

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

0.485169E--000

0.895392E+000

0.920030E+-000

0.997540E+000

0.116690E-001

0.107523E+001

49

0.965412E-+000

0.104298E+001

0.972888E-+000

0.100484E-+001

0.101457E+-001

0.993391E-+000

78

0.988238E--000

0.101788E+001

0.101687E+001

0.995948E+000

0.985121E-+000

0.969062E-+000

125

0.996993E--000

0.999189E+000

0.100198E+001

0.100994E+001

0.100232E-+001

0.988345E-+000

200

0.100183E-+001

0.999751E+000

0.998781E+000

0.100105E+001

0.100157E-+001

0.990621E-+000

2.9. Simulated annealing Hooke—Jeeves method

This hybrid scheme is a modification of the Hooke—Jeeves method, which
includes elements of classical simulated annealing. Similar to the original Hooke—
Jeeves scheme, two stages of calculations can be distinguished: trial and working

stage.
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In the trial stage, the vicinity of a base point is searched along all directions
of the ortogonal coordinate system. If the trial stage is successful, in the working
step the old base point is moved to a new base point.

If not, the Metropolis test is performed. A random number r is generated
from the interval [0,1] and compared with p = exp(—df/T'), where §f is a local
increase of the objective function, T is the control parameter called temper-
ature. If » < p then the best point obtained in the trial step is accepted as
a new base point. The random factor thus introduced enables the algorithm to
go beyond the local extremum. The scheme requires a careful definition of the
temperature.

The entry data for this hybrid algorithm are:

number of parameters (dimension of the objective function),
starting point,

initial step length,

step reduction coefficient,

temperature,

— termination criterion.

“ 3
[

M g0

Typical results of searching for the global extremum of the chained Rosen-
brock function and trigonometric function (for n = 10) using the Hooke-Jee-
ves/simulated annealing method are given in Tab. 3 and 4. As seen from the
tables, the function value can be reduced by 4-5 orders of magnitude after 70
iterations (about 1500 calculations of the objective function). The subsequent
columns of the presented tables give the number of iterations (ITER), number
of calculations of the objective function (NUM F), search step value (STEP),
value of the objective function (F) and values of the coordinates (X[I]).

Table 3. Searching for the extremum of the chained Rosenbrock function
(n = 10) using the Hooke—Jeeves/simulated annealing method; 7 = 6.0, « = 0.8.

ITER|NUM_F|  STEP F X1 2] X[3] 4]
1 0 0.300000E+-001{0.205700E+004|—0.120000E+4-001 {0.100000E-+001|—0.120000E+-001 { 0.100000E-+001
10 188  [0.177147E+001|0.193996E+4-003| 0.987028E-+000|0.999976E+000| 0.871453E+0000.999979E-+000
35 713 |0.141304E+000(0.151816E+002| 0.987028E+000(0.988531E+000| 0.871453E+-000{0.815894E-+000
60 1237 0.295804E—001|0.122840E4-000| 0.999171E4000(0.992068E+000| 0.993329E4-0000.988676E-+000
75 1552 0.609035E—002|0.483857E—002| 0.999171E4000(0.997841E+000| 0.998720E4-0000.996892E+000
ITER x| 5] x| 6] x| 7] x| 8] x| 9] x[10]
1 |—0.120000E+001|0.100000E+001|—0.120000E+4-001 |0.100000E+001|—0.120000E+-001 {0.100000E+001
10 0.208529E4-000(0.999984E+000| 0.122995E+001(0.999978E+000| 0.986969E+-000{0.100000E+001
35 0.787436E4-000(0.833896E+000| 0.878168E+000(0.970435E+000| 0.986969E+-0000.985869E-+000
60 0.988156E+-000(0.996041E+000| 0.984503E+000(0.983983E+000| 0.986053E+-000{0.971663E-+000
75 0.996244E4-000(0.996041E+000| 0.995242E+000(0.993156E+000| 0.986053E+-000{0.972361E-+000
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Table 4. Searching for the global extremum of the trigonometric function
(n = 10) using the Hooke—Jeeves/simulated annealing method; 7 = 6.0, a« = 0.8.

