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A phase-field model for the magnetic shape memory effect

C. MENNERICH, F. WENDLER, M. JAINTA, B. NESTLER

Institute of Materials and Processes
Karlsruhe University of Applied Sciences
Moltkestraße 30, 76133 Karlsruhe, Germany
e-mail: Christian.Mennerich@hs-karlsruhe.de

Frank.Wendler@hs-karlsruhe.de

The magnetic shape memory effect, that is the rearrangement of martensitic
microstructure induced by an external magnetic field, is of interest in many fields of
application. The effect is based on a preceding martensitic transformation and pro-
vides a giant macroscopic strain. This change in length is induced by the complex
interplay of magnetic and elastic energies. The effective free energy functional describ-
ing this effect is derived and employed in a phase-field model. The coupled equations
of motion for the phase fields, the elastic displacement field and the spontaneous mag-
netization, follow on the energy minimizing principles. Numerical simulations with
parameters reflecting the Ni2MnGa material system show the general applicability of
the aproach.
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1. Introduction

During the last decade, magnetic shape memory alloys (MSMAs) have at-
tained major interest. Providing fast response rates and low energetic costs in
operation, they are well suited as components for which great changes in length
are required (e.g. as components in actuators or dampers). The large observed
strain is based on the magnetic shape memory effect (MSME), that is the rear-
rangement of microstructure induced by an applied magnetic field, and depends
on the crystal structure of the MSMA. Since the first observation of the MSME
in 1996 by Ullakko et al. [1], in single crystals at room temperature, changes
in length by more than six percent in five-layered tetragonal (see [2]) and al-
most ten percent in seven-layered orthorhombic (see [3]) Ni2MnGa alloys, have
been observed. Contrary to the conventional thermoelastic shape memory effect
that is based on a reversible martensitic transformation (MT) from a high tem-
perature austenite phase into a lower temperature martensite phase and back
again (see [4]), the MSME is entirely settled in the martensitic state of the ma-



550 C. Mennerich et al.

terial (see [5]). As MSMAs are ferromagnetic hard materials, they provide a high
magneto-crystalline anisotropy. The application of an external magnetic field in-
duces the rearrangement of the martensitic variants in the microstructure and
causes a macroscopic length change. Entel et al. review the MSME and prop-
erties of MSMAs in [6]. One major factor determining the MSME is the transfor-
mation strain caused by the transition from the austenite to the martensite, that
depends on the change in the lattice constants. Hence, the composition of the
alloy Ni2MnGa is varied to optimize the material properties. Because the mag-
netic properties may change synchronously, a systematical, purely experimental
approach is extremely time-consuming. Simulations of dynamic microstructure
response under different material properties and physical stress and field states
may help to find faster improvements and reveal new kinetic pathways, not taken
into account so far.

The paper at hand is organized as follows. We first give a short review of the
MSME and its prerequisites that enter our modeling approach in Sec. 2. This is
the MT, with focus on the cubic-to-tetragonal MT appearing in Ni2MnGa, and
the possible symmetrically equivalent twin variants. In Sec. 3, we give a very brief
overview of the existing phase-field models for the MSME. After that, the phase-
field approach for our MSME model is described. We derive the constituting free
energy functional and give the equations of motion that drive the system evolu-
tion. A brief summary of the numerical treatment of the model implementation
is given. Special techniques to handle the demagnetization energy are necessary,
as it is one of the most severe limiting factors for our simulations because of its
computational complexity. Sec. 4 shows the results of numerical simulations and
interprets them. The scaling relations between physical parameters (reflecting
five-layered tetragonal Ni2MnGa) and the dimensionless simulation parameters
are given. The final Sec. 5 briefly discusses the achieved results and gives an
outlook for our future work in the field of phase-field MSME modeling.

2. The magnetic shape memory effect

In this section we state the most important prerequisites used in our modeling
approach as well as a brief review of the basic principle of the MSME, i.e. the
foregoing martensitic transformation and the rearrangement of the martensitic
microstructure induced by the application of an external applied magnetic field.

2.1. Prerequisites

For magnetic shape memory materials that are to be used as actuators or
dampers operated at constant temperature Top, we make the following necessary
assumptions. First, the operation temperature has to be below the Curie temper-
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ature TCurie and the martensitic start temperature Tms (i.e. Top < TCurie, Tms).
Second, any external applied magnetic field is constant over (sufficiently long
periods of) time. Third, the material under consideration should be ferromag-
netic hard and homogeneous in the sense that the concentration is the same
everywhere in the material (as it is the case in Heussler alloys like Ni2MnGa).
The concept of material symmetry reflects the fact that physical properties are
the same in equivalent crystallographic directions. We assume small strains, so
the Lagrangian strain tensor can be linearized. As the operation of inversion
is unphysical, we restrict the notion of point groups to proper rotations. De-
tailed explanation of these concepts can be found in the instructive articles of
Bhattacharya [7] and DeSimone and James [8], that we follow in this sec-
tion.

