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This paper concerns unsteady two-dimensional laminar temperature magnetohy-
drodynamic (MHD) boundary-layer of incompressible fluid. The present magnetic
field is homogenous and perpendicular to the body surface along which the boundary-
layer is developing. Body temperature varies with time. Outer electric filed is ne-
glected and magnetic Reynolds number is significantly lower than one, i.e. the con-
sidered problem is in induction-less approximation. In order to solve the described
problem, multiparametric (generalized similarity) method is used and so-called uni-
versal equations are obtained. The obtained universal equations are solved numeri-
cally in appropriate approximation and a part of the obtained results is given in the
form of figures and the corresponding conclusions.
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Notations

B magnetic induction,
cp specific heat capacity,
D standardization constant,
Ec Eckert number,
F characteristic function F = U∂z/∂t,

fk,n dynamical parameters,
g time derivative of characteristic function z,

gk,n magnetic parameters,
h characteristic linear scale of transversal coordinate,

H characteristic function H = δ∗/δ∗∗,
H∗ characteristic function H∗ = δ∗/h,

H∗∗ characteristic function H∗∗ = δ∗∗/h,
lk,n temperature parameters,
N characteristic function N = σB2/ρ,
q temperature difference between body surface and free stream,
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qw heat flux,
t time,

T temperature,
u, v longitudinal and transversal velocity in boundary-layer respectively,

U free stream velocity,
x, y longitudinal and transversal coordinate respectively,

z characteristic function z = h2/ν.

Greek symbols:
δ∗ displacement thickness,

δ∗∗ momentum thickness,
Φ dimensionless stream function,
η dimensionless transversal coordinate,
λ thermal conductivity,
µ viscosity,
ν kinematic viscosity,
Θ dimensionless temperature difference,
ρ fluid density,
σ conductivity,
τ shear stress,
Ψ stream function,
ξ characteristic function ξ = τwh/ (µU),
ξt characteristic function.

Subscripts:
0 initial time moment t = t0,
1 boundary-layer cross-section x = x0,

∞ free stream,
w body surface.

1. Introduction

The problem of boundary-layer separation and control has attracted
considerable attention over several decades because of the fundamental flow
physics and technological applications. Some of the essential ideas related to
boundary-layer separation and the need to prevent its occurring have been ad-
dressed by Prandtl [1]. For a long time, the following methods were used for
boundary-layer control: admit the body motion in streamwise direction, increas-
ing of the boundary-layer velocity, boundary-layer suction, second gas injection,
profile laminarization, body cooling. The interest in the outer magnetic field
effect on heat-physical processes appeared sixty years ago [2]. The research in
MHD flows was stimulated by two problems: the protection of space vehicles
from aerodynamic overheating and destruction during the passage through the
dense layers of the atmosphere; the enhancement of the operational ability of the
constructive elements of high temperature MHD generators for direct transfor-
mation of heat energy into electric. The first problem showed that the influence
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of a magnetic field on ionized gases was a convenient control method for mass,
heat and hydrodynamic processes. Solutions of the mentioned problems were
followed by rapid increase of analytical papers and experimental procedures con-
cerning heat transfer in MHD boundary-layer [3, 4]. The MHD research extended
gradually to new applied problems and nowadays, the research in visco-elastic
fluids [5], magneto-biological processes and in medicine, are present [6].

Flow of an incompressible viscous fluid over a surface has an important influ-
ence on several technological applications in the field of metallurgy and chemical
engineering. For example, during extrusion of a polymer in a melt-spinning pro-
cess, the extrudate from the die is generally drawn and simultaneously stretched
into a sheet, which is then solidified through quenching or gradual cooling by di-
rect contact with cooling fluid. In these cases, the properties of the final product
depend to a great extent on the rate of cooling which is governed by the con-
ditions in the boundary-layer. In this paper, in view of the mentioned research,
mathematical model of unsteady temperature, two-dimensional laminar MHD
boundary-layer of incompressible fluid is studied, which is directly related to
the two mentioned physical models. Magnetic field is a function of longitudinal
coordinate and perpendicular to the body surface, along which a boundary-layer
is developing. Furthermore it is assumed that the magnetic Reynolds number
is significantly lower than one, i.e. the considered problem is in induction-less
approximation and electric field is neglected. Velocity of flow is considered to be
much lower than speed of light and usual assumption in temperature boundary-
layer calculation that temperature difference is small (under 50◦C) is used, i.e.
characteristic properties of fluid are constant (viscosity, heat conduction, electro-
conductivity, magnetic permeability, mass heat capacity . . . ). Body surface tem-
perature is a time function. The obtained system of partial differential equations
can be solved for every particular case using modern numerical methods and
a computer.

