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A theoretical approach is applied to predict the propagation and evolution of
nonlinear water waves in a wave train. A semi-analytical solution was derived by
applying an eigenfunction expansion method. The solution is applied to study the
evolution of nonlinear waves in a wave train and the formation of freak waves. The
analysis focuses on the changes of wave profile and wave spectrum due to the inter-
action of wave components in a wave train. The results indicate that for waves of
very low steepness, the changes of wave profile and wave spectrum are of secondary
importance and weakly nonlinear wave theories can be applied to describe wave prop-
agation in a wave train. For waves of low and moderate steepness, the nonlinear terms
in the free-surface boundary conditions are becoming more and more important and
weakly nonlinear wave theories cannot be applied to describe substantial changes in
wave profile. A train of basically sinusoidal waves may drastically change its form
within a relatively short distance from its original position and freak waves are often
formed. The interaction between waves in a wave train and significant wave evolution
has substantial effects on a wave spectrum. A train of initially very narrow-banded
spectrum changes its simple one-peak spectrum to a broad-banded and often multi-
peak spectrum in a fairly short period of time. The analysis shows that these phe-
nomena cannot be described properly by the nonlinear Schrödinger equation or its
modifications. Laboratory experiments were conducted in a wave flume to verify the-
oretical approaches. The free-surface elevation recorded by a system of wave gauges
was compared with the results provided by the semi-analytical solution. Theoretical
results are in a fairly good agreement with experimental data. A reasonable agree-
ment between theoretical results and experimental data is observed, even for complex
changes of long wave trains.

Key words: nonlinear waves, wave instability, wave evolution, initial conditions.

Copyright c© 2011 by IPPT PAN

1. Introduction

The prediction of the propagation and transformation of nonlinear water
waves is an interesting and ambitious/challenging problem from a theoretical
point of view. A reliable prediction of free-surface elevation also is one of the
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main tasks of coastal and offshore engineers and is of fundamental importance
in modeling of a sea state.

Modeling of the propagation and transformation of water waves is not a triv-
ial task. This is because real water waves in nature are nonlinear. In order to
describe the process of wave propagation and transformation with sufficient accu-
racy, nonlinear terms in the free-surface boundary conditions cannot be omitted
in the modeling process, which complicates a solution procedure. Additional dif-
ficulties arise from a need to apply the boundary conditions on the free surface
which is unknown and is a part of a final solution [31]. Despite the difficulties,
many valuable nonlinear solutions were achieved, especially solutions for waves
of permanent form [31, 16, 24, 19].

The nonlinear solutions achieved for waves of permanent form provided in-
sight into the physics of water waves and many processes related with the prop-
agation of nonlinear waves. These models helped to obtain solutions of practical
importance by incorporating in the modeling of transient and irregular features
of water waves. Various features of water waves of practical importance have been
successfully described by applying numerical techniques. Application of numer-
ical methods enabled a significant progress in modeling of the propagation and
transformation of real water waves in two recent decades [29, 1, 18, 20, 11]. An-
other group of approaches applied to describe transient features of water waves
are semi-analytical techniques based on perturbation expansions and spectral
methods [30, 32, 8, 28, 4]. The derived models give qualitatively correct re-
sults for a wide range of wave parameters, and provide insight into the complex
physics of transient nonlinear wave propagation and transformation of water
waves in a wave train. An attractive alternative to these approaches is to trans-
form boundary conditions to more convenient forms by applying Taylor series
[6, 5, 22, 2, 26, 10]. Comparisons of theoretical results with experimental data
indicate that these alternative approaches may give qualitatively and quantita-
tively correct results even for steep wave events.

