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The effect of surface elasticity on a Mode-III interface crack
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We study the contribution of surface elasticity to the anti-plane deformations
of a linearly elastic bi-material with Mode-III interface crack. The surface elasticity
is incorporated using a version of the continuum-based surface/interface model of
Gurtin and Murdoch. We obtain a complete semi-analytic solution valid throughout
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face leads to finite stresses at the crack tips and stress discontinuities across the
material interface.
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1. Introduction

The analysis of the problem of a crack at the interface between dissimilar
elastic materials is critical for the understanding of failure modes and in the
general stress analysis of advanced composite materials (for example, laminar
and fiber-reinforced composites) where, for example, a high possibility of material
debonding and cracking or sliding of the interface exists. Consequently, this
problem has been the subject of research and discussion in the classical literature
on elasticity theory.

Recently, it has been shown that a more accurate and comprehensive analysis
of the deformation of an elastic solid with one or more surfaces, can be achieved
by incorporating a description of the separate surface mechanics near each sur-
face of the solid. In the case of a solid containing a crack, a comprehensive
model includes surface effects corresponding to the two surfaces (faces) of the
crack. In the context of continuum-based analytical models, the surface model
proposed in [1, 2] has been used extensively in a number of studies including
several problems dealing with fracture mechanics (see, for example, [3, 4] and
the bibliographies contained therein). In this paper, we further extend this idea
and consider anti-plane deformations of a linearly elastic solid consisting of two
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(perfectly) bonded dissimilar isotropic elastic materials (here represented by two
bonded half-spaces), in the presence of a crack along the material interface. Most
significantly, the crack faces are assumed to have elastic properties different from
those of each of the bulk materials.

Using complex variable methods, we reduce the corresponding problem to
a system of coupled Cauchy singular integro-differential equations [5] which is
solved numerically using an adapted collocation technique [6]. This leads to
a complete semi-analytic solution, valid throughout the entire domain of inter-
est (including at the crack tips). Finally, we show that, among various other
interesting phenomena, the stress component (σxz) demonstrates a discontinuity
across the bi-material interface, which is in contrast to the classical results from
linear elastic fracture mechanics [7, 8].

Throughout the paper, we make use of a number of well-established symbols
and conventions. Thus, unless otherwise stated, Greek and Latin subscripts take
the values 1, 3 and 1, 2, 3, respectively, summation over repeated subscripts
is understood, (x, z) and (x, y, z) are generic points in the (x, z)-plane and R

3,
respectively and δij are the Kronecker delta. Finally, we note that the generic
points (x, z) and (x, y, z) may also be labelled (x1, x3) and (x1, x2, x3), when
reference is made to {ei}3

i=1, the standard basis for R
3.

2. Anti-plane interface crack problem with surface stress:

governing equations

It is well-known that in absence of the body forces, the equilibrium and con-
stitutive equations describing the deformation of a linearly elastic, homogeneous
and isotropic (bulk) solid are given by:

σij,j = 0, σij = λδijεkk + 2µεij ,(2.1)

εij =
1

2
(ui,j + uj,i),(2.2)

where λ and µ are the Lamé constants of the material, ui is the ith component
of the displacement vector u in R

3, ( ),j denotes differentiation with respect to
xj , and σij , εij are the components of the stress and strain tensors in the bulk
material, respectively.

2.1. Surface equation

Although Eqs. (2.1)–(2.2) remain true in the bulk material, equilibrium on
the (crack) surface is now described by the equations (see [1, 2] and [9] for
detailed derivations):

(2.3)1 σs
αβ,βeα + [σαjnjeα] = 0, (tangential-direction),
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(2.3)2 kαβσ
s
αβ = [σijninj ], (normal direction),

and

(2.3)3 σs
αβ = σ0δαβ + 2(µs − σ0)ε

s
αβ + (λs + σ0)ε

s
γγδαβ + σ0∇su.

Here, the suffix s denotes the corresponding quantity on the crack face as
a result of the surface elasticity, [∗] = (∗)in − (∗)out denotes the jump of the
quantity “∗” across the surface (here “in” and “out” refer, respectively, to the in-
side and outside of the body) and σ0 is the surface tension. The curvatures kαβ

are defined in such a way that they are positive if the center of curvature is within
the “−” side (here, the “−” and “+” sides denote the lower (y < 0) and upper
(y > 0) half-planes, as depicted in Fig. 1). Finally, n = (n1, n2, n3) is the unit
normal vector of the surface pointing from the “−” side to the “+” side. We men-
tion here that Eqs. (2.3) lack the additional term (namely the surface gradient
term) present in the original Gurtin–Murdoch model. This term is intentionally
neglected here since it does not contribute to the resulting equilibrium condition
on the (crack) surface, i.e. in the analysis of anti-plane deformations only the
out-of-plane displacement component w(x, y) is considered.