2.2. The MT and the MSME

Preceding the MSME is a MT, that is a first-order diffusionless, displacive
and shear-like phase transition. The MT starts from a high temperature austen-
ite parent phase and results in a lower temperature martensite product phase
(see e.g. [4]). Usually, this transformation leads to a loss of crystallographic sym-
metry (even if, in principle, the gain of symmetry is possible). Starting in the
high temperature state, upon cooling, the Bravais lattice of the austenite deforms
to the Bravais lattice of the martensite. The material is then strained with re-
spect to the parent phase. The deformation strains are the so-called Bain strains
and are described by transformation matrices. Assuming that the point group of
the martensite Pm is a proper subgroup of the point group Pa of the austenite,
there are |Pa|/|Pm| different deformation variants possible, and the deforma-
tions describing the different variants are related to each other via the group
theoretic operation of conjugation with elements of Pa (see e.g. [9]). All variants
are energetically and crystallographically equivalent (due to the assumption of
material symmetry). This results in a well-defined energy landscape with en-
ergy wells at the austenite and martensite deformation. When the material is at
a temperature below the martensitic start temperature Tms, the martensite wells
are energetically lower than those of the austenite (cf. Fig. 1a). The orientation
relation between the martensitic variants is not arbitrary, but also well defined.
Since all variants develop from the same parent phase, the deformations, as we
assume in linear elasticity, obey the rank one kinematic compatibility condition
(see [7])

Ui −Uj =
1

2
(a⊗ n + n⊗ a) .(2.1)

In this condition, Ui and Uj are Bain matrices, n is the normal to the plane
separating the variants i and j, and a is a simple shear. From Eq. (2.1) one
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a) b)

Fig. 1. a) The energy landscape of a material at a temperature T < Tms as a function of
deformation from the austenite parent phase: equivalent global minima exist for two possible
martensitic variants. b) The basic principle of the motion of twin variants induced by an applied

magnetic field in MSME materials.

obtains that the variants are twins, and the possible twinnig modes and directions
can be derived from the linear theory presented in [7]. This equation is therefore
called ’twinning equation’. We look now at the cubic-to-tetragonal MT (cf. Fig. 2)
that is occuring in Ni2MnGa: the point group of the cubic parent phase consists
of 24 rotations, while in the point group of the tetragonal martensite product
phase only eight rotations are left, so three different variants are possible. The
occuring Bain matrices are

(2.2) U1 =





β 0 0
0 α 0
0 0 α



, U2 =





α 0 0
0 β 0
0 0 α



, U3 =





α 0 0
0 α 0
0 0 β



,

where α and β are related to the strains, following from the deformations of the
crystal axes. Twinning takes place along the (110)c directions (referred to in the
cubic system).

All three possible pairs of variants can form a twin boundary (i.e. for all
i 6= j ∈ {1, 2, 3} exists a solution to Eq. (2.1)). The angle of rotation between
the shortened c-axes of two variants in Ni2MnGa is about 86.5◦ (cf. [10]). If the
twinned martensitic material is additionally a hard ferromagnetic, it is energet-
ically more favorable to rearrange the twinned microstructure than to pull local
magnetic moments out of the magnetically preferred directions (the so-called
easy axes). This is the basic principle of the MSME. The application of an exter-
nal magnetic field increases the magnetostatic Zeeman energy in the system, and
the principle of energy minimization leads to the alignment of magnetic moments
parallel to the direction of the external field. If now the external field privileges
one of the martensitic variants, it grows on the expense of the other variants.
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Fig. 2. The MT in Ni2MnGa: Transformation from a cubic austenite parent phase to a te-
tragonal product phase by shortening a cubic axis. Three crystallograpically and energetically
equivalent variants are possible, described by the Bain matrices U1,U2 and U3. The matrix I

is the 3 × 3 identity matrix, representing the austenite state.

The rearrangement process comes along with macroscopic strains, depending on
the geometry of the specimen. The functional principle of the MSME is sketched
in Fig. 1b.

3. A phase field model for the MSME

In this section, the phase-field model on which our modeling approach is
based, is introduced. Since in the last years several phase-field models for the
MSME were proposed in the literature, we give a very brief review of the, to
our knowledge, most frequently cited ones: the models discussed by Zhang and
Chen ([11, 12]), Jin ([13]) and Li et al. ([14, 15]). For more detailed explanations
see these works and the references therein. Characteristic for every phase-field
model is the choice of a continuous order parameter Φ, that describes the state
of the system under consideration. The interplay of a gradient energy ∝ |∇Φ|2
and a potential energy term that reflects the energy landscape of the physical
system, are responsible for the establishment of a diffusive interface of definite
width. In the case of the MSME, different choices for the order parameter are
possible.

The phase-field models in [11] and [13] use a long range order parameter
related to the stress-free strains (or eigenstrains) of different martensitic variants.
The potential energy is constructed from the Landau theory of phase transitions
by approximation of the Landau polynomial in terms of the order parameter.
Thus, the symmetry relation between the martensitic variants and the cubic
parent phase are reflected. The coefficients of the polynomial have to be very
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well chosen to reflect the material properties. To avoid these difficulties, the
order parameter used by Li et al. [15] is based on the local volume fractions of
the martensitic variants. From these, a reduced order parameter µ = (µ1, µ2) is
derived that is equivalent to the long-range order parameter of stress-free strain.
This is done by relating µ to a multi-rank lamination that is a proven minimizer
of the magneto-elastic free energy (see [7, 8]). The proposed potential reflects the
multi-well energy landscape and penalizes deviations from the wells proportional
to the magnetocrystalline anisotropy constant.

The approach presented in this paper is based on the multi phase-field model
of Nestler et al. [16], and is consequently derived by interpolation of bulk-free
energies. The order parameters here are identical to the local volume fractions
of the martensitic variants, where the variants energy landscape is reflected in
the elastic part of the free energy. The used multi-obstacle potential is chosen
to penalize the purely interfacial states. In opposition to the other models, no
mechanical equilibrium is assumed, as the elastic transitions may happen with
nearly the speed of sound (see e.g. [17, Chap. 2]), i. e. on a time scale comparable
to the one on which the reorganisation of magnetic moments takes place.