A real challenge in modeling of the water waves is a satisfactory prediction
of the propagation and transformation of water waves in a wave train of re-
alistic broad-banded frequency spectrum. This is because the process of wave
propagation in a wave train of broad-banded spectrum is often unstable and
a satisfactory prediction of the propagation and transformation of water waves
in a wave train is not a trivial task. The weakly nonlinear Schrödinger equa-
tion and its modifications, which are often applied to illustrate wave instability
phenomena, cannot be used to predict the transformation of waves in a wave
train because they give only qualitatively correct evolution and are basically
applicable only to narrow-banded wave processes [4]. There have been several
attempts to predict the propagation of waves in a wave train of broad-banded
spectrum, however, only qualitatively correct evolution was achieved [15]. The
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difficulties in a reasonable prediction of wave evolution in a wave train is re-
lated with a delicate nature of wave instability phenomena, sensitivity to initial
conditions, sensitivity to solution techniques, etc., which makes the modeling of
this phenomena a difficult task. On the other hand, the ability to predict wave
evolution in a wave train is of significant practical importance because instability
may lead to resonant interactions of wave components in a wave train, formation
of extreme waves, substantial changes of wave spectrum etc., and understanding
of these processes is of vital interest to scientist and engineers [3, 33, 14].

In this work, a theoretical approach is applied to study the propagation and
evolution of nonlinear water waves. First, a semi-analytical solution is derived
within the Eulerian description to predict the propagation of nonlinear water
waves in a wave train. The solution is applied to analyze the effect of wave
modulation and wave steepness on the propagation and evolution of nonlinear
water waves and the formation of freak waves. Then, laboratory experiments
are conducted in the wave flume. Finally, theoretical results are compared with
experimental data and conclusions are specified.

2. Theoretical formulation

2.1. Statement of problem

We consider the propagation of nonlinear water waves in a periodic uniform
wave train and their evolution due to initial conditions and wave instabilities.
A right-hand Cartesian coordinate system is selected such that the xy plane is
horizontal and coincides with the undisturbed free surface and z points vertically
upwards (Fig. 1).

Fig. 1. Definitions sketch and coordinate systems.
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It is assumed that:
• The fluid is inviscid and incompressible.
• The fluid motion is irrotational.
• The sea bottom is impervious.

According to the assumptions, the velocity vector, V(x, z, t), has a potential
Φ(x, z, t), such that V = ∇Φ and the Bernoulli equation is

(2.1) Φt +
1

ρ
P + gz +

1

2
|∇Φ|2 = 0

where ρ is the fluid density, P is the pressure,g is the acceleration due to gravity.
The velocity potential, Φ(x, z, t), satisfies the Laplace equation

(2.2)1 ∇2Φ = 0

at the free surface, the velocity potential, Φ(x, z, t), has to satisfy the kinematic
boundary condition

(2.2)2 ηt + Φxηx − Φz = 0, z = η(x, t)

and the dynamic boundary condition

(2.2)3 Φt + gη +
1

2
|∇Φ|2 = 0, z = η(x, t);

at the sea bottom the following boundary condition must be satisfied:

(2.2)4 Φz = 0, z = −h.

Moreover, the velocity potential must satisfy boundary conditions at infinity and
initial conditions [31, 16].

A solution of the boundary-value problem, (2.2), is not a trivial task. It is
difficult to find the velocity potential which satisfies the free-surface boundary
conditions, because the boundary conditions contain nonlinear terms. Additional
difficulties arise from a need to apply the boundary conditions on the free surface
which is unknown and is a part of a final solution [31]. In order to achieve
a solution, the kinematic free-surface boundary condition and the dynamic free-
surface boundary condition are often expanded into a Taylor series about the
mean position

(2.3)

∞
∑

n=0

ηn

n!

∂n

∂zn
(ηt + Φxηx − Φz) = 0, z = 0,

∞
∑

n=0

ηn

n!

∂n

∂zn

(

Φt + gη +
1

2
|∇Φ|2

)

= 0, z = 0

which usually helps to obtain a solution [7, 12, 25].
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By expanding the kinematic free-surface boundary condition and the dynamic
free-surface boundary condition in a Taylor series and collecting terms up to the
third order in wave amplitude, one obtains the following boundary value problem:

(2.4)

∇2Φ = 0,

ηt + Φxηx − Φz + ηΦxzηx − ηΦzz −
1

2
η2Φzzz = 0, z = 0,

Φt + gη +
1

2
(Φ2

x + Φ2
z)

+ ηΦzt + η(ΦxΦxz + ΦzΦzz) +
1

2
η2Φzzt = 0, z = 0,

Φz = 0, z = −h.