Fig. 1. Scheme of the problem.

Remark 1. It is well-known that the relation between the surface stresses
(σs ) and surface energy (Γ) can be determined by

σs
αβ = σ0δαβ +

∂Γ

∂εs
αβ

.
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In the Gurtin–Murdoch surface elasticity model, it is suggested that the surface
energy (Γ) takes the form of a quadratic function of the surface strain invariants:

Γ =
1

2
(λs + σ0)(ε

s
αα)2 + (µs − σ0)(ε

s
αβε

s
αβ) + σ0

1

2
|∇su|2,

from which the expression for the surface stresses can be obtained. It should be
noted here that the interface stress-strain law depends on several factors, includ-
ing the physical assumptions of the surface/interface elasticity and the geometri-
cal changes of the surface with initial stress. This means that the stress-strain law
may assume different forms, depending on the particular mathematical/physical
assumptions adopted. Currently, there is no clear physical evidence in favor of
any specific surface model.

2.2. Complex-variable formulation

In the anti-plane shear of an isotropic elastic medium, we assume that the
displacement vector u with components now denoted by (u, v, w), satisfies the
condition

(2.4) w = w(x, y), u = v = 0,
∂2w

∂x2
+
∂2w

∂y2
= 0.

In view of Eqs. (2.1)–(2.2), we have:

(2.5)
σxz = 2µεxz = µ

∂w

∂x
, σyz = 2µεyz = µ

∂w

∂y
,

σxy = σxx = σyy = σzz = 0.

Since w(x, y) is a harmonic function, we denote by ψ(x, y) its conjugate harmonic
function. Introducing the complex variable z = x+ iy, we can now write

(2.6) w = Re[Ω(z)], Ω(z) = w(x, y) + iψ(x, y),

where Ω(z) is an analytic function of z in the domain under consideration (in our
case, S+ ∪ S− = S exterior to the crack, as depicted in Fig. 1). From Eq. (2.6)
we then have that

(2.7)
dΩ

dz
(z) = Ω′(z) =

∂w

∂x
− i

∂w

∂y
=

1

µ
(σxz − iσyz)

and

(2.8) σyz =
µi

2
[Ω′(z) −Ω′(z)], σxz =

µ

2
[Ω′(z) +Ω′(z)].

In addition, noting that (in our case) the normal to the crack face is aligned
with the e2 or y-direction, the equilibrium conditions on the (crack) surface is
now obtained from Eqs. (2.3)1–(2.3)2 as:

(2.9) σs
xz,x + [σyz] = 0.
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2.3. A traction-free Mode-III crack problem with surface stress

We consider anti-plane deformations of two bonded dissimilar half-planes,
incorporating a single crack [−a ≤ x ≤ a], (y = 0) on its interface and subjected
to uniform remote shear stress σyz = σ∞yz (see Fig. 1). Let the upper half-plane
(y > 0, occupied by material “1”) and the lower half-plane (y < 0, occupied by
material “2”) be designated the “−” and “+” sides of the crack, respectively. The
elastic properties of material “1” and material “2” are, in general, different. We
further consider the situation when the interface under consideration is perfectly
bonded, across which the traction (σyz) and displacement (w) are continuous
(note that σxz is not necessarily continuous across the interface). Then the dis-
placements and stresses for the upper and lower half-plane can be expressed as:

w+ =
1

2
[Ω1(z) +Ω1(z)], for upper half y > 0, S+,

w− =
1

2
[Ω2(z) +Ω2(z)], for lower half y < 0, S−,

(2.10)

σ+
yz =

µ1i

2
[Ω′

1(z) −Ω′
1(z)],

σ+
xz =

µ1

2
[Ω′

1(z) +Ω′
1(z)],

for upper half y > 0, S+,

(2.11)
σ−yz =

µ2i

2
[Ω′

2(z) −Ω′
2(z)],

σ−xz =
µ2

2
[Ω′

2(z) +Ω′
2(z)],

for lower half y < 0, S−,

where subscripts “1” and “2” represent the quantities from the upper half-plane
(S+) plane and lower half-plane (S−), respectively.