In the following subsections, we state the micromagnetic and elastic energy
contributions that are necessary to model the MSME, and give the equations
of motion that describe the time-spatial evolution of the system. The latter are
derived from variational calculus and follow the principle of minimizing the free
energy in the system.

3.1. The adopted multi-phase-field model

To treat the arising boundary value problem, the phase-field model intro-
duced in [16] is applied. In general, this method allows the modeling of multi-
phase multi-component systems, consisting of N phases and K components in
a region Ω ⊆ R

3, and the description of its time-spatial evolution. One general
advantage of the phase-field method is the avoidance of explicit front tracking.
This is achieved by introducing a set of non-conserved, smooth order param-
eters with values in the closed interval [0, 1], the so-called phase fields. They
are collected in the order parameter φ = (φ1, . . . , φN ). The bulk of a phase
α ∈ {1, . . . , N} is defined as the preimage φ−1

α ({1}), and a diffusive interface
separates different phases. The diffusive interface is the area where α ≤ N exists
with φα ∈ ]0, 1[. All state variables depend on space and time, so their common
domain is Ω×R≥0. The general integral Helmholtz free energy formulation is of
Ginzburg–Landau type:

(3.1) F(φ, . . . ) =

∫

Ω

(

ξa(φ,∇φ) +
1

ξ
w(φ) + f(φ, . . . )

)

dx.
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The integral expression may depend on all thermodynamic variables in the
system. The first two addends in Eq. (3.1) are surface energy contributions
responsible for the establishment of the diffusive interface of finite thickness
(see [18]). Via the length parameter ξ ∈ R>0, the interface width can be ad-
justed. The function a(φ,∇φ) is a gradient energy that broadens the interface,
while w(φ) is a potential that penalizes the interfacial states. This potential is
non-convex, providing N global minima corresponding to the bulk states of each
phase. For w(φ), a higher-order variant of a multi-obstacle potential is used, that
allows to suppress the occurrence of spurious ’third phases’ in binary interfaces
([16]). The bulk free energy f(φ, . . . ) may depend on several physical quantities
and is the interpolation of individual bulk free energies fα(. . . ), defined for every
phase α, and in a general context reads as

(3.2) f(φ, . . . ) =

N
∑

α=1

h(φα)fα(. . . ).

The used interpolation function h : [0, 1] → [0, 1] has to be continuously dif-
ferentiable and to satisfy the conditions h(0) = 0 and h(1) = 1. We chose
h(x) = x2(3 − 2x) in our model.

3.2. Magnetoelastic free energies

A general theory of micromagnetics goes back to the works of Brown
(see [19]). We consider the magnetization in a ferromagnetic body Ω ⊆ R

3. The
magnetization is described by the time- and space-dependent vector field of spon-
taneous magnetization M. As a consequence of our assumptions (cf. Sec. 2.1),
we have |M(x, t)| ≡ MS ∈ R>0 for all x ∈ Ω and t ∈ R≥0 (where MS is
the saturation magnetization). We therefore restrict our considerations to a unit
vector field m ≡ 1

MS
M that evolves point-wise on the unit sphere

S
2 = {x ∈ R

3 | |x| = 1}.
Linear elasticity is described in terms of the so-called displacement field u. For
each point x ∈ Ω and every time t ∈ R≥0, the deviation of x from its initial
position is given by u(x, t). The elastic strain ǫ in the system is a function of the
displacement field:

(3.3) ǫ(u) =
1

2
(∇u + ∇u T ).

For a good brief review on the basics of continuum mechanics, we refer to the
book of Phillips [20, Chapter 2]. As micromagnetic and elastic state variables in
the system we get the (normalized) vector field of spontaneous magnetization

m : Ω × R≥0 → S
2, (x, t) 7→ m(x, t) = (m1(x, t),m2(x, t),m3(x, t))

T
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and the displacement field

u : Ω × R≥0 → R
3, (x, t) 7→ u(x, t) = (u1(x, t), u2(x, t), u3(x, t))

T .

The free energy density of interest consists of five micromagnetic and magneto-
elastic energy contributions (cf. [21]), namely the Zeeman (or external) en-
ergy, the demagnetization energy, the exchange energy, the magneto-crystalline
anisotropy energy and the magneto-elastic energy:

f(φ,u,m) = fext(m) + fdemag(m) + fexch(m)(3.4)

+ faniso(φ,m) + fm-el(φ,u,m).

The first two energies in Eq. (3.4) have a magnetostatic character. For con-
tributions depending on a variant α, the interpolation approach Eq. (3.2) is
applied. We now briefly discuss these energy densities (see e.g. [21] or [22] for
more detailed explanations). The micromagnetic permeability in the vacuum
µ0 = 4π · 10−7 H

m (a fundamental constant) and the saturation magnetization
MS are frequently used here.

The magnetostatic Zeeman energy describes the interaction of the local mag-
netization m with an applied external magnetic field Hext:

fext(m) = −µ0MS(Hext · m).

The demagnetization energy (or magnetostatic self-energy) is a long-range en-
ergy. It accounts for the interactions between all local magnetic moments in the
system:

fdemag(m) = −1

2
µ0MS(Hdemag · m).