Moreover, the velocity potential is required to be periodic in space.

Solution technique

It is convenient to seek a solution by applying an eigenfunction expansion
method that is a recognized method applied in mathematics and theoretical
physics [13, 21]. This method has been shown to be an efficient technique in the
modeling of the propagation and transformation of nonlinear waves [9, 26]. Ac-
cordingly, the free-surface elevation, η, and the velocity potential, Φ, are sought
in the following form:

η = η0 +
∑

n=1

(an cosλnx+ bn sinλnx),(2.5)1

Φ = Φ0 +
∑

n=1

coshλn(z + h)

coshλnh
(An cosλnx+Bn sinλnx),(2.5)2

where η0 , Φ0 are known functions related with imposed initial conditions, and

(2.5)3 λn =
2π(n− 1)

b
,

in which b is the length of a sector over which the solution is assumed to be
periodic.

The solution in the form of the eigenfunction expansions, (2.5), satisfies the
Laplace equation and the bottom boundary condition. A time-stepping proce-
dure is applied to satisfy the remaining boundary conditions, (2.4)2 and (2.4)3
and to determine the unknown coefficients of the eigenfunction expansions. Ac-
cordingly, in order to satisfy (2.4)2 and (2.4)3 and to determine the unknown
coefficients of the eigenfunction expansions, the free-surface elevation, η, and the
velocity potential, Φ, are discretized in time and the Adams–Bashford–Moulton
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predictor-corrector method is applied [23]. The Adams–Bashford–Moulton
method enables prediction of the value of a function f from its time deriva-
tives f ′, and in the present approach the Adams–Bashford predictor

(2.6)1 fn+1 = fn +
∆t

24
[55f ′n − 59f ′n−1 + 37f ′n−2 − 9f ′n−3]

is combined with the Adams–Moulton corrector

(2.6)2 fn+1 = fn +
∆t

24
[9f ′n+1 + 19f ′n − 5f ′n−1 + f ′n−2]

and with the free-surface boundary conditions, (2.4)2 and (2.4)3, to predict the
free-surface elevation η and the velocity potential Φ at a new time step. Then,
a Fourier transform is applied to determine the coefficients an, bn, and An, Bn of
the eigenfunction expansions. Because the free-surface boundary conditions are
nonlinear, the solution procedure requires iterations at each time step. Usually,
from three to five iterations are required to determine the free-surface eleva-
tion, η, and the velocity potential, Φ, with an accuracy sufficient for typical ap-
plications. The application of eigenfunction expansions and a Fourier transform
makes the solution procedure a very efficient technique and enables to obtain
results even for large spatial or time domains.

Initial conditions

In order to proceed and apply the derived solution, initial values of the free-
surface elevation and the velocity potential should be specified along the sector
over which the solution is assumed to be periodic. However, the space distribution
of the free-surface elevation and the velocity potential are usually not available.
Typical wave data available in coastal and offshore engineering consist of wave
records from waverider buoys or stationary wave gauges. Thus, it is first necessary
to apply a Fourier transform of a recorded time series, and a wave theory to
obtain an initial space distribution of the free-surface elevation and the velocity
potential required in the present approach. Accordingly, the following formulas
are applied to provide initial conditions (t < 0)

Φ0 =
∑

n

g

ωn

cosh kn(z + h)

cosh knh
(2.7)1

× {a0n sin[kn(x− x0) − ωnt] + b0n cos[kn(x− x0) − ωnt]},

η0 =
∑

n

{a0n cos[kn(x− x0) − ωnt] − b0n sin[kn(x− x0) − ωnt]},(2.7)2
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provided that the following dispersion equation is satisfied:

(2.7)3
ω2

n

g
= kn tanh knh,

where a0n and b0n, are the amplitudes arising from the Fourier transform of
a free-surface elevation recorded at x0, ωn is the wave frequency (ωn = 2π/Tn)
and kn is the corresponding wave number (kn = 2π/Ln).