In this paper, quite different approach is used, based on ideas proposed in
papers [7–10] which is extended in papers [11–13]. Essence of this approach is in
introducing adequate transformations and sets of parameters in starting equa-
tions of laminar two-dimensional unsteady temperature MHD boundary-layer of
incompressible fluid, which transform the system of equations and corresponding
boundary conditions into a form unique for all particular problems and this form
is considered to be universal.

2. Mathematical model

The described two-dimensional problem of MHD unsteady temperature
boundary-layer in inductioneless approximation is mathematically presented by
equations:
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∂u

∂x
+
∂v

∂y
= 0,(2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+ U

∂U

∂x
+ ν

∂2u

∂y2
− σB2

ρ
(u− U) ,(2.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

λ

ρcp

∂2T

∂y2
+

µ

ρcp

(

∂u

∂y

)2

+
σB2

ρcp
(u− U)2 ,(2.3)

and the corresponding boundary and initial conditions:

(2.4)

u = 0, v = 0, T = Tw(t) for y = 0,

u→ U(x, t), T → T∞ for y → ∞,

u = u0(x, y), T = T0(x, y) for t = t0,

u = u1(t, y), T = T1(t, y) for x = x0.

In the previous equations and the boundary conditions, the notations com-
mon in the boundary-layer theory are used for different physical values. Here,
x, y are longitudinal and transversal coordinates respectively; t – time, u, v –
longitudinal and transversal velocity in boundary-layer respectively; U(x, t) –
free stream velocity; ν – kinematic viscosity; σ – electro-conductivity; ρ – fluid
density; B – magnetic induction; T – temperature; cp – specific heat capacity;
µ – viscosity; Tw(t) – body surface temperature; T∞ – free stream temperature;
u0(x, y), T0(x, y) – longitudinal velocity and fluid temperature in time t = t0
respectively; u1(t, y), T1(t, y) – longitudinal velocity and fluid temperatures in
cross-section x = x0 respectively.

For further consideration, the stream function Ψ(x, y, t) is introduced with
the following relations:

(2.5)
∂Ψ

∂x
= −v, ∂Ψ

∂y
= u,

which satisfies Eq. (2.1) identically and transform the momentum equation (2.2)
into equation:

(2.6)
∂2Ψ

∂t∂y
+
∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
=
∂U

∂t
+ U

∂U

∂x
+ ν

∂3Ψ

∂y3
− σB2

ρ

(

∂Ψ

∂y
− U

)

,

and the energy equation (2.3) into equation:

(2.7)
∂T

∂t
+
∂Ψ

∂y

∂T

∂x
− ∂Ψ

∂x

∂T

∂y
=

λ

ρcp

∂2T

∂y2
+

µ

ρcp

(

∂2Ψ

∂y2

)2

+
σB2

ρcp

(

∂Ψ

∂y
− U

)2

.
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Boundary and initial conditions (2.4) are transformed into conditions:

(2.8)

Ψ = 0,
∂Ψ

∂y
= 0, T = Tw(t) for y = 0,

∂Ψ

∂y
→ U(x, t), T → T∞ for y → ∞,

∂Ψ

∂y
= u0(x, y), T = T0(x, y) for t = t0,

∂Ψ

∂y
= u1(t, y), T = T1(t, y) for x = x0.

Momentum equation (2.6) is decoupled from the energy equation (2.7) and it can
be solved independently. Solution of Eq. (2.6) is used for solving of the Eq. (2.7).