From Eq. (2.9), the boundary conditions on the (crack) surface can be written
as

(2.12)

∂σs
xz

∂x
+ (σyz)

+ − (σyz)
− = 0, on the upper face,

∂σs
xz

∂x
+ (σyz)

+ − (σyz)
− = 0, on the lower face.

where, in the case of the present crack problem, the terms (σyz)
− in (2.12)1

and (σyz)
+ in (2.12)2 are zero. In view of Eqs. (2.1), (2.2) and (2.3)3 and the

assumption of a coherent interface (εs
αβ = εαβ), the surface stresses can be

expressed explicitly in terms of body (bulk) stresses as

(2.13) σs
xz = 2(µs − σ0)εxz =

µs − σ0

µ
σxz.
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Therefore, the surface conditions on either side of the crack face [−a < x < a],
(y = ±0) can then be formulated as follows:

(2.14)
(σyz)

+ = −∂σ
s
xz

∂x
= −(µs − σ0)

+∂
2w+

∂x2
, on the upper face,

(σyz)
− = +

∂σs
xz

∂x
= +(µs − σ0)

−∂
2w−

∂x2
, on the lower face,

where (µs − σ0)
+ 6= (µs − σ0)

−, in general. Adding and subtracting Eqs. (2.14)
we obtain

(2.15)

(σyz)
+ + (σyz)

− = −(µs − σ0)
+

(

∂2w+

∂x2

)

+ (µs − σ0)
−

(

∂2w−

∂x2

)

,

(σyz)
+ − (σyz)

− = −(µs − σ0)
+

(

∂2w+

∂x2

)

− (µs − σ0)
−

(

∂2w−

∂x2

)

.

where, from Eqs. (2.10),

(2.16)
∂2w+

∂x2
=

1

2
[Ω′′

1 (z)+ +Ω′′
1 (z)

+
],

∂2w−

∂x2
=

1

2
[Ω′′

2 (z)− +Ω′′
2 (z)

−
].

The aforementioned assumptions imply that the displacements and stresses are
continuous across the bi-material interface away from the crack (y = 0, |x| > a).
Therefore, we derive from Eqs. (2.10)–(2.11) that

µ1[Ω
′
1(z)

+ −Ω′
1(z)

+
] = µ2[Ω

′
2(z)

− −Ω′
2(z)

−
],

Ω1(z)
+ +Ω1(z)

+
= Ω2(z)

− +Ω2(z)
−
, y = 0, x > |a|.

By applying the relations Ω′
1(z)

+
= Ω′

1(z)
− on y = ±0, we have

(2.17)
µ1Ω

′
1(z)

+ + µ2Ω′
2(z)

+ = µ2Ω
′
2(z)

− + µ1Ω′
1(z)

−,

Ω1(z)
+ −Ω2(z)

+ = Ω2(z)
− −Ω1(z)

−.

Now, in view of Eqs. (2.17), we define analytic functions θ(z) and ψ(x) in the
whole plane (S+ ∪ S− = S) cut along L = −a ≤ x ≤ a, y = 0 as:

(2.18)
µ1Ω

′
1(z) + µ2Ω′

2(z) = µ2Ω
′
2(z) + µ1Ω′

1(z) ≡ θ(z),

Ω′
1(z) −Ω′

2(z) = Ω′
2(z) −Ω′

1(z) ≡ ψ(z).

(Again, with the surface energy θ(z) 6= 0, as w+ 6= w− on −a < x < a,
y = ±0). Therefore, Eq. (2.18)1 can be rewritten for the upper and lower half-
planes as:

(2.19)

Ω′
2(z) ≡ −µ1

µ2
Ω′

1(z) +
1

µ2
θ(z), for upper half-plane,

Ω′
1(z) ≡ −µ2

µ1
Ω′

2(z) +
1

µ1
θ(z), for lower half-plane.
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From Eq. (2.19), Eq. (2.18)2 becomes

(2.20)

Ω′
1(z) =

µ2ψ(z)

µ1 + µ2
+

1

µ1 + µ2
θ(z), for upper half-plane,

Ω′
2(z) =

µ1ψ(z)

µ1 + µ2
+

1

µ1 + µ2
θ(z), for lower half-plane.