The progress in the development of radar and satellite techniques may soon
resolve the problem of initial values for modeling of the transient water waves.
Moreover, the development of new non-invasive measurement techniques, in-
cluding PIV, acoustic instruments, etc., may soon provide initial condition with
sufficient accuracy. In some cases, including laboratory verification of theoreti-
cal results, it is already possible to determine initial values for the modeling of
transient water waves [26, 27].

3. Results

Wave evolution

The solution derived to describe the propagation of nonlinear water waves
was applied to investigate the effect of wave frequencies and wave steepness on
the propagation and evolution of water waves in a modulated uniform wave
train. The evolution of water waves is predicted for deep-water wave trains of
different modulation lengths. Moreover, additional calculations are conducted to
investigate the effect of wave steepness on wave evolution and on the formation
of freak-type waves. An initial space distribution of the free-surface elevation
and the velocity potential is determined by applying (2.7). This enables us to
impose initial and boundary conditions in a simple manner to facilitate analysis
of results and derivation of conclusions.

The results are analyzed with the emphases on the effect of modulation
lengths and wave steepness on the propagation and evolution of waves in a wave
train. The attention is paid to the wave profile, the wave spectrum, and the
changes of wave profile and wave spectrum due to the nonlinear interaction of
wave components in the wave train. Moreover, attention is paid to conditions for
which a freak wave is formed in a wave train. The nonlinear interaction of wave
components in a wave train is believed to be one of the potential sources of the
formation of freak waves.

The model is first applied to predict the propagation and transformation
of a wave train for N = 4 waves in the modulated wave train segment. The
results in Fig. 2 show the profiles of free-surface elevation for the carrier wave of
amplitude A and wave number k, satisfying the following wave steepness criteria
Ak = 0.10, Ak = 0.12, and Ak = 0.14 at time t/T = 1, 20, 40, 60, 80 and 100.
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Fig. 2a. Evolution of a wave train for Ak = 0.10 and N = 4.
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Fig. 2b. Evolution of a wave train for Ak = 0.12 and N = 4.
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Fig. 2c. Evolution of a wave train for Ak = 0.14 and N = 4.
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The plots in Fig. 2 also show the amplitudes of wave components corresponding
to the predicted free-surface elevation. Supplementary information obtained by
applying a Fourier analysis is helpful in the analysis of the interaction of waves
in a wave train and the wave evolution process.

The results in Fig. 2 show that for waves of very low steepness, the nonlinear
effects and the changes of wave profile and wave spectrum are of secondary im-
portance. Accordingly, linear or weakly nonlinear wave theories can be applied
to describe wave propagation in a wave train. For waves of higher steepness, the
interaction between waves in a wave train is becoming more and more important.
The results show that a train of basically sinusoidal waves may drastically change
its form within a relatively short distance from its original position. The interac-
tion between waves in a wave train and significant evolution of wave profile has
substantial effects on the wave spectrum. A train of initially very narrow-banded
spectrum changes its simple one-peak spectrum to a broad-banded spectrum in
a fairly short period of time.

The features of wave propagation and evolution in a wave train can be fur-
ther demonstrated and investigated by increasing the number of waves in the
modulated wave train segment. The outcome of calculations conducted for five
and six waves in the modulated wave train segments are presented in Fig. 3
and Fig. 4, respectively. The results in Fig. 3 and Fig. 4 show the profiles of
free-surface elevation for Ak = 0.10, Ak = 0.12, and Ak = 0.14 at selected prop-
agation phases. The plots in Fig. 3 and Fig. 4 also show the amplitudes of wave
components corresponding to the predicted free-surface elevation.