ITER|NUM F|  STEP F X 0 2 NE] 4]
1 0 |0.600000E+001]0.740053E+001|—0.120000E+001]0.100000E+001 | —0.120000E+ 001 |0.100000E + 001
10 | 183 |0.540000E+001]0.310516E+001] 0.226978E+001]0.100000E-+001| 0.215578E-+001|0.100000E+001
30 | 604 |0.478599E+000(0.108203E+000| 0.127446E+001]0.100000E+001] 0.630662E-+000]0.100000E+001
50 | 1023 |0.387665E-+000]0.738571E—002| 0.112427E-001|0.100000E+001] 0.979560E000|0.100000E 001
70 | 1442 |0.500947E—001[0.750749E—003| 0.102989E-+001]0.100000E+001| 0.994351E+000]0.100000E+001
ITER x[5] x[6] x[7] x[8] x[9] x[10]
1 |—0.120000E+001|0.100000E+001|—0.120000E+-001 |{0.100000E+001|—0.120000E+-001 {0.100000E-+001
10 0.234294E+001{0.100000E-+001| 0.273660E-+001{0.100000E+001| 0.234294E+-001|0.100000E+4-001
30 0.102192E+-001{0.100000E+001| 0.786208E+000(0.100000E+001| 0.109860E+-001{0.100000E-+001
50 0.102192E+-001{0.936665E+000| 0.960347E+000(0.981458E+000| 0.104491E+-001{0.950793E-+000
70 0.990998E+-000(0.974841E+000| 0.988051E+000(0.100929E+001| 0.102744E+-001{0.981724E+000

3. Multipoint optimization of 3D blading in an LP turbine stage group

The flow efficiency of a group of two LP exit stages of a 50 MW turbine
operating over a wide range of load is increased by means of optimization of 3D
blade stacking lines. A combination of linear and compound sweep and lean is
added to the blade design to obtain new 3D stacking lines of stator blades.

Under nominal conditions the stage group operates at a pressure drop from
0.42 to 0.1 bar, that is at a pressure ratio pey/pin = 0.24 and mass flow rate
37.8 kg/s. The expected pressure ratio variations are between 0.14 (high load)
and 0.33 (low load). Since earlier papers |6, 7| show that the energy effects of
blade sweep and lean (especially lean) depend on the turbine load, the concept
of multipoint optimization is used.

The objective function was assumed as the weighted average of the enthalpy
loss of the stage group (including the leaving energy) from three values of load.
The loss at the nominal load forms 50% of the value of the objective function.
The remaining 50% comes from the loss at a low load and high load, 25% each.
The enthalpy losses were evaluated by means of CFD calculations of the flow
domain in the solver FlowER. The penalty function was imposed on the mass
flow rate if it is changed by more than +0.5%, as compared to the original design.

There were 12 shape parameters (6 for each stage) as listed in Tab. 5. The
optimization of the LP stage group was conducted using the genetic/simplex al-
gorithm. 480 geometries were calculated (1440 calculations of the loss coefficient
for three values of load). The comparison of a meridional view for the original
and final geometry of the stage group is illustrated in Fig. 4. Changes of the op-
timized parameters are given in Tab. 5. It is shown that the effects of compound
sweep and straight lean are prevailing for these LP stages. However, one can also
remark that compound lean can be more effective for some HP stages [4, 7].
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Fia. 4. Original (left) and final (right) geometry of the stage group in meridional view.

Table 5. Change of the optimized parameters in stages 1-2.

Optimized parameter Its change

Stage 1 Stage 2
stator stagger angle!) |°] 0.5 0.2
rotor stagger angle [°] 0.2 -3.7
stator linear sweep angle? |°] 0.0 1.5
stator linear lean angle®) [°| —4.9 —6.4
stator compound sweep rate at tip? Az/l (Ay = 3Ax) —0.08 -0.14
stator compound lean rate at root® Az/l (Ay = 3Azx) 0.00 —0.06

1>positive value of stagger angle increment opens throats, negative value closes throats;

2 positive value when the swept stator blade is protruded forward (downstream) at the tip;

3>positive value when the leaned blade is protruded with rotation of the moving blades at the

root.

The objective function was decreased by 1.8%. Most of efficiency gains come
from optimization of the second (exit) stage. For example, the efficiency of the
second stage for nominal operating conditions was increased by 2.4%, for low load
even by as much as 5.5%. As a result of optimization, the stage group efficiency
increases in the entire investigated range of load with the largest efficiency gains
in the region of low and nominal load.