3. Universal equations

In order to analyze the described flow problem, following new variables are
introduced:

(3.1)

x = x, t = t, η =
Dy

h(x, t)
,

Φ(x, t, η) =
DΨ(x, y, t)

U(x, t)h(x, t)
,

Θ(x, t, η) =
Tw − T

Tw − T∞
,

where D is a normalizing constant, η – dimensionless transversal coordinate,
h(x, t) is the characteristic linear scale of transversal coordinate in boundary
layer, Φ(x, y, η) – dimensionless stream function and Θ(x, t, η) – dimensionless
temperature difference. According to the introduced variables, Eqs. (2.6) and
(2.7) are transformed into the following system:

D2∂
3Φ

∂η3
+ f1,0

(

Φ
∂2Φ

∂η2
−
(

∂Φ

∂η

)2

+ 1

)

+ (f0,1 + g1,0)

(

1 − ∂Φ

∂η

)

+
1

2
(FΦ+ ηg)

∂2Φ

∂η2
= z

∂2Φ

∂t∂η
+ UzX(η;x),

(3.2) D2

Pr

∂2Θ

∂η2
−D2Ec

(

∂2Φ

∂η2

)2

− Ecg1,0

(

1 − ∂Φ

∂η

)2

+ (1 −Θ) l1

+
1

2
ηg
∂Θ

∂η
+

1

2
(F + 2f1,0)Φ

∂Θ

∂η
= z

∂Θ

∂t
− UzY (x; η),
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where, for the sake of a shorter expression, the notations are introduced:

(3.3)

z =
h2

ν
, g =

∂z

∂t
, N =

σB2

ρ
, g1,0 = Nz, F = U

∂z

∂x
,

f1,0 = z
∂U

∂x
, f0,1 =

z

U

∂U

∂t
, l1 =

z

Tw − T∞

dTw

dt
,

X(x1;x2) =
∂Φ

∂x1

∂2Φ

∂η∂x2
− ∂Φ

∂x2

∂2Φ

∂x1∂η
,

Y (x1;x2) =
∂Φ

∂x1

∂Θ

∂x2
− ∂Φ

∂x2

∂Θ

∂x1
,

Pr =
νρcp
λ

– Prandtl number,

Ec =
U2

cp(Tw − T∞)
– Eckert number.

Now we introduce the sets of parameters:
– dynamical

(3.4) fk,n = Uk−1 ∂
k+nU

∂xk∂tn
zk+n (k, n = 0, 1, 2, . . . , k ∨ n 6= 0),

– magnetic

(3.5) gk,n = Uk−1 ∂
k−1+nN

∂xk−1∂tn
zk+n (k, n = 0, 1, 2, . . . , k 6= 0),

– temperature

(3.6) lk =
1

q

dkq

dtk
zk (k = 1, 2, . . . ),

where
q = Tw − T∞,

and constant parameter:

(3.7) g =
∂z

∂t
= const,

which can have various values. It can be noticed that the first parameters are
already given in the Eqs. (3.3). Introduced sets of parameters reflect the nature
of the change of free stream velocity, alteration characteristic of variable N and
the change of body surface temperature, and a part of that, in the integral form
(by means of z and (∂z/∂t), pre-history of flow in boundary-layer.
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Further, using the parameters (3.4)–(3.6) as new independent variables and
differentiation operators for x and t:

(3.8)

∂

∂x
=

∞
∑

k,n=0
k∨n 6=0

∂fk,n

∂x

∂

∂fk,n
+











0, for Φ
∞
∑

k=1

∂lk
∂x

∂

∂lk
, for Θ











+
∞
∑

k=1
n=0

∂gk,n

∂x

∂

∂gk,n
,

∂

∂t
=

∞
∑

k,n=0
k∨n 6=0

∂fk,n

∂t

∂

∂fk,n
+











0, for Φ
∞
∑

k=1

∂lk
∂t

∂

∂lk
, for Θ











+

∞
∑

k=1
n=0

∂gk,n

∂t

∂

∂gk,n
,

respectively, where parameter derivatives along coordinate x and time t are ob-
tained by differentiation of Eqs. (3.4)–(3.6):

(3.9)

