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Electromagnetic solids with irreversible process
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The non-local model of electromagnetothermomechanics for polarized non-
ferromagnetic solids is proposed. It takes into account the process of local mass
displacement due to structural changes of a physically small element of a body. An ap-
proach which takes into account possible irreversibility of the local mass displacement
is also proposed. On this basis, we have obtained the rheological constitutive rela-
tions for the vectors of the mass displacement and for the polarization. The proposed
model allows to study the surface charge kinetics and the formation of near-surface
inhomogeneities of the stress-strained state as well as the electric polarization, surface
tension and disjoining pressure.
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1. Introduction

Non-local theories of dielectrics, which take into account the depen-
dence of the body state on the strain gradients [1], the polarization gradient [2],
the electric field gradients or higher electric moments (quadrupoles, octupoles
and so on) [3, 4], as well as the theories which predict the constitutive relations of
integral type [5], are well known in literature [5–8]. Recently, a new non-local the-
ory of nonferromagnetic dielectric bodies has been proposed. This theory takes
into account the process of local displacement of mass due to structural reorder-
ing of a physically small element of the body. The aforementioned reordering can
be observed, in particular, in close vicinity of newly created surfaces or due to the
body polarization, etc. Equations of such a theory with accounting for reversible
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processes of local displacement of mass have been obtained in [9, 10]. The irre-
versibility of the local mass displacement process has been taken into account
in [11]. In this paper we summarize the theory of coupled electromechanical pro-
cesses in nonferromagnetic thermoelastic dielectrics with local displacement of
mass. The model equations are used to study the near-surface inhomogeneity of
the electromechanical fields in dielectric solids as well as the dynamics of cre-
ation of such inhomogeneities due to the surfaces formation. The effect of the
coupled mechanical and electric fields in the near-surface regions as well as the
size effects are analyzed.

2. Theory

We consider an isotropic thermoelastic polarized nonferromagnetic solid that
occupies a region (V ) of the Euclidean space and is bounded by a closed smooth
surface (Σ). The solid is under the influence of an external load, which induces
the mechanical, thermal and electromagnetic processes, and causes ordering of
the body structure and electric charge, that manifests itself in the appearance of
the efficient mass flux Jms and electric flux Jes (the polarization current) [9, 10].
To obtain the basic set of equations we used the electrodynamics equations, the
equations of mass conservation and also the balance equations of entropy and
energy.

The Maxwell’s equations in the local form may be represented as [12]

(2.1) ∇ · B = 0, ∇ · D = ρe, ∇× E = −∂B
∂t
, ∇×H = Je + ε0

∂E

∂t
+
∂P

∂t
.

Here E and H are the electric and magnetic fields, B and D are the vectors of
electric and magnetic inductions. For nonferromagnetic medium B = µ0H, D =
ε0E+P, where P denotes the local displacement of electric charge (polarization),
ε0 and µ0 are the electric and magnetic constants, ρe is the density of free electric
charge, Je is the density of electric current, ∂P/∂t is the density of current caused
by ordering of a charged system (polarization current), t is the time and ∇ is
the Hamilton operator.

The balance equation of electromagnetic energy can be deduced from Max-
well’s equations [9, 12]

(2.2)
∂Ue

∂t
+ ∇ · Se +

(

Je +
∂P

∂t

)

· E = 0.

In Eq. (2.2), Ue = (ε0E
2 + µ0H

2)/2 is the density of electromagnetic energy and
Se = E ×H is the flow of electromagnetic energy (Poynting vector).

With account of the process of local mass displacement, the conservation of
mass can be expressed as [10]
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(2.3)
d

dt

∫

(V )

ρdV = −
∫

(Σ)

(ρv∗ + Jms) · n dΣ,

where ρ is the mass density, v∗ is a velocity of the convective displacement of
the fixed body element, and n is the outward unit normal to the surface (Σ).

We introduce the vector of local mass displacement by the formula

Πm(r, t) =

t
∫

0

Jms(r, t
′)dt′.

