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The paper deals with the numerical homogenization of polymer/clay
nanocomposites by using the boundary element method (BEM). The reinforcement
has the form of stacks of parallel clay sheets modelled by effective isotropic parti-
cles. Two-dimensional representative volume elements (RVEs), containing randomly
distributed parallel rectangular particles, are modelled and five plane-strain elas-
tic constants of the orthotropic composite are analysed: two Young’s moduli, shear
modulus and two Poisson’s ratios. The results are compared to experimental data,
finite element method (FEM) results, and analytical models as well. The positive-
definiteness and symmetry of the apparent compliance matrix are verified. All the
comparisons and tests confirm validity of the applied method.
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1. Introduction

Polymer/clay nanocomposites are characterized by enhanced mechanical
properties at low weight fractions of reinforcement in comparison to other types
of composites. The reinforcement structure can be composed of exfoliated clay
sheets or stacks of parallel nanoclay sheets. During the design of structures, ho-
mogenized properties of composite materials are required. The overall properties
can be determined by applying analytical, empirical or numerical methods. The
most popular ones are: Mori–Tanaka method (M-T), Halpin–Tsai method (H-T),
self-consistent method, Hashin-Shtrikman bounds and the analysis of a repre-
sentative volume element (RVE) by the finite element method (FEM). In recent
years, many papers concerning the problem of the homogenization of nanocom-
posites has been published. A short chronological review of selected papers is
given below.
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Wang and Pyrz in [12] presented the theory and formulas for the prediction
of overall moduli of layered silicate-reinforced polymeric nanocomposites. Formu-
las for the moduli of composite materials reinforced with transversely isotropic
spheroids, were derived from the M-T method. The predictions were compared to
approximate formulas found in the literature for isotropic thin oblate spheroids.
In the second part of the cited work [13], the authors applied their formulas to the
analysis of various montmorillonite silicate-reinforced polymeric nanocomposites.
Sheng et al. [9] applied a multiscale modelling strategy, taking into account
the hierarchical morphology of the polymer/clay nanocomposites, to the predic-
tion of homogenized properties of the materials. The clay particles can have the
form of exfoliated clay sheets, of nanometer level thickness or stacks of parallel
clay sheets separated from one another by interlayer galleries of nanometer level
height. It was shown that in the latter case the stacks could be represented by
effective particles. The authors discussed in detail the issues related to the evalu-
ation of properties of the clay sheets and the effective particles. Two-dimensional
FEM simulations were performed involving isotropic effective particles and the
effective longitudinal Young’s modulus was determined. The results were verified
by the comparison to experimental data, and the M-T and H-T models. Hbaieb
et al. [6] analyzed 2-D (plane stress) and 3-D FEM models of the polymer/clay
nanocomposites with aligned and randomly oriented particles. They calculated
the effective Young’s modulus in the axial direction, and Young’s modulus of
the isotropic effective medium, according to the analysed case. The results were
compared to the M-T model. The authors concluded that the 2-D models were
inappropriate to the analysis of the composites as the models did not predict ac-
curately the stiffness of the composites. Figiel and Buckley [3] calculated elas-
tic constants for the layered-silicate/polymer nanocomposite with intercalated
morphology by using the effective particle concept. Two methods were applied:
plane strain FEM analysis and the M-T method. Young’s moduli in two perpen-
dicular directions and shear modulus were determined. It was shown that the
effective particle concept was valid if full anisotropy of the effective particle was
taken into account. For small volume fraction of effective particles, the results for
both the cases of particles were close to each other. Górski and Fedeliński [4]
modelled 2-D RVEs of the nanocomposites by using coupled boundary and finite
element methods (BEM/FEM). The matrix was modelled by the BEM, and the
reinforcement by beam finite elements. The authors considered both the aligned
and randomly distributed particles. It was shown that the proposed method was
more effective than the FEM, in terms of the number of degrees of freedom of the
numerical model. In the recent paper by Fedeliński et al. [2], different formula-
tions of the BEM were presented, for the analysis of composites containing rigid
or deformable stiffeners and inclusions. The developed computer codes were used
to compute effective elastic or piezoelectric material properties by the analysis
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of 2-D RVEs or unit cells. One of the analysed materials was a polymer/clay
nanocomposite reinforced with stacks of clay sheets.