The demagnetization field Hdemag is derived from Maxwell’s equations. It is
a curl-free field (see [8]), and from the Helmholtz decomposition theorem follows
the existence of a scalar potential ψ : R

3 → R such that Hdemag = −∇ψ, where
the potential ψ : R

3 → R is the solution of the Poisson-type equation ∆ψ =
−MS(∇ · m), under suitable boundary conditions applied to the topological
surface ∂Ω of the domain Ω (see e.g. [23] or [24]). A solution of Hdemag can be
derived in analogy to the potential in classical electrodynamics and consists, in
the case of finitely extended material samples, of contributions from the region
Ω and the surface ∂Ω. In this case

ψ(r) = −MS

∫

Ω

1

|r − r′|∇ · m(r′) d3r′ +MS

∫

∂Ω

1

|r − r′|n(r′) · m(r′) d2r′

is a solution for the scalar potential (cf. [25]). The field Hdemag can be written
explicitly as (see [24])
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Hdemag(r) = − 1

4π
MS

∫

Ω

∇ · m(r′)
r − r′

|r − r′|3 d
3r′

+
1

4π
MS

∫

∂Ω

n(r′) · m(r′)
r − r′

|r − r′|3 d
2r′,

where n is a vector normal to ∂Ω pointing outwards. In the case of infinitely
extended crystals the surface term in Hdemag vanishes, but the solution stays
valid. The demagnetization field depends on the local state of the magnetization
m, what makes the calculation of Hdemag computationally complex. To gain
efficient calculation methods, special assumptions to m and its discretization
are applied (see Sec. 3.4).

The short-range dipole interactions of magnetic moments are described by
the quantum mechanical exchange energy. It is expressed as the gradient square
term

fexch(m) = Aexch|∇m|2.
Here, Aexch is the material-dependent exchange stiffness constant. In a more
general context, this energy can be made variant dependent (cf. Eq. (3.2)).

The magneto-crystalline anisotropy takes the dependence of the local mag-
netization on the directions of preferred magnetization into account. The easy
axes of local martensitic variants point in different directions, so this energy de-
pends on the relative orientation of m and the easy axis. We here restrict to
the uniaxial case having exactly one easy axis per variant. The energy density
of variant α can be formulated as

fα
aniso(φ,m) = Kaniso

(

1 − (m · pα)2
)

,

where Kaniso is a material-dependent anisotropy constant, and pα ∈ S
2 is the

direction of the easy axis of variant α. A general polynomial expression using
even exponents of (m · pα) to model anisotropy for different crystal systems is
given in [22].

The coupling of micromagnetics and elasticity is realized by considering elas-
tic energies as well as the stress-free strain (or eigenstrain) contributions. We
assume small strains and the validity of Hooke’s law of elasticity:

fα
m-el(u,m) =

1

2
((ǫ(u) − ǫα0 (m)) : Cα(ǫ(u) − ǫα0 (m))) .

Here, Cα is the fourth-order variant dependent elastic property tensor and ǫ(u) is
the second-order tensor of total strain (cf. Eq. (3.3)), depending on the displace-
ment field. The total strain has to be adjusted by the stress-free strains from
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martensitic variants which are interacting with local magnetizations. ǫα0 (m) can
be separated into two parts (see [13]):

(3.5) ǫα0 (m) = ǫtr,α0 + ǫm,α
0 (m).

The first part is the variant-dependent transformation strain, the second is the
magnetostrictive part. Assuming a cubic-to-tetragonal MT, we get as the trans-
formation strain

ǫtr,α0 =
at − ac

ac
I +

ct − ac

ac
pα ⊗ pα.

The expression originates from the MT and depends on the easy axis variants
and the lattice constants of the cubic parent phase (ac) and tetragonal product
phase (at, ct). This strain corresponds to the Bain strain. The magnetostrictive
part reads in general (see [26])

ǫm,α
0 (φ,m) = Nα(m ⊗ m).

Here, Nα denotes the fourth-order magnetostrictive property tensor. As the
magnetostrictive part is of minor influence in Ni2MnGa (cf. [27]), it is neglected
in this present work.

3.3. The MSME phase-field model and equations of motion

The complete free energy functional of the MSME phase-field model takes
the form

(3.6) F(φ,u,m) =

∫

Ω

(

ξ(φ,∇φ) +
1

ξ
w(φ) + f(φ,u,m)

)

dx,

where f(φ,u,m) is the free energy density from Eq. (3.4) and for each marten-
sitic variant, an individual phase field is used. We remark here that for vanishing
stress-free strain (ǫα0 (m) ≡ 0), the pure elastic part of the model is the phase-field
model previously given in [28]. The time-spatial evolution of the microstructure
is described by a system of coupled partial differential equations. The evolving
quantities are the order parameters φ = (φ1, . . . , φN ), the elastic displacement
field u and the spontaneous magnetization m. In general, the concept of mini-
mizing the free energy in the system is applied.

As the values of the phase-fields represent the local volume fractions of the
phases, an additional conservation constraint of the form

(3.7)
N

∑

α=1

φα ≡ 1
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arises for the order parameter φ, always and everywhere in Ω. We adopt the
widely used ‘comma notation’ for partial derivatives (i.e. for a function H de-
pending on a variable X we define H,X := ∂

∂XH). By application of the Euler–
Lagrange formalism from variational calculus, the equations of motion for the
phase fields φα (α = 1, . . . , N) become (see [16])

τξ
∂φα

∂t
= − δF

δφα
− λ =

δ

δφα

(
∫

Ω

L dx
)

− λ(3.8)

=

(

∇ · ∂L
∂∇φα

− ∂L
∂φα

)

− λ

= ξ(∇ · a,∇φα(φ,∇φ) − a,φα(φ,∇φ))

− 1

ξ
w,φα(φ) − f,φα(φ,u,m) − λ.