∂fk,n

∂x
=

1

Uz
{[(k − 1) f1,0 + (k + n)F ] fk,n + fk+1,n} =

1

Uz
Qk,n,

∂fk,n

∂t
=

1

z
{[(k − 1) f0,1 + (k + n) g] fk,n + fk,n+1} =

1

z
Ek,n,

∂gk,n

∂x
=

1

Uz
{[(k − 1) f1,0 + (k + n)F ] gk,n + gk+1,n} =

1

Uz
Kk,n,

∂gk,n

∂t
=

1

z
{[(k − 1) f0,1 + (k + n) g] gk,n + gk,n+1} =

1

z
Lk,n,

∂lk
∂x

=
1

Uz
{kF lk} =

1

Uz
Mk,

∂lk
∂t

=
1

z
{(kg − l1) lk + lk+1} =

1

z
Nk,

where Qk,n, Ek,n, Kk,n, Lk,n, Mk, Nk are terms in curly brackets in the obtained
equations. It is important to notice that Qk,n, Kk,n, Mk besides the parameters
depend on the value U∂z/∂x = F .

Using parameters (3.4)–(3.6) as new independent variables instead of x and t,
operators (3.8) and terms (3.9), system of Eqs. (3.2) is transformed into the
system:

(3.10) ℑ1 =

∞
∑

k,n=0
k∨n 6=0

[

Ek,n
∂2Φ

∂η∂fk,n
+Qk,nX (η; fk,n)

]

+
∞
∑

k=1
n=0

[

Lk,n
∂2Φ

∂η∂gk,n
+Kk,nX (η; gk,n)

]

,
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(3.10)[cont.] ℑ2 =

∞
∑

k,n=0
k∨n 6=0

[

Ek,n
∂Θ

∂fk,n
+Qk,nY (η; fk,n)

]

+
∞
∑

k=1
n=0

[

Lk,n
∂Θ

∂gk,n
+Kk,nY (η; gk,n)

]

+
∞
∑

k=1

[

Nk
∂Θ

∂lk
+MkY (η; lk)

]

,

where the following notations have been used for shorter statement: ℑ1 – left
side of the first equation of system (3.2), ℑ2 – left side of the second equation of
system (3.2).

In order to make system (3.10) universal it is necessary to show that value
F which appears in terms for Qk,n, Kk,n, Mk can be expressed by means of the
introduced parameters. In order to prove it, we start from impulse equation of
described problem:

(3.11)
∂

∂t
(Uδ∗) +

∂

∂x

(

U2δ∗∗
)

+ U

(

∂U

∂x
+N

)

δ∗ − τw
ρ

= 0,

where:

δ∗(x, t) =

∞
∫

0

(

1 − u

U

)

dy displacement thickness,(3.12)

δ∗∗(x, t) =

∞
∫

0

u

U

(

1 − u

U

)

dy momentum thickness,(3.13)

τw(x, t) = µ

(

∂u

∂y

)

y=0

shear stress on the body.(3.14)

Now we introduce dimensionless characteristic functions:

(3.15) H∗(x, t) =
δ∗

h
, H∗∗(x, t) =

δ∗∗

h
, ξ(x, t) =

τwh

µU
, ξt = D

∂Θ

∂η

∣

∣

∣

∣

η=0

,

which, according to Eqs. (3.1) and (3.12)–(3.14), may be expressed in the fol-
lowing form:

(3.16)

H∗(x, t) =
1

D

∞
∫

0

(

1 − ∂Φ

∂η

)

dη, H∗∗(x, t) =
1

D

∞
∫

0

∂Φ

∂η

(

1 − ∂Φ

∂η

)

dη,

ξ (x, t) = D
∂2Φ

∂η2

∣

∣

∣

∣

η=0

.
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After transition to new independent variables (introduced parameters) in
terms of (3.16) values H∗, H∗∗, ξ, ξt become functions only of parameters fk,n,
gk,n, lk, g. Now, using parameters as new independent variables and derivative
operators of impulse Eq. (3.11), after simple transformation the next equation
is obtained:

(3.17) F =
P

Q
,

where, for the sake of shorter expression, the following notations are used:

(3.18)

P = ξ − f1,0 (2H∗∗ +H∗) −
(

f0,1 + g1,0 +
1

2
g

)

H∗

−
∞
∑

k,n=0
k∨n 6=0

{

Ek,n
∂H∗

∂fk,n
+ [(k − 1) f1,0fk,n + fk+1,n]

∂H∗∗

∂fk,n

}

−
∞
∑

k=1
n=0

{

Lk,n
∂H∗

∂gk,n
+ [(k − 1) f1,0gk,n + gk+1,n]

∂H∗∗

∂gk,n

}

,

Q =
1

2
H∗∗ +

∞
∑

k,n=0
k∨n 6=0

(k + n) fk,n
∂H∗∗

∂fk,n
+

∞
∑

k=1
n=0

(k + n) gk,n
∂H∗∗

∂gk,n
.