Then, by applying Eqs. (2.19)–(2.20), Eq. (2.16) can now be re-formulated in
terms of of ψ(z) and θ(z):

(2.21)

∂2w+

∂x2
=

1

2

[

µ2

µ1 + µ2
(ψ′(z)+ − ψ′(z)−) +

1

µ1 + µ2
(θ′(z)+ + θ′(z)−)

]

,

∂2w−

∂x2
=

1

2

[

µ1

µ1 + µ2
(ψ′(z)− − ψ′(z)+) +

1

µ1 + µ2
(θ′(z)+ + θ′(z)−)

]

,

By substituting Eqs. (2.21) back into Eqs. (2.15), we have

(σyz)
+ + (σyz)

−

= − As

µ1 + µ2

(

ψ′(z)+ − ψ′(z)−

2

)

− Bs

µ1 + µ2

(

θ′(z)+ + θ′(z)−

2

)

,

(2.22)

(σyz)
+ − (σyz)

−

= − Cs

µ1 + µ2

(

ψ′(z)+ − ψ′(z)−

2

)

− Ds

µ1 + µ2

(

θ′(z)+ + θ′(z)−

2

)

,

where

As ≡ µ2(µ
s − σ0)

+ + µ1(µ
s − σ0)

−, Bs ≡ (µs − σ0)
+ − (µs − σ0)

−,

Cs ≡ µ2(µ
s − σ0)

+ − µ1(µ
s − σ0)

−, Ds ≡ (µs − σ0)
+ + (µs − σ0)

−.

In addition, now the left-hand side of Eqs. (2.22) can be expressed via Eqs. (2.11)
and (2.19) as:

(σyz)
+ + (σyz)

− =
i

2
[2µ1Ω

′
1(z)

+ + 2µ2Ω
′
2(z)

− − (θ(z)+ + θ(z)−)],

(σyz)
+ − (σyz)

− =
i

2
[θ(z)+ − θ(z)−].

Therefore, we obtain from Eqs. (2.20) that

(2.23)
(σyz)

+ + (σyz)
− =

i

2

[

2µ1µ2

µ1 + µ2
(ψ(z)+ + ψ(z)−) +

µ1 − µ2

µ1 + µ2
(θ(z)+ − θ(z)−)

]

,

(σyz)
+ − (σyz)

− =
i

2
[θ(z)+ − θ(z)−].

Consequently, from Eqs. (2.23), Eqs. (2.22) take the following forms:
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i

[

2µ1µ2

µ1 + µ2
(ψ(z)+ + ψ(z)−) +

µ1 − µ2

µ1 + µ2
(θ(z)+ − θ(z)−)

]

= − As

µ1 + µ2
(ψ′(z)+ − ψ′(z)−) − Bs

µ1 + µ2
(θ′(z)+ + θ′(z)−),

(2.24)
i[θ(z)+ − θ(z)−]

= − Cs

µ1 + µ2
(ψ′(z)+ − ψ′(z)−) − Ds

µ1 + µ2
(θ′(z)+ + θ′(z)−).

Next, if we write the unknowns ψ(z) and θ(z) as Cauchy integrals [5], noting
the endpoint conditions which characterize the requirement that the stresses
should be bounded at the crack tips, we have that

(2.25)

ψ(z) =
1

2iπ

+a
∫

−a

f(t)

t− z
dt+

µ1 + µ2

iµ1µ2
[σ∞yz ],

ψ′(z) =
1

2πi

+a
∫

−a

f(t)dt

(t− z)2
= −

[

f(t)

t− z

]a

−a

+
1

2πi

+a
∫

−a

f ′(t)dt

t− z
=

1

2πi

+a
∫

−a

f ′(t)dt

t− z
,

where

f(t0) = ψ(z)+ − ψ(z)−, f(a) = f(−a) = 0,

ψ(z)+ =
1

2
f(t0) +

1

2iπ

+a
∫

−a

f(t)

t− t0
dt+

µ1 + µ2

iµ1µ2
[σ∞yz ],

ψ(z)− = −1

2
f(t0) +

1

2iπ

+a
∫

−a

f(t)

t− t0
dt+

µ1 + µ2

iµ1µ2
[σ∞yz ].

In addition, in view of Eqs. (2.24)2 and (2.25)2, (θ(z)+ − θ(z)−) must be purely
imaginary. Therefore, we express the unknown θ(z) as:

(2.26)

θ(z) =
1

2iπ

+a
∫

−a

iα(t)

t− z
dt,

θ′(z) =
1

2πi

+a
∫

−a

iα(t)dt

(t− z)2
= −

[

iα(t)

t− z

]a

−a

+
1

2πi

+a
∫

−a

iα′(t)dt

t− z

=
1

2πi

+a
∫

−a

iα′(t)dt

t− z
,

where

iα(t0) = θ(z)+ − θ(z)−, α(a) = α(−a) = 0,
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θ(z)+ =
1

2
iα(t0) +

1

2iπ

+a
∫

−a

iα(t)

t− t0
dt,

θ(z)− = −1

2
iα(t0) +

1

2iπ

+a
∫

−a

iα(t)

t− t0
dt.