L refers to the integrand of Eq. (3.6), whereas τ on the left-hand side of Eq. (3.8)
is a kinetic coefficient. The Langrange multiplier

λ =
1

N

N
∑

α=1

ξ(∇ · a,∇φα(φ,∇φ) − a,φα(φ,∇φ)) − 1

ξ
w,φα(φ) − f,φα(φ,u,m),

ensures the fulfillment of the conservation constraint Eq. (3.7). This can easily
be seen by using the fact that Eq. (3.7) implies

N
∑

α=1

∂φα

∂t
= 0,

inserting the Eqs. (3.8) and solving for the parameter λ. For the gradient energy,
we use the formulation

(3.9) a(φ,∇φ) =

N
∑

α<β

γαβ |qαβ |2,

where qαβ = φα∇φβ − φβ∇φα are generalized gradient vectors, and for the
potential w(φ) a higher-order variant of a multi-obstacle potential is chosen
(see [29]):

w(φ) =















16

π2

N
∑

α<β

γαβφαφβ +
N

∑

α<β<δ

γαβδφαφβφδ, if φ ∈ [0, 1]N and
∑

α φα ≡ 1,

∞, otherwise.

.
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For phases α and β, the parameters γαβ are their interface free energy per unit
area, where the coefficients γαβδ suppress spurious third phases if chosen to be
about ten times the maximal γαβ value (see [16]).

The displacement field is evolved component-wise. For the i-th component of
the elastic displacement field (i = 1, 2, 3), a damped wave equation (cf. [28]) is
applied

ρ
∂2ui

∂t2
+ κ

∂ui

∂t
= − δF

δui
= −∇ ·

( N
∑

α=1

Cα(ǫ(u) − ǫα0 (u))

)

i,·

(3.10)

=
1

2

3
∑

j=1

N
∑

α=1

∂

∂xj

(

∂

∂ ∂ui
∂xj

(ǫ(u) − ǫ0(m))Cα(ǫ(u) − ǫ0(m))

)

,

where the right-hand side is given by the divergence of the i-th row of Cα(ǫ(u)−
ǫα0 (u)). To describe the time-spatial evolution of the vector field of spontaneous
magnetization, we use the Landau–Lifshitz–Gilbert equation (cf. [30])

(3.11)
∂m

∂t
= − γ

1 + α2
G

(m × Heff + αGm × (m × Heff)),

where γ is the gyromagnetic ratio of the system, and αG is a phenomenolog-
ical damping constant. By Heff the effective magnetic field is denoted. Equa-
tion (3.11) has two contributions: first, a conservative precessional Larmor term
around Heff, and second, a dissipative phenomenological damping term. The first
term creates a gyration of m around Heff, the second term moves m towards
Heff. The norm conservation condition |m| = 1 has to be respected during nu-
merical integration of the system. The effective field Heff is derived from the free
energy F via variation with respect to the spontaneous magnetization (cf. [24]):

Heff = − 1

µ0MS

δF(φ,u,m)

δm
(3.12)

= Hext + Hdemag + Hexch + Haniso + Hm-el.

The fields Hexch = 2Aexch

µ0MS
∆m and Haniso = 2Kaniso

µ0MS

∑N
α=1 h(φα)(m · pα)pα in

Eq. (3.12) are the exchange field and the anisotropy field, respectively. As, ac-
cording to Eq. (3.5), magnetostrictive contributions to Hm-el can only arise from
ǫα0 (m), we neglect the magneto-elastic field in the present study (see Sec. 3.2
and [27]).

3.4. Discretization and numerical solution schemes

The equations stated above are discretized on a finite difference grid. The do-
main under consideration is decomposed into n rectangular cells: cell1, . . . , celln
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of equal size. Eqs. (3.8) and (3.10) are solved using an explicit forward Euler
scheme, that can be well parallelized. To enhance the numerical stability, the
displacement field u is discretized using staggered grids for the components of u.
This is realized so that the values of ui in cellk lie in the center of the face of the
the cell in xi-direction (i = 1, 2, 3). The spontaneous magnetization m, though
being a vector-valued function, is discretized collocated in the center of the cells,
as well as all other occuring quantities. We assume m to be piece-wise constant
on each of the cells, i.e. m|cellk ≡ ck ∈ S

2. This permits the interpretation of m

as a volume averaged quantity in each cell. Assuming a finite sample in a non-
magnetized environment, we can apply partial integration and the divergence
theorem to rewrite the demagnetization field since the discrete convolution of
a distance vector-dependent, symmetric second-order tensor-valued function N
with the magnetization, and the volume averaged contribution of Hdemag in celli
is given as

(3.13) (Hdemag)|celli = −
n

∑

j=1

N(ri − rj)m|cellj ,

where rk is the vector to the center of cellk. This approach and interpretation
follow [24]. The tensor N which depends only on difference vectors, reflects the
(finitely extended) geometry of Ω, see [31] for a detailed derivation of N and its
properties. As the formulation in Eq. (3.13) is a discrete convolution, it is possible
to apply spectral methods like Fast Fourier Transform (FFT) to significantly
speed up the computation, where further optimization is possible by exploiting
the properties of N . Assuming the size of the simulated area of the sample to be
much smaller than the size of the whole sample, one can interpret the simulation
area as a representative volume element (RVE). This allows the usage of periodic
boundary conditions for the magnetization. It is then adequate to solve for the
scalar potential ψ in Hdemag = −∇ψ in R

3 directly in the Fourier space, where
it reads

ψ̂(k) = −iMS
m̂1(k)k1 + m̂2(k)k2 + m̂3(k)k3

|k|2 .