The last two equations define the function F so that it depends only on the
introduced parameters. Equation system (3.10) is now universal system of equa-
tions of described problem. Boundary conditions, also universal, are given with
terms:

(3.19)

Φ = 0,
∂Φ

∂η
= 0, Θ = 0 for η = 0,

Φ→ 1, Θ → 1 for η → ∞,

Φ = Φ0(η), Θ = Θ0(η) for



















fk,n =0 (k, n = 0, 1, 2, . . . , k ∨ n 6= 0),

gk,n =0 (k, n = 0, 1, 2, . . . , k 6= 0),

lk =0 (k = 0, 1, 2, . . .),

g=0,

where Φ0(η) – Blasius solution for stationary boundary-layer on the plate and
Θ0(η) is a solution of the following equation:

(3.20)
D2

Pr

d2Θ0

dη2
−D2Ec

(

d2Φ0

dη2

)2

+
ξ0
H∗∗

Φ0
dΘ0

dη
= 0.

A universal system of equations (3.10) with boundary conditions (3.19) are
correct for wide class of problems where z = At+ C(x).
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System of equations (3.10) is integrated in m-parametric approximation once
for good and all. The obtained characteristic functions can be used both for the
adoption of general conclusions about the development of flow in the boundary-
layer and to solve particular problems.

Before integration for scale h(x, t) of transversal coordinate in boundary-
layer, certain characteristic value is chosen. In this case h = δ∗∗ and according
to Eq. (3.14) H∗∗ = 1, H∗ = δ∗/δ∗∗ = H , and Eq. (3.17) now has the form:

(3.21) F = 2

[

ξ − f1,0(2 +H) −
(

f0,1 + g1,0 +
1

2
g

)

H

−
∞
∑

k,n=0
k∨n 6=0

Ek,n
∂H

∂fk,n
−

∞
∑

k=1
n=0

Lk,n
∂H

∂gk,n

]

.

Taking parameters fk,n = 0, gk,n = 0, g = 0, the first equation of system
(3.11) is simplified into form:

(3.22)
d3Φ0

dη3
+

ξ0
D2

Φ0
d2Φ0

dη2
= 0,

and if D2 = ξ0, then the previous equation becomes the well-known Blasius
equation. According to previous statement for normalizing constant D, value
0.47 must be chosen. For selected value h Eq. (3.20) for determining variable Θ0

became:

(3.23)
1

Pr

d2Θ0

dη2
+ Φ0

dΘ0

dη
− Ec

(

d2Φ0

dη2

)2

= 0.

Besides the mentioned advantages of parametric method, some of its short-
comings should be mentioned. The obtained universal equation, in the case when
g = const, is exact for a broad class of free stream velocities U(x, t), for which
z = At+ C(x), where A is an arbitrary constant and C(x) is a certain function
of the longitudinal coordinate. For other forms of free stream velocities, these
equations are approximated universal equations.

For transversal scale of thermal boundary layer, the corresponding value char-
acterizing the dynamic layer is used. This means that the previous history of
thermal boundary layer is not taken into account. Thus, if in the problem one
is required to study the development of the temperature profile given at some
“initial” cross-section of the layer and the temperature field in it at the starting
time, then because of the parabolic nature of the boundary-layer equation, a so-
lution in parametric form is possible only at a certain distance from the “initial”
cross section and from the starting time.

Before integration of universal equations it is necessary to choose for the scale
of transversal coordinate in boundary-layer h(x, t) a certain characteristic value.
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Usually h = δ∗∗ is chosen, but this choice affects the solution. The universal
equations contain the values which are functionals of the requested solution and
this fact somewhat complicates their numerical solution. The obtained universal
equations contain an infinite number of variables so that they can be solved only
in some appropriate approximations. In this way, practically, the influence of
some factors on the development of the boundary layer is neglected.