Finally, from Eqs. (2.24–2.26), we obtain the following Cauchy singular in-
tegro-differential equations for the unknowns f(t) and α(t), t ∈ (−a, a):

2µ1µ2

π

+a
∫

−a

f(t)

t− t0
dt+ 4(µ1 + µ2)[σ

∞
yz ] − (µ1 − µ2)α(t0)

= −Asf ′(t0) −
Bs

π

+a
∫

−a

α′(t)

t− t0
dt,(2.27)

α(t0) =
Cs

µ1 + µ2
f ′(t0) +

Ds

π(µ1 + µ2)

∫ +a

−a

α′(t)

t− t0
dt.

3. Solution of singular integro-differential equations

by a collocation method

The equations appearing in Eqs. (2.27) are coupled first-order Cauchy sin-
gular integro-differential equations. Although similar types of equations have
been well studied, classical methods of their solution are not directly applicable
here without additional mathematical intervention. In this section, we employ
the T−1 operator from [8] and [10] and a collocation method [6] to analyze the
problems mentioned above.

By replacing α(t0) in Eq. (2.27)1 and f ′(t0) in Eq. (2.27)2 by their counter-
parts, we derive the following new system of equations:

+a
∫

−a

−2Csµ1µ2

As f(t) +
(

Ds − CsBs

As

)

α′(t)

t− t0
dt

= π

(

µ1 + µ2 −
Cs(µ1 − µ2)

As

)

α(t0) +
4πCs(µ1 + µ2)

As
[σ∞yz ].

(3.1)
+a
∫

−a

−2µ1µ2f(t) +
(

Ds(µ1−µ2)
µ1+µ2

−Bs
)

α′(t)

t− t0
dt

= π

(

As − Cs(µ1 − µ2)

µ1 + µ2

)

f ′(t0) + 4π(µ1 + µ2)[σ
∞
yz ].
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Assume t/a = x in Eqs. (3.1) and obtain

+1
∫

−1

−2Csµ1µ2

As f(ax) +
(

Ds − CsBs

As

) dα(ax)
d(ax)

a(x− x0)
(a)dx

= π

(

µ1 + µ2 −
Cs(µ1 − µ2)

As

)

α(ax0) +
4πCs(µ1 + µ2)

As
[σ∞yz ],

(3.2)
+1
∫

−1

−2µ1µ2f(ax) +
(

Ds(µ1−µ2)
µ1+µ2

−Bs
)

dα(ax)
d(ax)

a(x− x0)
(a)dx

= π

(

As − Cs(µ1 − µ2)

µ1 + µ2

)

df(ax0)

d(ax0)
+ 4π(µ1 + µ2)[σ

∞
yz ].

Rewriting x → t, x0 → t0 and further defining f(at) = u(t), α(at) = η(t), from
Eqs. (2.21), we obtain

+1
∫

−1

−2Csµ1µ2

As u(t) +
(

Ds

a − CsBs

aAs

)

η′(t)

t− t0
dt

= π

(

µ1 + µ2 −
Cs(µ1 − µ2)

As

)

η(t0) +
4πCs(µ1 + µ2)

As
[σ∞yz ],

(3.3)

+1
∫

−1

−2µ1µ2u(t) +
(

Ds(µ1−µ2)
a(µ1+µ2) − Bs

a

)

η′(t)

t− t0
dt

= π

(

As

a
− Cs(µ1 − µ2)

a(µ1 + µ2)

)

u′(t0) + 4π(µ1 + µ2)[σ
∞
yz ],

where 1 < t0 < 1, u(1) = u(−1) = η(1) = η(−1) = 0.
We now utilize the first inverse operator T−1

1st defined in the following manner
(see [8] or [10]):

T−1
1stψ(t) =

√

1 − t20
π

1
∫

−1

ψ(t)dt

−
√

1 − t20
π2

1
∫

−1

ψ(t)

(t− t0)
√

1 − t2
dt, t0 ∈ (−1, 1),(3.4)

T (T−1ψ) = ψ.
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It follows then from Eq. (3.3)1 that

(3.5) − 2Csµ1µ2

As
u(t0) +

(

Ds

a
− CsBs

aAs

)

η′(t0)

=

√

1 − t20
π

1
∫

−1

[

−2Csµ1µ2

As
u(t) +

(

Ds

a
− CsBs

aAs

)

η′(t)

]

dt

−
√

1 − t20
π

1
∫

−1

(

µ1 + µ2 − Cs(µ1−µ2)
As

)

η(t) + 4Cs(µ1+µ2)
As [σ∞yz ]

(t− t0)
√

1 − t2
dt.