The hat symbol ·̂ denotes a Fourier transform, and the wanted solution can be
obtained via inverse Fourier transformations. Eq. (3.11) is solved using geomet-
ric integration methods that are based on Lie-group theory, so the integration
scheme is unconditionally conservative and first-order accurate. So, m evolves on
the unit sphere without explicit renormalization. The basic idea of the scheme
is to rewrite Eq. (3.11) in terms of a transitive Lie-group action on the configu-
ration manifold of the system. For details on geometric integration look in [32],
for the applied method and drawbacks of explicit renormalization, see [23]. The
full elastic subproblem is respected by solving the wave equation Eq. (3.10). For
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convenience, the commonly used Voigt notation can be adopted, where the sym-
metric fourth-order tensors have representations as symmetric real 6×6 matrices,
and the second-order tensors as 6-component vectors. The notation simplifies the
implementation and decreases the computation time. We remark that on trans-
formation of the tensor quantities, what would be necessary for rotations of the
frame of reference, one has to go back to the original tensor description.

4. Simulation setup and results

A set of simulations were performed to study the evolution dynamics and
transition pathways of the martensite rearrangement process in Ni2MnGa and
to compare steady-state results to those predicted by the theory and experiment.
As simulation domains rectangular 3D boxes with a regular grid were chosen and
the evolution of all three components of the magnetization m and displacement
vector u were calculated. For the sake of computation time, mostly quasi 1D or
2D setups were used (in which the magnetization and the elastic displacement
field are still allowed to evolve in all three spatial dimensions), for which in the
respective dimension only 3 grid layers were present. For the field u, either fixed
displacements or stresses (surface tractions) were applied at the boundaries; for
the magnetization either the special Neumann condition ∂m/∂n = 0 or periodic
boundaries were assumed, as given below for the specific cases.

4.1. Parameter set for Ni2MnGa

The MSME problem includes twin and magnetic domains with dimensions
and interfaces spanning different length scales, which have to be taken into ac-
count carefully when choosing the suitable parameter set. For the magnetic prop-
erties of the material Ni2MnGa, the saturation magnetization of 6.015 ·105 A/m
and the magnetocrystalline anisotropy constant of 2.45 · 105 J/m3 were taken
from reference [33], the exchange constant was chosen as 2 · 10−11 J/m ([12]).
A typical transition scale for the magnetic domains, which has to be resolved on
the numerical grid, is the Bloch wall width of δ =

√

Aexch/Kaniso = 9 · 10−9 m.
Hence, we choose the physical grid distance to be ∆x = 2 nm. This results in
a simulation domain of 1 µm × 1 µm at 500 grid points resolution as a typi-
cal physical size of the simulated material volume. In Eq. (3.11) for the mag-
netization evolution, we assume, as proposed in [14], a gyromagnetic ratio of
γ = 2.21 · 105 m/As and a damping factor of α = 0.5.

To treat the elastic problem in Ni2MnGa, the mass density of ρ = 8.02 g/cm3

is used from reference [33]. The tetragonal elastic stiffness tensor of the marten-
site variants is approximated by an averaged cubic tensor with values given
in [34] (see Table 2), so that we can assume cubic symmetry in the solution
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Table 1. Magnetic parameters for Ni2MnGa, which were used in the simulation
of twin boundary motion, including values nondimensionalized, using length and
time scale d0 and t0 = 1/γMs and the energy scale f0 = µ0M

2
s , with µ0 = 4π · 10−7

being the permeability of vaccuum.

quantity MS Kaniso Aexch γ

SI units [A/m] [J/m3] [J/m] [m/As]

6.02 · 105 2.45 · 105 2 · 10−11 2.21 · 105

nondim 1.0 0.539 11.0 1694

Table 2. Elastic and twin interface parameters for Ni2MnGa, including
dimensionless values.

quantity ρ c11 c12 c44 γtwb

SI units [g/cm3] [J/m3] [J/m3] [J/m3] [J/m2]

8.02 1.60 · 1011 1.52 · 1011 0.43 · 1011 0.018

nondim 1694 3.519 · 105 3.343 · 105 0.946 · 105 20

of the elastic equation (3.10). The data for the tetragonal martensite variant
given in [13] were taken for the transformation strain, where only the diagonal
components have nonzero values of α = 0.01 and β = −0.02 (cf. Eqs. (2.2)).
In Tables 1 and 2, the physical parameters are collected and supplemented
by their nondimensional values, which were used throughout all simulations.
For nondimensionalizing of the equations, spatial coordinates are expressed by
r = r̃ d0 with a length scale d0 = 2 nm and time as t = t̃ 1

γMs
= t̃ t0 with

t0 = 7.34 · 10−12 s (all dimensionless quantities are indicated by a tilde and all
scaling factors by a zero subscript). Together with a typical magnetostatic en-
ergy scale f0 = µ0M

2
s = 4.55 · 105 J/m3, all bulk energy terms in the functional

Eq. (3.6) can be written dimensionless. From the relation between magnetic
field and energy (see Eq. (3.12)), the magnetic field scaling factor is then fixed
as Heff,0 = Ms. Additionally, for the interface tension of the twin boundary in
the phase-field equation (3.8), a value of γαβ = γtwb = 0.018 J/m2 is assumed for
each interface α/β (cf. Eq. 3.9). This value is more than two orders of magnitude
smaller as compared to typical grain boundary interfacial tensions. This value is
not well defined in the literature, but it can in principle be calculated from the
atomic variant structure by ab initio methods. The diffuse interface width for
the phase fields was taken (slightly smaller than the magnetic transition width)
as ξ = 3 d0, resulting in a resolution of about 8 grid points on the numerical
grid. In the simulations, the kinetic coefficient in Eq. (3.8) was set to τ̃ = 1,
so that τ = τ0 = f0t0/d0. Here we expect that the interface velocity is not sig-
nificantly modified by the order parameter evolution, but is dominated by the



564 C. Mennerich et al.

kinetics of strain propagation and magnetic evolution. For the case of elastic-
ity, the time evolution is related to material density, elastic coeffcients and the
damping coefficient in the wave equation (3.10), for which a value of κ̃ = 500
was chosen.