In this paper, approximate system of Eqs. (3.10) is solved in which influence of
parameters f1,0, f0,1, g1,0, l1 and g are detained and influence of parameters f0,1,l1
derivatives are disregarded. In this way, Eqs. (3.10) is simplified into following
form:

(3.24)

ℑ1 = gf1,0
∂2Φ

∂η∂f1,0
+ Ff1,0X(η; f1,0) + gg1,0

∂2Φ

∂η∂g1,0
+ Fg1,0X(η; g1,0),

ℑ2 = gf1,0
∂Θ

∂f1,0
+ Ff1,0Y (η; f1,0) + gg1,0

∂Θ

∂g1,0
+ Fg1,0Y (η; g1,0),

where function F in approximation has the from:

(3.25) F = 2

[

ξ − f1,0(2 +H)−
(

f0,1 + g1,0 +
1

2
g

)

H − gf1,0
∂H

∂f1,0
− gg1,0

∂H

∂g1,0

]

.

Boundary conditions, which coincide with the system of equations, are the con-
ditions:

(3.26)

Φ = 0,
∂Φ

∂η
= 0, Θ = 0 for η = 0,

Φ→ 1, Θ → 1 for η → ∞,

Φ = Φ0(η), Θ = Θ0(η) for f1,0 = 0, f0,1 = 0, g1,0 = 0, l1 = 0, g = 0,

which is obtained from condition (3.19), using the same simplifications as in
the equations. First equation of system (3.24) is four-parametric once localized
approximation and second is five-parametric twice-localized approximation of
system of equations (3.10).

In this paper system of Eqs. (3.24) with appropriate boundary conditions
(3.26) is solved using three-diagonal method, known in the East literature as the
“progonka” method. Here we briefly give the basics of “progonka” method.

By replacing the derivatives in system of equations (3.24) with corresponding
differences quotient they are reduced to general form:

(3.27) Aiyi−1 − Ciyi +Biyi+1 = −Fi,

where i = 1, 2, . . . , N−1 is number of numerical grid nodes.
Boundary conditions for wide class of problems can be reduced to the follow-

ing form:
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(3.28) −C0y0 +B0y1 = −F0ANyN−1 − CNyN = −FN ,

where C0, B0, F0, AN , CN , FN are given values. For C0 6= 0, CN 6= 0, terms
(3.28) can be reduced to the form:

(3.29) y0 = χ1y1 + ϑ1yN = χ2yN−1 + ϑ2,

where: χ1 = B0/C0, ϑ1 = F0/C0, χ2 = AN/CN , ϑ1 = FN/CN .
Obtained system of equations (3.27) relates the unknown values of mesh

functions in three adjacent mesh nodes. Solving such a system is possible using
“progonka” method [14, 15]. The “progonka” prescribes a recursive formula:

(3.30) yi = αi+1yi+1 + βi+1, i = 0, 1, . . . , N − 1,

where αi+1, βi+1 are unknown “progonka” coefficients. Eliminating yi−1 and yi

from (3.27) and (3.31) “progonka” coefficients are obtained in the following form:

(3.31)
αi+1 = Bi/(Ci −Aiαi),

βi+1 = (Aiβi + Fi)/(Ci −Aiαi), i = 0, 1, . . . , N − 1.

The algorithm of “progonka” method is based on two cycles. At first, the
coefficients αi+1 and βi+1 are computed in each point i from the expressions
(3.31), starting at the left boundary. The coefficients α1, β1 are computed from
the left boundary condition:

(3.32) α1 = χ1, β1 = ϑ1.

In the second cycle, the unknowns yi are computed in each point i according to
the recurrent formula (3.30). The procedure starts at the right boundary, where
the solution is given by a boundary condition:

(3.33) yN = (ϑ2 + χ2βN )/(1 − χ2αN ).

During the application of “progonka” method on described problem “insta-
bilty” may occur approaching to the left (ξ = 0) and right (F = 0) boundary.
This problem is solved in the paper by increasing the mesh density near the
boundaries.

Obtained results of numerical integration are given in next section in the
form of diagrams and conclusions.