The results in Figs. 3 and 4 show a significant effect of the number of waves
in the modulated wave train segments on the evolution of waves in a wave train.
The analysis shows that wave instabilities increase with increasing number of
waves in the modulated wave train segments and then they decrease. This is
consistent with available experimental results. It is worth to note that the so-
lution of the nonlinear Schrödinger equation or its modifications cannot predict
wave evolution with sufficient accuracy because of their limited practical ap-
plicability range. An analysis shows that the wave evolution is a very sensitive
process and solutions derived for weakly nonlinear waves cannot describe this
process with sufficient accuracy. The results in Figs. 3 and 4 also show that
the interaction between waves in a wave train has substantial effects on a wave
spectrum. A train of initially very narrow-banded spectrum changes its simple
one-peak spectrum to a broad-banded or multi-peak spectrum. For sufficiently
steep initial waves the evolution of waves in a wave train is accompanied by a de-
crease in frequency observed in the form of a shift of a wave spectrum towards
low frequencies. However, shifts of a wave spectrum towards low frequencies are
temporary and are part of a complex recurrence phenomenon observed in the
evolution of a wave train.
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Fig. 3a. Evolution of a wave train for Ak = 0.10 and N = 5.
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Fig. 3b. Evolution of a wave train for Ak = 0.12 and N = 5.
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Fig. 3c. Evolution of a wave train for Ak = 0.14 and N = 5.
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Fig. 4a. Evolution of a wave train for Ak = 0.10 and N = 6.
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Fig. 4b. Evolution of a wave train for Ak = 0.12 and N = 6.
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Fig. 4c. Evolution of a wave train for Ak = 0.14 and N = 6.
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4. Formation of freak waves

The nonlinear interaction of wave components in a wave train and a transfer
of wave energy to selected wave frequencies may trigger the formation of high
waves in a wave train. In fact, this mechanism is believed to be one of the
potential sources of the formation of freak waves. The outcome of calculations
conducted for four, five and six waves in the modulated wave train segments are
presented in Figs. 5–7. The results in Figs. 5–7 show the profiles of free-surface
elevation with high waves.

The results in Figs. 5–7 show that for waves of very low steepness for which
the nonlinear effects and the changes of wave profile and wave spectrum are of
secondary importance, high waves are not formed in a wave train. For waves of
higher steepness for which the nonlinear interaction between waves in a wave
train are becoming more and more important, the evolution of waves may trig-
ger the formation of high waves in a wave train. The analysis shows that the
interaction between waves in a wave train and the significant evolution of a wave
profile, often in a fairly short period of time, leads to the formation of freak-type
waves. The results indicate that some waves formed in the evolution process may
be several times higher than waves in the original wave train.

Fig. 5. Maximum free-surface elevation for N = 4
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Fig. 6. Maximum free-surface elevation for N = 5.

Fig. 7. Maximum free-surface elevation for N = 6.
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5. Comparison with experiments

Laboratory experiments

Laboratory experiments were conducted in the wave flume at the Institute
of Hydroengineering, Polish Academy of Sciences, Gdańsk. The wave flume at
the Institute of Hydroengineering is 64 m long, 0.6 m wide and 1.4 m deep. It is
equipped with a programmable piston wave generator. A porous wave absorber
is supplied at the end of the wave flume as shown in Fig. 8.

Fig. 8. Wave flume with a system of wave gauges.

The wavemaker generated modulated wave trains of different frequencies to
verify the model derived to describe the propagation and evolution of nonlinear
water waves. The measurements of the free-surface elevation were conducted by
a group of resistance-type wave gauges installed in the wave flume. The free-
surface elevation was measured for each wave train for about 100 s and were
sampled at the rate of 200 Hz. The analysis of the free-surface elevation was
conducted by applying a Fourier method and Kalman filter.

Laboratory experiments in the wave flume were conducted at the water depth
h = 0.6 m. The measured time series of free-surface elevations, the evolution of
wave components in the generated wave trains and the measured wave amplitude
spectra, were used to conduct verification of the theoretical approach.