Here r is the position vector. For vector Jms one obtains

(2.4) Jms =
∂Πm

∂t
.

The velocity vector v of the centre of mass we define by relation

v =
1

ρ

(

ρv∗ +
∂Πm

∂t

)

.

Then the mass balance equation in the local form acquires a standard form

(2.5)
∂ρ

∂t
+ ∇ · (ρv) = 0.

By analogy with the induced electric charge [12], we introduce the density of
induced mass ρmπ, which has the dimension of mass density. We require that for
an arbitrary solid of finite size (domain (V )), the vector Πm of the local mass
displacement and the density of induced mass ρmπ satisfy [10]

∫

(V )

Πm dV =

∫

(V )

ρmπ r dV .

From this relation we deduce that ρmπ = −∇ · Πm [10]. It is easy to show
that equation

(2.6)
∂ρmπ

∂t
+ ∇ · Jms = 0

is satisfied. This equation has the form of the conservation law of induced mass.
In the local form, the entropy balance equation is [13]

(2.7) ρT
ds

dt
= −∇ · Jq +

1

T
Jq · ∇T + Tσs + ρℜ.

Here s is the specific entropy, T is the absolute temperature, σs is the entropy
production, ℜ denotes the distributed thermal sources, Jq is the density of heat
flux, and d . . . /dt = ∂ . . . /∂t+ v · ∇ . . ..
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The balance equation of energy of the system “solid-electromagnetic field” in
the integral form is given by Burak et al. [10]:

(2.8)
d

dt

∫

(V )

(

ρu+ Ue +
1

2
ρv2

)

dV

= −
∮

(Σ)

[

ρ(u+
1

2
v2)v − σ̂ · v+Se + Jq + µJm + µπ

∂Πm

∂t

]

· n dΣ

+

∫

(V )

(ρF · v + ρℜ)dV .

Here u and ρv2/2 are the specific internal and kinetic energies, σ̂ is the Cauchy’s
stress tensor, µJm is the flux of energy connected with the mass transport relative
to the center of mass, Jm = ρ(v∗ − v), µπ∂Πm/∂t is the flux of energy related
with structure ordering (local mass displacement), µ is the chemical potential, µπ

is the energy measure of the influence of the mass displacement on the internal
energy, and F is the mass force.

Taking into account the mass conservation law (2.5), the entropy balance
(2.7) and the electromagnetic energy equation (2.2) and using the Ostrogradsky–
Gauss theorem, from Eq. (2.8) we obtain the following local form of balance
equation of internal energy:

(2.9) ρ
du

dt
= ρT

ds

dt
+ σ̂∗ :

dê

dt
+ ρE∗ ·

dp

dt
+ ρµ′π

dρm

dt
− ρ∇µ′π · dπm

dt

+ Je∗ · E∗ − Jq ·
∇T
T

− Tσs + v ·
(

−ρdv
dt

+ ∇ · σ̂∗ + Fe + ρF∗

)

.

Here

(2.10)

ê =
1

2

[

∇u + (∇u)T
]

,

σ̂∗ = σ̂ − ρ
(

E∗ · p − ρmµ
′
π − πm · ∇µ′π

)

Î,

F∗ = F + ρm∇µ′π − πm · ∇∇µ′π,

Fe = ρeE∗ +

[

Je∗ +
∂(ρp)

∂t

]

× B + ρ (∇E∗) · p,

E∗ = E + v ×B, Je∗ = Je − ρev, µ′π = µπ − µ,

ê is the strain tensor, u is the displacement vector, the superscript T denotes
the transpose, p = P/ρ, πm = Πm/ρ, ρm = ρmπ/ρ, and Î is the unit tensor.
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We represent the vectors E∗ and ∇µ′π as a sum of the reversible Er
∗, (∇µ′π)r

and irreversible Ei
∗, (∇µ′π)i components, namely

(2.11) E∗ = Er
∗ + Ei

∗, ∇µ′π = (∇µ′π)r + (∇µ′π)i.