4. Results

In this section part of results obtained with numerical integration of equa-
tion system (3.24) with boundary conditions (3.26) is given. Figure 1 presents
the variations of value ξ in function of dynamic parameter f1,0 for different values
of magnetic parameter g1,0. It may be noted that with increase of magnetic pa-
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rameter value ξ also increase. This remark lead to conclusion that magnetic field
postpone the boundary-layer separation and greater postponement is achieved
with increasing of magnetic parameter g1,0. Figure 1 is given for the case of ac-
celerated outer flow (f0,1 = 0.01), however the same conclusion is obtained for
the case of decelerated outer flow (f0,1 < 0).

The effect of dynamic parameter f1,0 on quantities F and H for different
values of magnetic parameter g1,0 is shown in Figs. 2 and 3. Figures present the
case of accelerated outer flow (f0,1 = 0.01). It is interesting to note decreasing of

Fig. 1. Variations of quantity ξ in function of dynamic parameter f1,0 for different values of
magnetic parameter g1,0 (Pr = 1.0, Ec = 0.3, f0,1 = 0.01, l1 = 0.01, g = −0.013).

Fig. 2. Variations of quantity F in function of dynamic parameter f1,0 for different values of
magnetic parameter g1,0 (Pr = 1.0, Ec = 0.3, f0,1 = 0.01, l1 = 0.01, g = −0.013).
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Fig. 3. Variations of quantity H in function of dynamic parameter f1,0 for different values of
magnetic parameter g1,0 (Pr = 1.0, Ec = 0.3, f0,1 = 0.01, l1 = 0.01, g = −0.013).

functions F and H with increase of magnetic parameter. Quantity H decreases
also in the case when dynamic parameter increase.

Ratio of free stream velocity and velocity in boundary-layer (function Φ)
is shown in the Fig. 4 in function of dimensionless transversal coordinate η
for different values of magnetic parameter. From Fig. 4, we observe that with
increase of magnetic parameter this ratio also increase and the minimal value is

Fig. 4. Stream function for different values of magnetic parameter g1,0 (Pr = 1.0, Ec = 0.3,
f0,1 = 0.01, g = −0.013).
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obtained for the case of non-conducting fluid or for the case of magnetic field
absence. This analysis indicates the significant influence of magnetic field on
increasing velocity in boundary-layer. The results clearly show that the magnetic
field tends to delay or prevent separation. Velocity distribution is given for cross-
section, which coincides to dynamic parameter f1,0 = 0.004 and accelerated outer
flow (f0,1 = 0.01). Same conclusion is valid for other cross-sections of boundary-
layer and also for the case of decelerated outer flow.

Momentum equation is decoupled from energy equation (but not vice versa)
and all previous results are independent from Prandtl number. Figure 5 shows
the effects of Prandtl number (Pr) on the dimensionless temperature for fixed
values of f1,0, l1, g1,0, Ec, f0,1 and g. It is clear from Fig. 5 that the dimensionless
temperature at a point increases (fluid temperature decreases) with increase in
Prandtl number. The increase of Prandtl number Pr means that the thermal
diffusivity decreases. So the rate of heat transfer is decreased due to the decrease
of fluid temperature in the boundary-layer.

Fig. 5. Temperature function for different values of Prandtl number (f1,0 = 0.01, l1 = 0.02,
g1,0 = 0.0, Ec = 1.0, f0,1 = 0.02, g = 0.05).

In Fig. 6 the variation of dimensionless temperature in function of value
η for different values of magnetic parameter is given. Figure presents the re-
sults obtained for cross-section which coincide to value of dynamic parameter
f1,0 = 0.004. It may be noted that the highest temperature value is obtained
for the case of non-conducting fluid (g1,0 = 0.0) or for the case of outer mag-
netic field absence, and increase of magnetic parameter results in temperature
decreasing for all values of Prandtl number.
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Fig. 6. Temperature function for different values of magnetic parameter g1,0 (Ec = 1.0,
f0,1 = 0.01, f1,0 = 0.004, l1 = 0.0, g = 0.05).

Fig. 7. Temperature function for different values of temperature parameter l1 (f1,0 = 0.01,
g1,0 = 0.0, Ec = 1.0, f0,1 = 0.01, g = 0.05).