In the present work, the polymer/clay nanocomposites reinforced by stacks of
parallel clay sheets are analysed by the BEM. In the preliminary investigations
the stacks are represented by isotropic effective particles. Two-dimensional RVEs
of the composites are analysed in plane strain, by the formulation involving many
identical inclusions. The 2-D plane strain model can give satisfactory results,
as it can be found in the literature [3, 9]. Periodic boundary conditions are
imposed. The determined effective elastic constants are: two Young’s moduli,
shear modulus and two Poisson’s ratios. The numerical results are compared to
other ones (analytical, semi-empirical, numerical and experimental) shown in the
literature. The validity of the model is also verified by the positive-definiteness
and symmetry tests of the effective compliance matrix of the material.

The novelty of the paper is the numerical homogenization of the nylon/clay
nanocomposites by using the BEM, which is a new application of the method.
The BEM can be effective in the numerical homogenization and thus competitive
for the FEM, usually applied in this field. In the case of numerical homogeniza-
tion, where no volume forces occur, only boundaries of the analysed RVE are
discretized. The main advantages of the BEM are easy preparation of the numer-
ical model and small amounts of data and results. The advantages are implied
by the fact that the numerical homogenization requires only the knowledge of
the RVE boundary quantities. As it has been shown in the literature preview,
authors usually do not determine the full set of elastic constants. The constants
calculated in this work fully define the overall elastic properties. The knowledge
of the properties is crucial for the multi-scale modelling of elements made of
inhomogeneous materials loaded arbitrarily.

The article is organized as follows: Section 2 contains the characterization of
the analysed nanocomposites. In Section 3 the procedure of numerical homog-
enization is briefly described. Section 4 contains the description of the BEM,
including the formulation for many identical inclusions. Section 5 includes the
description of the performed numerical tests and their results. Section 6 contains
the discussion of the results and conclusions.

2. Characterization of the nanocomposites

This section contains a brief characterization of nanocomposites with polymer
matrix, reinforced by intercalated nanoclay. Only basic information allowing for
the development of a 2-D model is given. The detailed description of the materials
can be found in the paper by Sheng et al. [9].

The structure of the nanocomposite is shown in Fig. 1. The polymer matrix
contains parallel stacks of clay sheets (Fig. 1a), which can be modelled by rectan-
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Fig. 1. Structure of the nanocomposite: a) matrix containing parallel effective particles,
b) a stack of clay sheets modelled by the effective particle [9].

gular effective particles (Fig. 1b). The stacks consist of silicate layers separated
by interlayer galleries. Both the constituents have thickness of few nanometers.
The galleries are composed of surfactants and polymer matrix chains, that have
penetrated the inter-silicate layers during various stages of manufacturing. A typ-
ical number of silicate layers is 2 to 4. The layers are comprised of repetitive,
atomic lattice cells. Parameters of the layers, such as particle aspect ratio, volume
fraction of the particle (in terms of clay weight fraction), and particle stiffness
can be obtained from the molecular dynamics simulation. If the parameters of
the clay sheets and galleries are known, the stacks can be modelled by effective
particles. It is assumed that the effective particles are equivalent to the stacks in
terms of the aspect ratio L/t (where L is length of the particle/stack and t is its
thickness), weight fraction fp and finally, overall mechanical properties. It should
be mentioned that the determination of effective properties of the nanocompos-
ite reinforcement is a very demanding task and requires the usage of advanced
methods. There are many issues involved, which are not related directly to the
problem considered in this article, and thus they are not discussed.

According to the literature, different models of the reinforcement can be ap-
plied, on different levels of simplification (Fig. 2). When the stack is considered
as laminate (Fig. 2a), elastic constants for the effective particle can be calculated
by continuum analytical models. The particle can be then considered as homo-
geneous and anisotropic (Fig. 2b), or isotropic (Fig. 2c) to make further homog-
enization process simpler. The particle constants, together with their geometry
and properites of the polymer matrix, can be applied to the determination of
homogenized properties of the composite. In this work, the simplest model, i.e.
the isotropic effective particle is applied. The elastic constants are taken from
the paper [9]. They will be presented in the section containing numerical tests.

Fig. 2. Reinforcement models: a) stack of sillicate sheets, b) anisotropic effective particle,
c) isotropic effective particle.
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In order to determine the homogenized properties of the nanocomposite, the nu-
merical analysis of RVEs by using the BEM is performed. The applied methods
will be described in the next two sections.

3. Numerical homogenization

There are several groups of analytical methods of homogenization, namely:
the rule of mixtures, effective medium approximation methods and asymptotic
mathematical homogenization [7]. According to the literature review, the most
popular analytical methods applied to the homogenization of the nanocomposites
are the Mori–Tanaka (M-T) and Halpin–Tsai (H-T) methods. In fact, the H-T
method is based on analytical formulas with empirically determined coefficients
and can be called semi-empirical. In this article the model is treated as analytical
for simplicity.