4.2. Strain accommodation

For the examination of stress-field configurations, Ni2MnGa magnetic shape
memory alloy single crystals are typically operated under compressive stress,
along one of the variants c-axes and under an external magnetic field in the
perpendicular direction. As the martensite variant with the short c-axis along the
direction of compression minimizes the elastic energy, and a second variant with
this direction oriented along the external field minimizes the magnetic energy,
a two-variant state is favored.

As a first test case, the reaction of a quasi one-dimensional system composed
of two twin martensite variants (V1 embedded in V2, the index is representative
for the Bain strain given in Eqs. (2.2)) was studied, where only the elastic energy
was taken into account. Each variant extends over exactly one half of the box
length (x-direction, grid chosen as 200 × 10 × 3), as displayed in Fig. 3a, and
periodic boundaries are applied for the phase fields. Initially, fixed normal dis-
placements representing different total strains are prescribed at the x-boundaries
and the elastic displacements relaxed to a stationary state, while not allowing
the variant structure to change. Constant zero surface-traction boundary condi-
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Fig. 3. a) Schematic setup of the 1D two-variant structure, with periodic boundaries in all
directions for phase fields. b) Time evolution of volume fraction of variant V1 under tensile
load. The transformation produces a positive net strain to accomodate the preimposed external

strain. c) Strain component profile ǫ11(x) for the simulations from a).
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tions were applied at the other two long boundaries. At simulation time t = 0
the phase-field evolution was started. The martensite variant V1 with the short
c-axis along the x-direction starts to shrink, in order to accommodate the exter-
nally imposed tensile strain, whereas the contrary effect can be observed under
compression. Fig. 3b shows the temporal evolution of the volume fraction of V1

for different values of total external strain, always leading to a stationary fraction
of V1. The resulting strain profiles in the long direction, ǫ11, are given in Fig. 3c.
The net difference in longitudinal strain between the two variants is in each case
∆ǫ11 = 0.02. To minimize the elastic energy in the system under a given strain,
always the amount ζ of V1 is transformed to V2, which accomodates the total
strain, ǫtotal

11 = ζ∆ǫ11. In Fig. 3b the respective fractions ζ are given as horizontal
dotted lines. When the elastic boundary condition for one of the long sides is
changed, and instead of a stress-free boundary, the normal component of the dis-
placement is fixed (∂u/∂n = 0), a much higher volume fraction is transformed
to bear the tensile strain (solid curve in Fig. 3b for ∆ǫ11 = 0.05).

4.3. Coupled magneto-elastic simulations

We set up numerical simulations to analyze the coupled evolution of mag-
netic and elastic energies to elucidate the effect of magnetization for the system
evolution. This work has the objective of finding general aspects in the mutual
interaction of magnetic domains and twins. The physical relevant evolution path
would include the growth of martensite platelets into the undercooled austenite
phase with a preexisting magnetic domain structure, a topic which will be ex-
plored in future. The material parameters motivated in Sec. 4.1 were used and
a grid size of 256×256×1 was chosen. The inital configuration is shown in Fig. 4:
a variant V2 (yellow, c-axis along the y-direction) was embedded in a variant V1

(blue, c-axis along the x-direction). The light and dark areas mark magnetic
domains in which the local magnetization is aligned parallel or anti-parallel to
a variants c-axis, respectively. No displacement along the x-direction was allowed
(clamped boundary condition), while the other boundaries were kept stress-free.
The magnetic boundary conditions are periodic and no external magnetic field
was present. Two simulations were carried out, one with an initial magnetization
providing 180◦ domain walls in direction of the x/y-bisector (see Fig. 4a), the
other with an initially random magnetization (see Fig. 4d). In both cases, the
vertical twin boundaries break up into facets along the [110] cubic (austenite)
directions to minimize the elastic energy (as discussed in Sec. 2.2), and the evolu-
tion of 180◦ domain walls within the two variants can be observed. In the case of
the initially random magnetization, more 180◦ domain walls develop during the
early stage of the simulation, clearly effecting the evolution of the [110] facets, as
the domain walls within variant V2 are related to the ‘kinks’ variant V2 develops.
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a) b) c)

d) e) f)

Fig. 4. Competitive development of coupled magneto-elastic variant and magnetic domain wall
evolution under different inital magnetization states. The color scheme shows variant V1 in
blue and variant V2 in yellow. The shading indicates the projection of m onto the easy axis of
the variants: moments aligned parallel with the easy axis of the local variant are plotted lighter
and moments aligned anti-parallel are plotted darker. The 90◦ domain walls coincide with the
twin interfaces. In addition, the arrows shown indicate the direction of the magnetization. The
simulation time is t̃ = 0 in a) and d), t̃ = 96 in b) and e) and t̃ = 2620 in c) and f). The late
state structures, as well as the developing volume fractions of the variants, differ significantly.