Figures 7 describe the temperature distribution in function of dimensionless
transversal coordinate η for different Prandtl numbers and temperature param-
eter values in boundary-layer cross-sections which coincide to value of dynamic
parameters f1,0 = 0.01. Solid line presents the case of constant body surface
temperature. With increasing of temperature parameter (l1 > 0 ) dimensionless
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temperature also increase and in the case for body surface temperature decreas-
ing dimensionless temperature also decrease regardless of the Prandtl number
value.

Figure 8 presents the variations of value ξt in function of dynamic parameter
f1,0 for different values of Prandtl number. It may be noted that with increase
of Prandtl number heat flux which is directly proportional to the value of ξt also
increase.

Fig. 8. Variations of quantity ξt in function of dynamic parameter f1,0 for different values of
Prandtl number (f0,1 = 0.01, g1,0 = 0.0, Ec = 1.0, l1 = 0.0, g = 0.05).

Curves of the dependence of the characteristic functions F on the parameter
f1,0 for a number of values of the magnetic parameter g1,0 and the fixed value
the parameter g are shown in Fig. 2. Similarly Fig. 8 shows the dependence of
the characteristic function ξt on the parameter f1,0 for a number of values of
Prandtl number and the fixed value the parameter g. In the range of variations
of the parameters −0.08 ≤ f0,1 ≤ 0.07 and −0.2 ≤ g ≤ 0.2 and of f1,0 from
the value at the leading critical point to the value at the separation point, the
functional F can be approximated with a sufficient degree of accuracy by the
linear dependence:

(4.1) F = 0.4411 − 1.8827f0,1 − 5.1462f1,0 − 2, 1989g − 2, 0782g1,0.

In the range of variation of the parameters f1,0; f0,1 and g indicated above and
in the limits of variations −0.1 ≤ l1 ≤ 0.1, the characteristic function ξt can be
represented by the following dependences for Pr = 1 and Ec = 1:

(4.2) ξt = −0.1099 + 0.0725f0,1 + 0.045f1,0 − 0.0648g − 0, 4087l1.
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In the case of the absence of a magnetic field or non-conducting fluid model
presented in this paper is partially reduced to the problem studied by
Saraev [16]. Partial in the sense that the momentum equations are identical
and energy equations are are slightly different. As the energy and momentum
equations are independent, the results obtained for the momentum equation are
compared. Comparing the results it is concluded that they differ in the range
of 2%. The cause of these differences is that the localization carried out by all
parameters in the Saraev work, which is not the case in given paper. For this
reason, here the results are more accurate.

The results of the calculations were used to solve particular problem on the
unsteady thermal boundary layer flow past a semi-infinite flat plate. This prob-
lem is characterized by the conditions:

(4.3) U (t) =

{

U for t > 0,
0 at t = 0,

T |y=0 =

{

Tw for t > 0,
T∞ at t = 0.

Then f1,0 = f0,1 = g = 0 and from (4.1), seeing that F = 0, we obtain

g = ∂z/∂t = 0.2006, while for z = δ∗∗
2
/ν we find δ∗∗ = 0.4478

√
νt. In the case

when Pr = 1, Ec = 1 and ∆T = Tw − T∞ = const using (4.2) we obtain an
expression for the heat flux at the wall:

(4.4) qw = −λ ∂T
∂y

∣

∣

∣

∣

y=0

= −λTw − T∞
h

D
∂Θ

∂η

∣

∣

∣

∣

η=0

= −λ∆T

h
ξt = 0.274

∆T√
νt
.

The solution presented in paper [17] gives:

(4.5) qw = 0.564
∆T√
νt

(

1 − 0.5
U2

cp∆T

)

.

Second term inside the brackets is obviously the Eckert number and for Ec = 1
previous solution is reduced to a form:

(4.6) qw = 0.282
∆T√
νt
.

Agreement between the obtained results is very satisfactory.

5. Conclusion

In this paper, unsteady two-dimensional MHD boundary-layer on the body
of temperature varies with time is considered. This problem can be analyzed for
each particular case, i.e. for a given free stream velocity. Here is used a quite
different approach in order to use benefits of generalized similarity method and
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universal equations of the discussed problem are derived. These equations are
solved numerically in some approximation and the integration results are given in
the form of diagrams and conclusions. The obtained results can be used in draw-
ing about general conclusions of boundary-layer development and in calculation
of particular problems, as shown in the paper.
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