The analytical models do not always agree with experimental data. Fur-
thermore, usually they do not provide the full set of elastic constants. Another
method of homogenization is the numerical analysis of RVE. In the present work,
the approach by Kouznetsova et al. [7] is applied. An RVE with periodic
boundary conditions is considered. Figure 3 shows a deformed RVE with exter-
nal boundary Γ0 consisting of four parts: ΓB , ΓL, ΓT and ΓR. The RVE shape
is determined by the displacements of nodes (2) and (4), which are equal to:

(3.1) u
(2)
i = ε̄ij(x

(2)
j − x

(1)
j ), u

(4)
i = ε̄ij(x

(4)
j − x

(1)
j ), i = 1, 2, j = 1, 2,

where ε̄ij denotes known components of macro-strain. The remaining points of
the external boundary, including node (3), are tied to the nodes (2) and (4) by
the following constraints:

(3.2) u
(R)
i = u

(L)
i + u

(2)
i − u

(1)
i , u

(T )
i = u

(B)
i + u

(4)
i − u

(1)
i , i = 1, 2.

Fig. 3. A representative volume element deformed according to periodic boundary
conditions.
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It is also assumed that in respective points located on the mutually opposite
parts of the boundary, traction forces are also opposite:

(3.3) tBi = −tTi , tLi = −tRi , i = 1, 2.

In order to satisfy all the conditions, respective constraints are introduced to the
system of equation built by the applied numerical method (in this case the BEM).

The homogenized elastic moduli of a 2-D inhomogeneous material can be
determined by performing three independent tests, namely: extension along two
directions and shear (Fig. 4). All components of the averaged (macro-) strain
tensor ε̄ij (i, j = 1, 2) can be calculated by using the following expression:

(3.4) ε̄ij =
1

L1L2

∫

Γ0

1

2
(uinj + ujni) dΓ0,

where L1 and L2 denote the dimensions of RVE, and nj are components of the
unit vector normal to the external boundary. In the three cases presented in
the Figures 4a–4c, the selected strain components can be determined in a more
simple way:

• for test 1 (δ1 is given):

(3.5) ε̄11 =
δ1
L1
, ε̄22 = − δ2

L2
;

• for test 2 (δ2 is given):

(3.6) ε̄11 = − δ1
L1
, ε̄22 =

δ2
L2

;

• and test 3 (δ1 is given):

(3.7) ε̄12 =
δ1

2L2
.

Fig. 4. Three tests by using RVE with periodic boundary conditions: a) extension along the
x1-axis, b) extension along the x2-axis, c) shear.
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The averaged stress components are calculated by using the equation:

(3.8) σ̄ij =
1

L1L2

∫

Γ0

tixj dΓ0,

where ti denotes components of traction forces and xi are coordinates of a point
located on Γ0.

Assuming that the analysed 2-D material is linear-elastic and macroscopically
orthotropic, the constitutive law can be written in the following way:

(3.9)







ε̄11

ε̄22

2ε̄12






=







1/E11 −ν21/E22 0

−ν12/E11 1/E22 0

0 0 1/G12













σ̄11

σ̄22

σ̄12






,

where the square matrix is the compliance of the material. It can be denoted
by Sij (i, j = 1, 2, 3). It depends on the engineering constants: Young’s moduli:
E11 and E22, shear modulus G12 and Poisson’s ratios: ν12 and ν21. By energetic
considerations it can be deduced that the matrix Sij is symmetric and posi-
tively definite. The symmetry condition can be applied to the calculation of one
of Poisson’s ratios, assuming that the another one is known. Such situation is
encountered in the application of analytical methods, which provide formulas
for only one Poisson’s ratio. In the case of numerical analysis, the symmetry
condition can be employed in order to verify the validity of the numerical model.

By performing the three tests shown in the Figs. 4a–4c, one can define and
solve a linear system of nine equations, with Sij as unknowns. Assuming that
the material is orthotropic in macroscale, which means that respective elements
of the compliance matrix are equal to zero, five engineering constants of the
material can be calculated by using the following formulas:

(3.10) E11 =
1

S11
, E22 =

1

S22
, G12 =

1

S33
, ν12 = −S21

S11
, ν21 = −S12

S22
.