This effect is demanded by the minimization of the demagnetization energy,
as 90◦ head-to-head or tail-to-tail domain walls are energetically unfavorable.
These completely vanish during the evolution, so that all remaining 90◦ domain
walls are head-to-tail. The final microstructures arangements are different, as
distinctively different transition pathways are followed from the initial state.

4.4. Magnetically induced twin boundary motion

The field-induced rearrangement of twin microstructure as the basis of the
MSME is studied in a simplified configuration. Quasi 2D simulations of two
martensitic variants with the (110) twin planes, as in the material samples and
a grid size of 100 × 100 × 3, were carried out. The full magneto-elastic prob-
lem was solved here. The normal component of the displacement field is fixed
to 0 at all boundaries, whereas the other components may evolve. For magne-
tization and phase fields, special Neumann boundary conditions (∂m/∂n = 0,
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Fig. 5. Simulation of twin boundary motion induced by an external applied magnetic field.
a) Initial relaxed 2D laminar microstructure. The arrows show the directions of the magneti-
zation that follow clearly the easy axes of the variants. No other magnetic domain walls occur
within the martensites. b) The resulting structure with an applied external magnetic field.
Variant V1 with the c-axis aligned along the field direction is energetically favored and grows.
c) Plot of the development of the volume fraction of V1 during the the field application cycle.

∂φα/∂n = 0) were applied. First, the initial structure was relaxed, to reach
a steady state configuration. Second, an external magnetic field of 1.5 Tesla was
applied in the x-direction, favoring the growth of variant V1. After the steady
state was reached, the external field was switched off in a third stage. During this
evolution, the volume fraction of V1 was reduced (see Fig. 5c). The application
of the external field increases the Zeeman energy in the system, and due to its
direction, V1 grows to the detriment of V2, resulting in an increase of stress at
the domain boundaries. The recoverage of variant volume after turning off the
field is complete, no hysteresis effects are observed.

4.5. Three variants state in 3D

The simple laminar configuration consisting of two martensitic variants V1

and V2 in 2D was extended in the z-direction for a cubic 3D domain of grid size
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320 × 320 × 320. The third martensitic variant V3, having its short tetragonal
c-axis along z orthogonal to those of the other two variants, was placed atop at
about 2/3 of the height of the simulation box. Compressive stress of 1.13 MPa
(via surface traction boundaries) was applied along the x- and y-directions,
which are the directions of the long crystal axes of variant V3.

a)

b) c)

Fig. 6. Simulation of three different martensitic variants in 3D. a) Initial laminar setting on
which a third variant V3 is set atop, with tetragonal c-axis orthogonal to those of the shown
variants. The third variant is not shown here. b) Plot of isosurfaces φV1

= 0.5 and φV2
= 0.5

in an early stage of the evolution process, where facets start to form. c) Final stage of the
evolution before the top boundary of the simulation box is reached. The developed (110) facets

can be observed.

The initial magnetization was set parallel to the 〈111〉 diagonal. Periodic
boundary conditions for the magnetization were used, for the phase field pa-
rameters periodic boundaries in the x-y-plane and special Neumann bound-
ary conditions in the out-of-plane dimension were applied. Because of the com-
putational complexity of this simulation, the demagnetization energy was ne-
glected here, underlining that this simulation is a test to show the general apli-
cability of the methods presented here. In Fig. 6b and 6c the isosurfaces of
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the phase fields of V1 and V2 at an intermediate value of the order parame-
ter, φV1 = 0.5 in yellow and φV2 = 0.5 in blue, are shown for an early and
a later timestep (the magnetic domain structure is not shown). During the evo-
lution, an intricate interface between the V1–V2 laminate and the third variant
forms, consists of zig-zag shape arrangements of (110) facets as shown in Fig. 6b.
As expected, V3 dissolves and completely vanishes. In the later stage, twinned
platelets grow into V3, starting from the edges of the roof-like V1–V2 twin lam-
inate surface.

5. Conclusions and outlook

We have proposed a general MSME phase-field approach to model mag-
netic field induced rearrangement of martensitic microstructure by the motion
of twin boundaries. The model is based on a free energy formalism, taking
into account local contributions from twin interfaces (interface, elastic and mag-
netic energies) and nonlocal contributions from magnetostatics and elastics. The
numerical simulations demonstrate that the coupled system of magnetic and
magneto-elastic equations lead to results that are at least in qualitative agree-
ment with theoretical results. First steps towards the simulation of 3D scenarios
are taken.

There are still limiting factors that prohibit simulations necessary for treat-
ing the representative material volumes. Due to the need to resolve the mag-
netic domain walls properly (that range around 17 nm for Ni-Mn-Ga based
MSMAs, depending on the composition, see [10] and references therein), the
overall size of the samples that can be simulated, is restricted to a range of
microns, mostly due to memory limitations. Further, the demagnetization field
computations are still complex, and even being lifted to Fourier space they re-
main time consuming.

Attempts are made to improve the numerical treatment by applying a parallel
version of the FFT algorithm solving for the demagnetizing field, and the ex-
ploitation of the structure of the demagnetizing tensor. For the demagnetization
field, appropriate boundary conditions to account for the surrounding domain
structure of the simulated volume element, have to be formulated. The influ-
ence of interface thickness ξ and twin boundary energy γtwb in the phase-field
model will be examined, which are related to the topics of martensite nucleation
and the quantitative verification of interface excess energy. The modelling of the
martensitic rearrangement process for polycrystalline materials is important for
many technical applications. In a future paper in preparation, we will extend
our model to take into account differently oriented crystal grains hosting the
martensite variants, separated by grain boundaries.
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