Then Eq. (2.9) becomes

(2.12) ρ
du

dt
= ρT

ds

dt
−σ̂∗ :

dê

dt
+ρEr

∗·
dp

dt
+ρµ′π

dρm

dt
−ρ(∇µ′π)r ·dπm

dt

+ρEi
∗·
dp

dt
−ρ(∇µ′π)i·dπm

dt
+ Je∗·E∗−Jq ·

∇T
T

−Tσs−v·
(

ρ
dv

dt
−∇·σ̂∗−Fe−ρF∗

)

.

Introducing the generalized Helmholtz free energy f = u − Ts − Er
∗ · p +

(∇µ′π)r ·πm, and from the requirement that the balance equation of free energy
is invariant with respect to translations, we obtain the following Gibbs equation,
relation for the entropy production, and the momentum equation [11, 14]:

df = −sdT +
1

ρ
σ̂∗ : dê − p · dEr

∗ + µ′πdρm + πm · d(∇µ′π)r,(2.13)

σs = Je∗ ·
E∗

T
− Jq ·

∇T
T 2

+ ρ
dp

dt
· Ei

∗

T
− ρ

dπm

dt
· (∇µ′π)i

T
,(2.14)

ρ
dv

dt
= ∇ · σ̂∗ + Fe + ρF∗.(2.15)

Note also that Eq. (2.13) is the generalization of the Gibbs relation for po-
larized thermoelastic nonferromagnetic medium with regard to irreversibility
of both the local mass and electric charges displacements. This formula con-
tains two additional terms, namely µ′πdρm and πm · d(∇µ′π)r, which describe
the process of local mass displacement with respect to its irreversibility. Since
f = f(T, ê, ρm,E

r
∗, (∇µ′π)r) and the parameters T, ρm, Er

∗, (∇µ′π)r and ê are
independent, we obtain the following constitutive equations from the Gibbs
relation

(2.16) s = − ∂f

∂T
, σ̂∗ = ρ

∂f

∂ê
, µ′π =

∂f

∂ρm
, p = − ∂f

∂Er
∗

, πm =
∂f

∂(∇µ′π)r
.

Let ê = 0, T = T0, ρm = 0, Er
∗ = 0, (∇µ′π)r = 0, σ̂∗ = 0, s = s0, µ′π = µ′π0,

p = 0, πm = 0 in the reference state. Then in the linear approximation for
isotropic elastic medium Eq. (2.16) may be written in the form

s = s0 +
CV

T0
(T − T0) +

1

ρ0
KαT e+ βTmρm,(2.17)

σ̂∗ = 2Gê +

[(

K − 2

3
G

)

e−KαT

(

T − T0

)

−Kαmρm

]

Î,(2.18)
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µ′π = µ′π0 + dmρm − 1

ρ0
Kαme− βTm(T − T0),(2.19)

p = χEEr − χEm(∇µ′π)r, πm = −χm(∇µ′π)r + χEmEr,(2.20)

where e ≡ ê : Î is the first invariant of the strain tensor, K, G, dm, CV , αT ,
αm, βTm, χE , χm and χEm are the characteristics of material, s0, T0 and µ′π0

are the entropy, the temperature and the reduced potential µ′π in the reference
state, respectively.

Using the Onsager principle and Eq. (2.14) for the entropy production, one
finds in the linear approximation [13], that

(2.21) jl =
4

∑

k=1

L′
lkXk, l = 1, 4.

Here jk, Xk are the fluxes and thermodynamic forces,

j1 = Jq, j2 = Je∗, j3 = ρ
dp

dt
, j4 = ρ

dπm

dt
,

X1 = −T−2∇T, X2 = −T−1E∗, X3 = T−1Ei
∗, X4 = −T−1(∇µ′π)i

and L′
lk (k, l = 1, 4) are kinetic coefficients. Taking into account the state equa-

tions (2.20) and formulas (2.11), we rewrite the kinetic equations (2.21) in the
form

(2.22)

Jq = −L11∇T + L12E + L13p − L14∇µ′π − L15πm,

Je∗ = −L21∇T + L22E + L23p − L24∇µ′π − L25πm,

ρ
dp

dt
= −L31∇T + L32E + L33p − L34∇µ′π − L35πm,

ρ
dπm

dt
= −L41∇T + L42E + L43p − L44∇µ′π − L45πm.