By using the above framework and a numerical method, the full set of ho-
mogenized elastic constants of a 2-D inhomogeneous material can be calculated.
For the detailed description of the theory of numerical homogenization, please
refer to the available literature (e.g. [7, 15], and others).

4. BEM modelling of composites

Consider a body: the matrix or the inclusion, which has the boundary Γ
and the domain Ω. The body is homogeneous, isotropic and linear-elastic. It
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is loaded by the boundary tractions tj . The relation between the loading and
displacements uj is expressed by the boundary integral equation [1]:

(4.1) cij(x
′)uj(x

′) +

∫

Γ

Tij(x, x
′)uj(x

′) dΓ =

∫

Γ

Uij(x, x
′)tj(x

′) dΓ,

where x′ is a collocation point, x is a boundary point, cij is a constant which
depends on the position of the point x′, Uij and Tij are fundamental solutions
of elastostatics. The summation convention is used in the equation.

The external and internal boundaries of the matrix are divided into bound-
ary elements. The elements with boundary nodes are shown in Fig. 5 (the
elements are not drawn for the internal boundaries to make the figure read-
able). Displacements and tractions within each boundary element are interpo-
lated by using nodal values and shape functions. The boundary integral equa-
tions (4.1) are used for nodes along external and internal boundaries of the
body. As a result, a system of linear algebraic equations is built and solved for
unknown displacements and tractions on respective parts of the boundary. It
should be noticed that the computational complexity of the BEM is at least
quadratic.

Fig. 5. Matrix with particles modelled by the BEM.

For the purpose of BEM modelling of composites, the formulation proposed
by Yao et al. [14] can be applied. The domain of the whole structure is de-
noted by Ω0, and its boundary by Γ0 (Fig. 5). There are n particles with do-
mains Ωk and boundaries Γk (k = 1, 2, . . . , n). The following assumptions are
made:

• the matrix contains identical particles; the particle shape is arbitrary;
• perfect bonding is assumed between the matrix and the inclusions, i.e. the

conditions of continuity of displacements and equilibrium of tractions on
the interfaces Γk are satisfied;

• all the particles are located inside the matrix, i.e. the particles do not cross
the external boundary Γ0.
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In the formulation, a system of equations is built for the matrix, and modified
by using small matrix calculated for a single particle. Unknowns are only the
quantities on the external boundary and displacements on the interfaces. The
tractions on the interfaces are eliminated from the system of equations. Thus,
a system with the reduced size is obtained as a result. The interface tractions
can be calculated if necessary, by using the solution of the system.

In this work, a BEM code developed by the authors is applied. Quadratic
boundary elements are used. The regular boundary integrals are calculated nu-
merically by using 10-point Gauss quadrature, while the singular ones are cal-
culated by a special logarithmic quadrature and the method of rigid body mo-
tion [1]. RVEs of composite materials are modelled by using the formulation
for matrix with many particles described above. The periodic boundary con-
ditions are applied by the modifications of the BEM system of equations and
homogenized properties are calculated by the method shown in the previous
section.

5. Numerical examples

Homogenized elastic constants of polymer/clay nanocomposite reinforced by
intercalated particles are analyzed. The effective particles are modelled as rect-
angular inclusions. The RVEs are rectangles containing 60 identical inclusions, in
plane strain. The materials of both the matrix and inclusions are linear elastic
and isotropic. The periodic boundary conditions are imposed, with given dis-
placements of respective corners of the RVE. Three tests were performed in order
to calculate all the homogenized constants. The constants are: Young’s moduli
in two directions E11 and E22, shear modulus G12 and two Poisson’s ratios: ν12

and ν21. The results are compared to the M-T model for spheroidal penny-shape
inclusions [9, 10], and H-T model for fibers with rectangular cross-sections [5].

Parameters of the analysed composite are [9]: length of the effective par-
ticles L = 200 nm, aspect ratio of the particles L/t = 23, with thickness t,
Young’s modulus of matrix Em = 4 GPa, ratio of Young’s modulus of particles
to the modulus of matrix Ep/Em = 21, Poisson’s ratios of matrix and particles
νm = 0.35, νp = 0.28, and the relation between the volume fraction of particles
fp and the weight fraction Wc, fp/Wc = 1.2. All the elastic constants are given
for the plane strain case. The ratio of vertical to horizontal side length of the
RVE is 1/2. Six values of weight fraction are considered: Wc = 1–6% with 1%
step. Geometry of a typical RVE with Wc = 6% is shown in Fig. 6.