6. Comparisons with experimental data

A comparison between theoretical results and experimental data is shown
in Fig. 9. The plots show the predicted and measured time series of the free-
surface elevation. The results obtained by application of the derived model were
compared with experimental data at eight locations along the wave flume. The
comparisons are presented for the first, the fourth, and the last wave gauge. Be-
cause water waves in the wave flume are exposed to damping, a standard laminar
damping proposed by Larsen and Dancy [17] was incorporated in the theoreti-
cal model to calculate theoretical results for comparisons with experimental data.
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The plots in Fig. 9 show that the theoretical results obtained by the applica-
tion of the model derived to describe the evolution of water waves in a wave train
are in reasonable agreement with experimental data. A fairly good agreement
between the theoretical results and experimental data is observed. A satisfac-
tory agreement between theoretical results and experimental data is observed
even for complex changes of the wave train arising from wave instabilities. Some
discrepancies observed between the predicted and measured time series of the
free-surface elevation are likely related with higher-order nonlinear effects that
are not included in the theoretical approach.

Fig. 9. Predicted and measured free-surface elevation for L/h = 2; black line – theoretical
results, blue line – experimental data.

A complementary verification of the model derived to describe the evolution
of water waves in a wave train was conducted by applying a Fourier analysis and
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comparing the wave amplitude spectra obtained from theoretical results and
experimental data. The outcome of the Fourier analysis is presented in Fig. 10.
The plots in Fig. 10 show the amplitudes of wave components for the time series
presented in Fig. 9.

Fig. 10. Outcome of Fourier analysis; black line – theoretical results, blue line –
experimental data.

The plots in Fig. 10 show that the theoretical results obtained by the appli-
cation of the model derived to describe the evolution of water waves in a wave
train are in reasonable agreement with experimental data. A fairly good agree-
ment between the predicted wave amplitude distribution and the corresponding
experimental data is observed for a wide range of wave frequencies. The plots
show that the model predicts fairly well the multi-peak spectra including wave
spectra with significant nonlinear wave components.
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7. Summary

A theoretical approach is applied to predict the propagation and evolution of
nonlinear water waves in a wave train. A semi-analytical solution was derived by
applying an eigenfunction expansion method. The solution is applied to study the
instability and evolution of nonlinear waves in a wave train and the formation of
freak waves. The main attention is paid to the wave profile, the wave spectrum,
and the changes of wave profile and wave spectrum due to the interaction of
wave components in a wave train.

The results indicate that for waves of very low steepness, the nonlinear effects
and the changes of wave profile and wave spectrum are of secondary importance,
and weakly nonlinear wave theories can be applied to describe wave propaga-
tion in a wave train. For steeper waves the interaction between waves in a wave
train are becoming more and more important and weakly nonlinear wave theo-
ries cannot be applied to describe substantial changes in the wave profile. The
results show that a train of basically sinusoidal waves may drastically change its
form within a relatively short distance from its original position and often freak
waves are formed. The interaction between waves in a wave train and significant
evolution of wave profile has substantial effects on the wave spectrum. A train of
initially very narrow-banded spectrum changes its simple one-peak spectrum to
a broad-banded or multi-peak spectrum in a fairly short period of time, which of-
ten leads to the formation of large freak-type waves. The analysis indicates that
these phenomena cannot be properly described by the nonlinear Schrödinger
equation or its modifications. The solution of the nonlinear Schrödinger equa-
tion provides insight into the instability of weakly nonlinear waves; however,
its practical applicability range is very limited because wave evolution is a very
sensitive process and the solution often provides confusing results.

Laboratory experiments were conducted in a wave flume to verify the the-
oretical approach. The free-surface elevation was recorded by a system of wave
gauges to compare experimental data with theoretical results provided by the
semi-analytical solution. The comparisons have been conducted for wave profiles
and wave amplitude spectra. The analysis shows that theoretical results are in a
fairly good agreement with experimental data. A reasonable agreement between
theoretical results and experimental data is observed, even for complex changes
of wave trains arising from wave instabilities.
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