The comparison of Mach number contours at the root of the original and
optimized second stage for a high load (exit volumetric flow rate of 800 m3/s)
is presented and in Fig. 5. Due to the low (negative) reaction of the original
second stage at the exit, the stator is overloaded at the root, whereas the rotor
remains underloaded there. High velocities downstream of the overloaded stator
give rise to a shock wave configuration at the trailing edge and lead to inlet shock
conditions for the rotor. The suction side boundary layer of the original rotor
at the root section is thus affected by the inlet shock wave, resulting in a local
adverse pressure gradient, which leads to the separation of the boundary layer
with a quite large separation zone.
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The optimized combination of stator blade sweep and lean leads to a reduc-
tion of the spanwise gradient of reaction, which in turn leads to a reduction
of load of stator passages at the root and consequently, to a decrease of flow
losses in the boundary layers, in the trailing edge and shock wave regions. This
is also accompanied by a reduced risk of appearance of an inlet shock wave
in the rotor. The load is increased in the rotor and the suction side boundary
layer becomes regular with a moderate downstream pressure gradient and no
suction side separation zone. A drawback is that the trailing edge velocities in
the rotor are largely increased over the subsonic range, leading to a trailing edge
shock wave configuration, which can also be observed from Mach number plots

in Fig. 5.

Fig. 5. Mach number contours in the second-stage stator (top) and rotor (bottom) at the
root for original (left) and optimized (right) geometry for the exit volumetric flow rate of
800 m®/s.
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The comparison of entropy function contours at the exit from the upper
part of the flow channel (tip region) in the second-stage rotor is presented in
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Fic. 6. Entropy function contours at the exit from the second-stage rotor in the tip region for
original (left) and optimised (right) geometry for the exit volumetric flow rate of 520 m?/s.

Fig. 6. The rotor blades are unloaded at the tip in the optimized design, which
leads to a slight decrease of endwall and tip leakage losses, and provides more
efficiency gains obtained from optimization. The colour plots were obtained from
post-optimized fine-mesh calculations. These fine-mesh calculations are here to
validate the results of optimization.

4. Optimization of blade profiles in a low-load HP turbine stage

Optimization of stator and rotor profiles (PLK and R2 profiles) is carried out
for a low-reaction high-pressure (HP) stage of a 200 MW turbine. The considered
turbine stage operates at a pressure drop from 42 to 38 bar (pressure ratio
Pex/Pin, = 0.9) and at a mass flow rate 57 kg/s.

The stator and rotor profiles are described by a set of circle arcs. In the
course of shape optimization there were 12 free parameters of profile arcs plus
two stagger angles. The objective function was the enthalpy loss including the
exit energy. The penalty was imposed on the changes of mass flow rate larger
than +0.5%, as compared to the original operating flow rate.

The optimization was conducted using the combination of the Hooke—Jeeves
method and simulated annealing. There were over 600 calculations of the ob-
jective function. The shape of the original and modified (optimised) profiles is
illustrated in Fig. 7. The stagger angles of the stator and rotor blades remain
the same as in the original setup. Changes of the shape of the stator blade are
very small, slightly increasing the profile camber, thus increasing the flow turn-
ing within the cascade. Changes in the rotor are more visible. The rotor profile
becomes thicker.

The objective function was decreased by 0.8%, which seems to be quite a con-
siderable improvement. Let us remind that typical efficiency gains achieved from
3D reblading in high and intermediate pressure turbine stages usually do not
exceed 0.5% [4, 7, 10]. Mach number contours presented in Fig. 8 exhibit an im-
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Fia. 7. Original and modified geometry of the stator (left) and rotor blades (right).
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Fic. 8. Mach number contours in the stator (top) and rotor (bottom) at the mid-span:
original geometry (left), modified geometry (rlght).
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proved expansion in the modified rotor cascade. Total pressure contours shown
in Fig. 9 indicate a reduction in the intensity of endwall flows, especially in the
optimised rotor cascade, which becomes more aft-loaded. Thus, optimization of
the profile shape leads to the improvements both in a 2D and 3D flow through
the turbine cascades.
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Fia. 9. Total pressure contours downstream of the stator (top) and rotor (bottom): original
geometry (left), modified geometry (right).