Similarly, by applying the second inverse operator T−1
2nd as defined by the relation

in [6]

T−1
2ndψ(t) =

1

π
√

1 − t20

1
∫

−1

ψ(t)dt

− 1

π2
√

1 − t20

1
∫

−1

√
1 − t2ψ(t)

t− t0
dt, t0 ∈ (−1, 1),(3.6)

T (T−1ψ) = ψ,

we obtain from Eq. (3.3)2 that [3]

(3.7)
√

1 − t20

[

−2µ1µ2u(t0) +

(

Ds(µ1 − µ2)

a(µ1 + µ2)
− Bs

a

)

η′(t0)

]

=
1

π

1
∫

−1

[

−2µ1µ2u(t) +

(

Ds(µ1 − µ2)

a(µ1 + µ2)
− Bs

a

)

η′(t)

]

dt

− 1

π

1
∫

−1

√
1 − t2

t− t0

[(

As

a
− Cs(µ1 − µ2)

a(µ1 + µ2)

)

u′(t) + 4(µ1 + µ2)[σ
∞
yz ]

]

dt.

If we assume that the functions u and η have an (approximate) expansion of
the form

(3.8) u(t0) =

N
∑

m=0

amTm(t0), η(t0) =

N
∑

m=0

bmTm(t0), m = 0, 1, 2, . . . ,

where Tm(t0) represents the m-th Chebychev polynomial of the first kind, the
Eqs. (3.6)–(3.7) can then be transformed into the following system of equations
(see details in [3, 11] and the associated properties of Chebychev polynomials
therein):
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(3.9)
N

∑

m=0

[

amTm(t0)

{

2µ1µ2

√

1 − t20 +m

(

As

a
− Cs(µ1 − µ2)

a(µ1 + µ2

)

)}

−2µ1µ2

π
am

(

1 + (−1)m

1 −m2

)

+ bm

(

Ds(µ1 − µ2)

a(µ1 + µ2)
− Bs

a

)

×
{

(1 − (−1)m)

π
−

√

1 − t20mUm−1(t0)

}

]

= −4t0(µ1 + µ2)[σ
∞
yz ],

where

(3.10) bm = am

(

−2Csµ1µ2

As

)[

√

1 − t20
π

(

1 + (−1)m

1 −m2

)

− Tm(t0)

]

×
[

Um−1(t0)

{(

Ds

a
− CsBs

aAs

)

m+
√

1 − t20

(

µ1 + µ2 −
Cs(µ1 − µ2)

As

)}

−(1 − (−1)m)
√

1 − t20
π

(

Ds

a
− CsBs

aAs

)

]−1

,

and the end conditions u(1) = u(−1) = η(1) = η(−1) = 0 as:

(3.11)

N
∑

m=0

am(−1)m = 0,
N

∑

m=0

am = 0,

N
∑

m=0

bm(−1)m = 0,

N
∑

m=0

bm = 0, m = 0, 1, 2, . . .

We now select the set of collocation points as given by t0 = t0i = − cos(iπ/N)
for i = 1, 2, . . . , N − 1. In addition, by evaluating Chebychev polynomials of the
first kind Tm(t0i) and the second kind Um−1(t0i) with respect to each collocation
point, we obtain that

(3.12)

Tm

(

− cos

(

iπ

N

))

= − cos

(

imπ

N

)

,

Um−1

(

− cos

(

iπ

N

))

=
sin

(

miπ
N

)

sin
(

iπ
N

) .

Consequently, in view of Eq. (3.12), Eqs. (3.10)–(3.11) further reduce to the
following system of linear equations:
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(3.13)
N

∑

m=0

[

−am cos

(

imπ

N

){

2µ1µ2

√

1−
(

cos

(

iπ

N

))2

+m

(

As

a
−C

s(µ1−µ2)

a(µ1+µ2)

)}

−2µ1µ2

π
am

(

1+(−1)m

1−m2

)

+bm

(

Ds(µ1−µ2)

a(µ1+µ2)
−B

s

a

){

(1−(−1)m)

π
−

√

1−
(

cos

(

iπ

N

))2

m

(

sin
(

miπ
N

)

sin
(

iπ
N

)

)}

]

= 4 cos

(

iπ

N

)

(µ1+µ2)[σ
∞
yz ] ,

where

(3.14)

bm = Kam,

K = am

(

−2Csµ1µ2

As

)