The dimensions of the RVEs are adjusted to the weight (volume) fraction. To
make the procedure of generation of random geometry efficient, it was assumed
that the particles are uniformly distributed in the vertical direction, and only the
location in the horizontal direction is randomly selected. Ten different models
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Fig. 6. Geometry of a typical RVE.

are generated for each value of the reinforcement weight fraction. The numer-
ical homogenization is performed by means of the techniques described in the
previous sections. A full set of homogenized plane strain elastic constants of the
nanocomposite, as a function of the reinforcement weigth fraction, is obtained
as the result.

The boundaries of the models are discretized by 1 512 quadratic boundary
elements. Each inclusion is discretized by 22 boundary elements. The number
of degrees of freedom of each structure is equal to 6 048. As it can be seen
in the Fig. 6, a particle can be located closely to the external boundary of
the RVE or to other particles. Furthermore, the longer sides of the particle are
near to each other due to the relatively large aspect ratio. This can affect the
accuracy of the numerical integration of the singular fundamental solutions, and
the boundary value problem solution - boundary displacements, tractions, and
stresses calculated by means of the former quantities. The accuracy of calculated
homogenized moduli is checked by the analysis of a single homogeneous RVE,
containing inclusions made of the same material as the matrix, with the largest
considered value of particle weight fraction (6%). The absolute relative error
of the calculated homogenized Young’s moduli is less than 0.4%, of the shear
modulus less than 0.07%, and of Poisson’s ratios less than 2%. It is assumed
that the discretization provides sufficient accuracy of the calculated homogenized
moduli.

The calculated values of respective moduli, compared to other models, are
shown in the Figs. 7–10. All the homogenized properties are normalized in re-
lation to respective moduli of the matrix. The obtained results are discussed
below.

The BEM results of the Young’s modulus E11 agree very well with the ex-
perimental data provided by Sheng et al. [9] (Fig. 7). The BEM regression line
is located between the experimental data points. The FEM model by Sheng et

al. [9] slightly overestimate the modulus. Finally, M-T and H-T models overes-
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Fig. 7. Normalized homogenized Young’s modulus E11.

timate the modulus significantly. For 6% weight fraction, the relative difference
between the M-T and BEM results exceeds 20%. Respective difference for the
H-T model is over 30%. It can be seen that the BEM results are dependent on
the randomly generated geometry, since there are variations of E11 for each value
of reinforcement weight fraction. These variations could be possibly eliminated
by the analysis of RVEs containing a greater number of inclusions.

Most of the calculated values of the homogenized Young’s modulus E22 are
between the values determined by the M-T and H-T models (Fig. 8). The H-T
model underestimates the modulus, and for the largest value of Wc the rela-
tive difference between the BEM regression and the H-T values is about 5%.
The M-T model overestimates the modulus, with respective relative difference
exceeding 10%. Similarly to the E11 case, there are some variations of the cal-
culated homogenized modulus for each value of Wc.

Fig. 8. Normalized homogenized Young’s modulus E22.
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In the case of homogenized shear modulus G12, the BEM results are also
between the M-T and H-T values, however in this case, they are generally closer
to the M-T model, since the relative difference for the largest value of Wc is
less than 1% (Fig. 9). Respective H-T value is greater than the BEM results
by approximately 3%. It can be seen that in this case, the BEM results are
insensitive to the RVE geometry changes, as opposed to the cases of moduli E11

and E22.

Fig. 9. Normalized homogenized shear modulus G12.

The BEM results of homogenized Poisson’s ratio ν21 are considered. The
results are also compared to the M-T model, and the H-T one, consistent in this
case with the rule of mixtures (ROM) (Fig. 10). It can be seen that the ratio
is strongly sensitive to the RVE geometry changes, since the variations of ν21

are significant. Some of the BEM results exceed the range determined by the
analytical models. The regression line is close to the M-T one and has a similar
shape, but is moved downwards by a constant term, approximately equal to 0.02.
The H-T/ROM results in this case are almost independent of Wc.

Fig. 10. Normalized homogenized Poisson’s ratio ν21.
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The values of ν12 obtained by the BEM (Fig. 11) are calculated by means of
the elements of the effective compliance matrix. The corresponding homogenized
Poisson’s ratio predicted by the M-T and H-T models was calculated by using
the compliance matrix symmetry condition:

(5.1) ν12 =
E11

E22
ν21,

and the previously calculated values of ν21, E11 and E22. Once again, some of the
BEM results exceed the range determined by the analytical models. However,
the regression line does not. Thus the qualitative dependence of results on Wc

is predicted correctly.