The stage mean reaction is increased by 3 %. Efficiency gains observed in
the flow-field contours can also be viewed from the spanwise distribution of
cascade and stage losses (stage losses are illustrated both without and with the
exit energy) presented in Fig. 10. As seen from this figure, stator losses are
slightly increased in the modified geometry (by 0.2% in the mean). However,
losses in the rotor are considerably lower (12% as compared to 13.9% in the
original geometry). Finally, stage losses are decreased both without the exit
energy (by 0.4%) and with the exit energy (by 0.8% from 10.4% down to 9.6%).
The assumed enthalpy loss definitions are gathered in the Appendix.
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Fic. 10. Spanwise distribution of stage reaction (top left), stator losses (top right), rotor
losses (bottom left) and stage loss with and without exit energy (bottom right) in an HP
turbine stage: 1 — original geometry, 2 — modified geometry.

The CPU time needed for the optimization on a single processor Pentium
3GHz amounted to 4 days for the considered HP turbine stage and 2 weeks
for the LP turbine stage group. Typically, just over 100 flow geometries were
calculated each day. The computational time taken by the optimiser itself is
negligible. The whole time needed for the optimization of the flow domain can
be reduced by multi-processor flow calculations.

5. Conclusions

The paper describes the methods and results of direct constrained opti-
mization of flow systems in the turbomachinery environment. Two new hybrid
stochastic-deterministic methods are proposed. The first method is a combina-
tion of a genetic algorithm and simplex method of Nelder-Mead. The other
method is a combination of a direct search method of Hooke—Jeeves and simu-
lated annealing. Both methods were found to be effective in optimization of the
chosen test functions (chained Rosenbrock and trigonometric function), usually
decreasing the objective function at 8-10 dimensions by 4-5 orders of magnitude,
with 1000-1500 calculations of the objective function.

Also two methods of parametrization of the blade profile are described. They
make use of a set of circle arcs and rational Bezier functions. The methods al-
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low parametrization of the blade profile using up to 10-25 parameters. 3D blade
stacking lines are parametrized using linear and parabolic functions giving typi-
cally 10—15 free shape parameters. As a whole, the optimization system enables
an efficient optimization of turbine blading systems, allowing us to tune a large
number of geometrical parameters of the blade, including the blade number and
stagger angle, stacking blade line parameters and blade section (profile) param-
eters.

The flow efficiency of a group of two LP exit stages of a 50 MW turbine
operating over a wide range of load is increased by means of optimization of 3D
blade stacking lines. Also low load profiles PLK-R2 were optimized for an HP
turbine stage. The optimization of geometry of turbine blading systems can give
considerable efficiency gains. It is found that optimization of 3D blade stacking
lines in LP turbine stages can give over a 2% efficiency raise, especially thanks
to the reduction of spanwise gradient of reaction, decreased flow losses in the
boundary layers, separation zones, trailing edge and shock wave regions at the
stator /rotor root. An up to 1% efficiency increase can easily be obtained from
optimization of HP blade profiles and their restaggering, especially by making
the rotor blade more aft-loaded and reducing the intensity of endwall flows.
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Appendix

Definitions of stage reaction, enthalpy losses in the stator, rotor and stage
(without or with the leaving energy) are gathered in Tab. 6 and are easily ex-
plained with the help of Fig. 11 — enthalpy-entropy graph for a turbine stage.

Table 6. Definition of reactions, cascade and stage losses.

Stage reaction p = (h1 — has)/(hor — hag)
Enthalpy loss in stator &1 = (h1 — his)/(hor — his)
Enthalpy loss in rotor &2 = (ha — has)/(hiT — has)

Stage loss except exit energy &12 = (ha — hag)/(hor — hasr)
Stage loss with exit energy &12¢ = (hor — hagr)/(hor — hayr)
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Symbols:

- absolute velocity
- enthalpy
- pressure

®o o0

- entropy
w - relative velocity

Subscripts:

0 - inlet

1 - behind the stator
2 - behind the stage
s, s' - isentropic

T - total

Fi1c. 11. Enthalpy-entropy graph for a turbine stage.

Compound sweep/lean displacements Az, Ay for the stator blades are drawn
in Fig. 12. The compound lean and sweep are assumed in a parabolic form. This
picture can be considered either a meridional view of the compound swept stator
blade or a circumferential view of the stator blade with compound lean.

ENDWALL ‘Aﬂx

Ay

BLADE

Fic. 12. Compound sweep/lean displacements.
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