[

√

1−
(

cos
(

iπ
N )

)2

π

(

1+(−1)m

1−m2

)

+cos

(

imπ

N

)

]

×
[

sin
(

miπ
N

)

sin
(

iπ
N

)

{(

Ds

a
−C

sBs

aAs

)

m+

√

1−
(

cos

(

iπ

N

))2(

µ1+µ2−
Cs(µ1−µ2)

As

)}

−
(1−(−1)m)

√

1−
(

cos
(

iπ
N )

)2

π

(

Ds

a
−C

sBs

aAs

)

]−1

,

for 1 ≤ i ≤ N − 1. In addition, from the end conditions Eq. (38), we have that

(3.15)

N
∑

m=0

am =

N
∑

m=0

bm = 0, for i = 0,

N
∑

m=0

am(−1)m =
N

∑

m=0

bm(−1)m = 0, for i = N.

4. Results and discussion

In this section, the numerical solution of Eqs. (3.13)–(3.15) is performed
for a range of surface parameters. The listed values are estimated properties
of “GaN” obtained from the work of Sharma and Ganti in [12]. A series
of Gallium nitride (GaN) material distinguishes itself by high heat capacity
and mechanical stability and therefore, it is used in the manufacture of semi-
conductors.
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(4.1) Se =
µs − σ0

a(µ1 + µ2)
: 8.65 × 10−5 < Se < 0.0865, 10 nm < a < 10 µm,

µs = 161.73 (J/m2), σ0 = 1.3 (J/m2), µ = 168 (Gpa).

Throughout the analysis, we have considered the situation where the material
properties of the upper half-plane are assumed to be ten times greater than those
of lower half-plane (i.e. µ1 = 168 (Gpa), µ2 = 16.8 (Gpa)), whereas the surface
material properties on the upper and lower crack faces are set to be equal (i.e.
(µs − σ0)

+ = (µs − σ0)
−). This is only because we currently have very lim-

ited sources of surface material properties available [12]. However, the method
presented here is sufficiently general since it incorporates the case in which the
surface material properties from the upper and lower crack faces are different
((µs − σ0)

+ 6= (µs − σ0)
−, see Eqs. (2.22) and (3.13)–(3.15)) and a wide range

of surface parameters in the physical domain.

4.1. Comparison with known classical results

We first examine how the solution obtained here, in the presence of surface
effects, differs from the solution of the classical interface anti-plane crack prob-
lem. The corresponding analytical solution of the latter problem can be found
in [5] and [7]:

ψ(z) =

(

µ1 + µ2

µ1µ2

) −iσ∞yzz√
z2 − a2

.

Evaluating ψ(z) at (−a < t < a), we have that

ψ(z)+ =

(

µ1 + µ2

µ1µ2

) −iσ∞yzt
√

−(a2 − t2)

=

(

µ1 + µ2

µ1µ2

) −σ∞yzt√
a2 − t2

, on the upper face,

(4.2)

ψ(z)− =

(

µ1 + µ2

µ1µ2

)

iσ∞yzt
√

−(a2 − t2)

=

(

µ1 + µ2

µ1µ2

)

σ∞yzt√
a2 − t2

, on the lower face.

Then the corresponding difference between the upper and lower faces can be
defined from Eqs. (2.25) by

(4.3) ψ(z)+ − ψ(z)− = f(t) =

(

µ1 + µ2

µ1µ2

) −2σ∞yzt√
a2 − t2

, −a < t < a.
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Also, in the classical case, θ(z) is found to be zero. Thus, we have that

(4.4) θ(z)+ − θ(z)− = α(t) = 0.

Returning to our problem, the values of f(t) can be estimated using Eqs. (3.13)–
(3.15) and are plotted in Fig. 2, where the parameter Se is varied by changing
the dimension of the crack (i.e. 20 nm < 2a < 20 µm).

Figure 2 clearly indicates that our solution reduces to that of the classical
case as the surface effect becomes negligible. We have also found that, in contrast
to the classical results (see Eq. (4.4)), α(t) has indeed non-zero values (see Fig. 3)
resulting in a noticeable contribution to the stress field, especially on the real
axis. This will be the subject of the following section.
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Fig. 2. The solution of f(t) with respect to surface parameter (Se), when
σ∞

yz

µ1+µ2

= 0.1.