Fig. 11. Normalized homogenized Poisson’s ratio ν12.

All the elements of the compliance matrix that should be equal to zero, were
also calculated. Mean value of all the elements calculated in all the tests, is equal
to 10−8 MPa−1. Furthermore for all the tests, absolute values of the considered
quantities are by four orders of magnitude less than the Frobenius norm of the
corresponding matrices. It can be assumed that the elements are small enough
to be treated as zero. These results confirm that the material can be considered
as macroscopically orthotropic.

The positive definiteness and symmetry of the compliance matrix state
bounds for the homogenized elastic moduli. In order to verify the validity of
the numerical model, apart from the comparison to analytical models, also the
positive definiteness and symmetry tests are performed for each set of calculated
homogenized moduli. All the compliance matrices built by using the moduli,
satisfy the positive definiteness condition, as all their eigenvalues are positive.
In the case of symmetry test, the following symmetry error is calculated:

(5.2) ∆ =
‖Sij − S̄ij‖

‖S̄ij‖
· 100%,



530 J. Ptaszny, P. Fedeliński

where ‖ · ‖ denotes the Frobenius norm of a matrix, and S̄ij is the symmetrized
matrix:

(5.3) S̄ij =
1

2
(Sij + Sji) .

The error is computed individually for each of the tests. The error is less than
5.5% and is not correlated with the reinforcement volume fraction Wc.

6. Conclusions

In this work, the polymer/clay nanocomposites, reinforced by stacks of paral-
lel clay sheets, were analysed by the BEM and by the isotropic effective particle
concept [9]. A special formulation for plates containing many identical inclu-
sions was applied [14]. Two-dimensional RVEs containing randomly distributed
parallel particles were analysed. Periodic boundary conditions were imposed.
Five elastic moduli of the composite were calculated: Young’s moduli in two
perpendicular directions, shear modulus and two Poisson’s ratios. Dependence
of the moduli on the weight fraction of the reinforcement was investigted. The
numerical results were compared to the analytical Mori–Tanaka and Halpin–
Tsai models, numerical results obtained by the FEM, and experimental results
[9]. The comparison confirmed the applicability of the proposed method to the
solution of the homogenization problem.

It appeared that the results of homogenized Young’s moduli and Poisson’s
ratios were sensitive to the particle distribution changes, as variations of the
results were observed for a fixed value of reinforcement weight fraction. In the
case of Young’s moduli, the variation magnitude was similar to the range from
tensile test for the Young modulus E11, presented in the literature. In the case of
Poisson’s ratios the variations had much greater magnitudes, as some of the re-
sults exceeded the range determined by the M-T and H-T models. The variations
could be caused by the moderate size of the RVEs, containing 60 particles. The
variations could be possibly minimized by modelling of structures with a greater
number of particles. In the case of shear modulus, very small variations of the
results were observed for a given value of the reinforcement weight fraction.

In all the cases of elastic moduli, the BEM regression lines correctly predicted
the qualitative dependences of the moduli on the weight fraction. The validity
of the BEM model was also confirmed by the positive-definiteness test of all
homogenized compliance matrices, and the symmetry error of the matrices in
the range 0 to 5.5%, which are acceptable values. It is worth noticing that the
symmetry error could be also caused by the moderate RVE size.

The developed model can be improved by modelling of RVEs with periodic
geometry, i.e. containing inclusions intersecting the outer boundary. It is known
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that such models can have a higher stiffness due to more intense interactions
between the particles. The nanocomposites with greater values of the reinforce-
ment weight (volume) fraction can be modelled by using anisotropic effective
particles. This can be achieved by the BEM formulation involving the Stroh for-
malism [11]. Comparison between the effective moduli for the cases of isotropic
and orthotropic effective particles would be interesting. Another important issues
would be: the analysis of RVEs containing randomly oriented effective particles,
and the development of 3-D BEM model of the nanocomposites.

It has been mentioned that the analysis of RVEs containing larger number of
particles would reduce the variations of computed homogenized moduli. This can
be a demanding task for the original collocation BEM due to its computational
complexity, which is at least quadratic. To overcome this difficulty, one can con-
sider an application of the fast multipole BEM. The complexity of the method
(or a single iteration of the solution process to be exact) is linear. This relatively
new version of the BEM was succesfully applied by Liu et al. [8] to the analy-
sis of 3-D RVEs of another nanocomposites, reinforced with carbon-nanotubes,
containing thousands of particles.
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