Here

Lk1 =
1

T 2
L′

k1, Lk2 =
1

T
(L′

k2 − L′
k3),

Lk3 =
1

T

L′
k3χm + L′

k4χEm

χEχm − χ2
Em

,

Lk4 =
1

T
L′

k4, Lk5 =
1

T

L′
k3χEm + L′

k4χE

χEχm − χ2
Em

, k = 1, 4.

Note that two last equations of the set (2.22) are rheological relations for deter-
mination of vectors p and πm. Unlike the processes of reversible displacements
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of mass and electric charges for which the vectors of local displacement of mass
πm and polarization p depend only on the ∇µ′π and E. , in this case, vectors πm

and p depend not only on the vectors ∇µ′π and E, but also on the temperature
gradient.

The Maxwell’s equations (2.1), the conservation laws of momentum (2.15),
mass (2.5), induced mass (2.6), and entropy (2.7), the constitutive equations
(2.17)–(2.19) and (2.22) with relations (2.4) and (2.10)1, form a complete set
of equations which describes the electro-thermo-mechanical processes in a po-
larized solid with regard to irreversibility of the local mass and charge displace-
ments.

In the case where the local mass displacement and polarization are reversible
processes, the following equation for the specific density of the induced mass ρm

obtains in the linear approximation [15] the form

∆ρm − λ2ρm =
1

dm

[

K
αm

ρ0
∆(∇ · u) + βTm∆T +

χEm

χm
∇ · E

]

,

where λ2 = (dmχm)−1 > 0, because dm > 0 and χm > 0 [15]. The quantity λ−1

has the dimension of the length and describes the characteristic distances of the
investigated problem.

By means of integration of this equation we can define ρm as a function of
u, T , E. If we exclude the parameters which describe the process of local mass
displacement from the basic set of Eqs. (2.1), (2.4)–(2.7), (2.10), (2.15), (2.17)–
(2.19), and (2.22), we receive a set of spatially non-local integro-differential equa-
tions. The constitutive equations become functional (of spatial type). For exam-
ple, for the entropy this relation becomes

s(r) = s0 +
1

T0

(

CV − β2
Tm

T0dm

)

[T (r) − T0] +
K

ρ0

(

αt − αm
βTm

dm

)

e(r)

− βTmλ
2

4πdm

∫

f(r − r′)

{

K
αm

ρ0
e(r′) + βTm[T (r′) − T0] − dmχEm∇′ · E(r′)

}

dr′.

Here f(r) = e−λr/r, r ≡ |r|.

3. Applications

Equations, obtained earlier by Burak et al. [10], allow us to study the non-
homogeneity of stationary distributions of mechanical stresses, electric poten-
tial, polarization etc., caused by the presence of surfaces in a dielectric body.
The results for an infinite elastic polarized layer with traction-free surfaces are
presented in [9, 10, 14, 16]. The effect of layer thickness on distributions of these
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quantities and on the value of coupled surface charge density (the size effect)
has been investigated in these papers too. Such a model adequately describes
the high-frequency dispersion of elastic waves [17] as well as the anomalous
dependence of capacity of a thin dielectric film on its thickness [16] observed ex-
perimentally by Mead [18]. We note that similar results have also been obtained
by Mindlin [19], Kafadar [3], Yang [20], Yang and Yang [4], Yang et al.
[21] who used other known non-local theories of piezoelectricity.

The set of equations (2.1), (2.4)–(2.7), (2.10), (2.15), (2.17)–(2.19) and (2.22),
which takes into account the irreversibility of processes of local mass and charge
displacements, allows us to investigate the dynamics of the electromechanical
fields, caused by formation of a body surface.

a) b)

Fig. 1. The distribution of the stress σ/σ∗ in layer for (a) ξ = 1 and (b) ξ = 10; τ = 10−2,
10−1, 5 · 10−1, 5 (curves 1–4 respectively).