Fig. 3. The solution of α(t), when
σ∞

yz

µ1+µ2
= 0.1.
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4.2. Analysis of the stress distribution under the influence of surface effects

From Eqs. (2.11) and (2.20), stresses (σyz) on the upper and lower half-planes
can be determined by

σ+
yz =

µ1i

2(µ1 + µ2)

[

µ2ψ(z) + θ(z) − µ2ψ(z) − θ(z)
]

,

σ+
xz =

µ1

2(µ1 + µ2)

[

µ2ψ(z) + θ(z) + µ2ψ(z) + θ(z)
]

,

for upper half-plane y > 0, S+,

σ−yz =
µ2i

2(µ1 + µ2)

[

µ1ψ(z) + θ(z) − µ1ψ(z) − θ(z)
]

,

σ−xz =
µ2

2(µ1 + µ2)

[

µ1ψ(z) + θ(z) + µ1ψ(z) + θ(z)
]

,

for lower half-plane y < 0, S−,

where the complex potentials ψ(t) and θ(t) can be obtained via Eqs. (2.25)1 and
(2.26)1 with known solutions of f(t) and α (t). These results are presented in
Figs. 4–5 with clear indication of rapid convergence of the method (in approxi-
mately 30 iterations).

We have found that, in contrast to the classical case (where surface effects
are completely neglected), the stresses at the crack tips remain finite and do
indeed converge to the solutions from classical linear elastic fracture mechanics
as the surface effects become insignificant (see Fig. 6). More importantly, the
results in Figs. 6 and 7 illustrate the fact that σyz is continuous across the bi-
material interface, whereas σxz jumps across the interface. The result is in sharp
contrast to the classical fracture mechanics solution and due mainly to the non-
zero contribution of the complex potential θ(z) in presence of the surface effects
describing more accurate situation of stress discontinuity across the interface.
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Remark 2. In the theory of linear elastic fracture mechanics, σxz is contin-
uous across the bi-material interface, since its values are zero on both sides of
the interface:

σ+
xz =

µ1

2 (µ1 + µ2)

[

µ2ψ(z) + µ2ψ(z)
]

= σ−xz =
µ2

2 (µ1 + µ2)

[

µ1ψ(z) + µ1ψ (z)
]

= 0,

∵ ψ(z) = Im, on y = ±0, x > |a|.

However, the interface condition under consideration indicates that traction (σyz)
and displacements (w) are continuous across the interface, yet σxz are not nec-
essarily continuous. Perhaps, the continuity in stress (σ+

xz = σ−xz) indicates the
symmetrical nature of the problem in which the solution of Mode-III interface
crack problem can be obtained by superposing solutions of two half-plane prob-
lems with distinct material properties on either side of the interface. In the case
when the surface elasticity is present, the symmetry breaks down due to the
effect of surface mechanics and therefore, the above-mentioned statement can
no longer be satisfied. In fact, stress (σxz) on both sides of the interface can be
estimated as:

σ+
xz =

µ1

2(µ1 + µ2)

[

θ(z) + θ(z)
]

, on y = 0+, x > |a|,

σ−xz =
µ2

2(µ1 + µ2)

[

θ(z) + θ(z)
]

, on y = 0−, x > |a|.

This clearly indicates that the estimated stresses differ according to the material
properties (µ1, µ2) of the upper and lower half-planes.

Finally, we see from Fig. 6 that stress distribution along the real axis increases
when the surface effect becomes negligible and converges to the value 0.1 (which
is the magnitude of the applied remote stress use in the computations) as we move
away from the crack tips. Further, since the surface parameter Se is controlled
by variations in the crack length, our results also indicate that the corresponding
stresses are strongly dependent on crack size [12, 13].

5. Conclusions

In this paper, we have incorporated the effects of surface elasticity into
a classical Mode-III interface crack problem arising in the anti-plane shear de-
formations of a linearly elastic solid. The surface mechanics are employed us-
ing a version of the continuum-based surface/interface model of Gurtin and
Murdoch. Complex variable methods are used to obtain a system of coupled
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Cauchy singular integro-differential equations of the first-order which is solved
numerically using an adapted collocation method. We have obtained a com-
plete semi-analytic solution (not simply a crack-tip solution) which demon-
strates several interesting phenomena, when the bi-material solid incorporates
a traction-free crack on its interface and is subjected to uniform, remote load-
ing. In particular, we note that the stresses at the (sharp) crack tip remain
finite but more importantly, the stress (σxz) jumps across the bi-material in-
terface, in contrast to the classical result from linear elastic fracture mechanics.
We also mention that the solutions obtained here reduce to those obtained for
the homogeneous material case (see [3]) by setting µ1 = µ2 and (µs − σ0)

+ =
(µs − σ0)

−.
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