Figure 1 illustrates the dynamics of dimensionless stresses σ/σ∗ in thin (ξ = 1)
and thick (ξ = 10) traction-free elastic layers (the region |x| ≤ l) [14]. Here
strains eyy and ezz are absent,

σyy = σzz ≡ σ, σ∗ = µ′π0KG
αm

dm

(

K − 2

3
G

)−1

, ξ = lλ∗

is dimensionless thickness of the layer and

λ∗ = λ

[

1 +
K2α2

m

ρ0dm[K + 4G/3 −K2α2
m(ρ0dm)−1]

]−1/2

.

For simplicity we consider an isotropic approximation and neglect the polari-
zation process. As one can see, the stresses distributions can be considered as
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stationary for τ ≥ 5, where τ = t/τπ is dimensionless time, τπ = ρχm/L44 is the
time of relaxation of the process of mass displacement. Layers of small thickness
(thin films) are characterized by the overlay of the near-surface inhomogeneities
(Fig. 1a) for τ ≥ 5, while there is a well-defined bulk region characterized by
the uniform profile for thicker layers (Fig. 1b). Such an overlay of distributions
of near-surface stresses causes the appearance of so-called disjoining pressure,
which has been investigated earlier for liquid films [22, 23]. Disjoining pressure
is defined as the difference between the pressures

p = −
∫ l

−1
σxx(ζ)dζ

in a layer (with the clamped boundary) with and without the interface inho-
mogeneities [10]. For non-overlapping inhomogenieties, the surface tension is
practically independent of the thickness (of a body), and the disjoining pressure
vanishes. The sign of the surface stresses as well as of the disjoining pressure (see
Figs. 1 and 2) is determined by the sign of σ∗. As |µ| > |µπ|, and µ, K, G, dm are
positive, the characteristic stress σ∗ is positive as well, provided αm > 0. In this
case the surface stress causes stretching, thus worsening the layer’s stretching
resistance. Figure 2 illustrates the dynamics of the disjoining pressure in elastic
layers of different thickness.

Fig. 2. Dynamics of disjoining pressure p/σ∗ in layers with ξ = 1, 2, 5, 30 (curves 1–4,
respectively).

In a layer of variable thickness, the lateral force F y
L = ∂σyy/∂y (or F z

L =
∂σzz/∂z) acts along the layer. This force results from the difference between the
stresses σyy (or σzz) taken in arbitrary cross-sections y = const (or z = const)
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Fig. 3. Dynamics of lateral force FL in layers with ξ = 1, 1.5, 3, 10 (curves 1–4, respectively).

of the layer. The value of the lateral force can be estimated by using the so-
lution for a layer of constant (non-variable) thickness. Figure 3 illustrates the
dynamics of the lateral force in thin (curves 1–3) and thick (curve 4) elastic
layers. For αm > 0 the lateral force acts in the direction from wider to nar-
rower parts of the layer, which means that it tends to smooth out the layer
thickness, thus increasing its resistance. Note that the lateral force and the dis-
joining pressure are thickness-dependent (size effects). Although for thick films
the lateral forces as well as the disjoining pressure are negligible, their effect is
significant for thin films/layers. We stress therefore that it is very important
to take them into account in case of thin films, as they can have a signifi-
cant influence on the strength and resistance of such films (as in liquid films
[22, 23]).

4. Conclusions

The complete set of equations of non-local (gradient) theory for description
of electro-magneto-thermo-mechanical processes in polarized nonferromagnetic
solids, which takes into account the irreversibility of processes of local mass and
electric charge displacements, has been obtained. It is shown that the theory
allows us to describe correctly such phenomena as the Meed anomaly, high-
frequency dispersion of elastic waves, as well as the near-surface inhomogeneities
of the stress-strained state, polarization and electric potential. This theory allows
us to study the surface charge, disjoining pressure and lateral forces in layers of
variable thickness. The dynamics of electromechanical fields, caused by formation
of a new surface, as well as the size effect can also be studied.
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