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In papers [1] and [2] of 1982, Coleman, Fabrizio and Owen gave a derivation
of implications of the second law of thermodynamics to describe second sound in
rigid heat conductors, by using a natural extension to anisotropic media of the well-
known Cattaneo’s relation. Later, in 1992, Öncü and Moodie [3] gave a derivation
of the constitutive relations of an elastic heat conductor for which the heat flux and
the temperature obey a frame-invariant form of a generalized Cattaneo’s equation.
Recently, in 2004, Rybalko [4] has shown that a second-sound wave is accompanied
by the appearance of electric induction. Here, we extend the theory [3]: following
the standard Coleman–Noll procedure [5], we derive the thermodynamic restrictions
on the constitutive relations for an electrically polarizable and finitely deformable,
heat conducting elastic continuum which interacts with the electric field. The consti-
tutive equations include an evolution equation for the heat flux; the latter and the
temperature obey a frame-invariant form of Cattaneo’s equation.
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1. Introduction

1.1. Second sound and generalized thermoelasticity

It is observed experimentally that at low temperature, heat propagates
as a thermal wave. This phenomenon is named ‘second sound’ from the wave
motion of heat being similar to the propagation of sound in air.

The wave nature of heat propagation has been observed e.g. in superfluids [6]
and in very pure crystals, where second sound occurs at low temperature [7–10].
Peshkov [6] also suggested that second sound might take place in materials
that have a phonon gas.

Fourier’s law of heat conduction fails to model second sound since it yields
heat conduction equations of the diffusion types, which lead to infinite speeds of
propagation for heat waves, contrary to physical observations.

Cattaneo [11] eliminated the ‘paradox of instantaneous propagation of ther-
mal disturbances’ by substituting the constitutive Fourier’s law for the heat flux
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with the well-known evolution equation

(1.1) τ(θ)q̇ + q = −κ(θ) grad θ,

where τ(θ) and κ(θ) are positive. It has been observed that Eq. (1.1) is not frame-
invariant. Hence Fox [12] for isotropic materials proposed the frame-invariant
equation

(1.2) τ(q̇− Wq) + q = −κ grad θ,

where
(i) q and θ satisfy the heat conduction inequality

(1.3) q · grad θ ≤ 0,

(ii) W is the skew-symmetric part of the velocity gradient,
(iii) τ and κ are positive functions of θ and the joint invariants of q and

grad θ.
As noted in [3, p. 89], starting from (1.2) implies that inequality (1.3) is not

valid in all admissible processes. Hence the classical Coleman–Noll procedure of
continuum thermodynamics cannot be set up.

Several papers were written to present continuum theories capable of predict-
ing thermal waves propagating at finite speeds in various media; such theories
are often referred to as generalized thermoelasticity.

The interesting paper [13] deserves a mention: it develops a general theory of
heat conduction, for nonlinear rigid materials with memory, that has associated
with it finite propagation speeds. In Gurtin–Pipkin’s theory, the constitutive
functionals are assumed to depend on the summed histories of θ and grad θ.
Then the restrictions that thermodynamics places on constitutive relations are
determined. Hence Chen and Gurtin [14] extends [13] to deformable media.
They show that there exist two speeds of propagation for acceleration waves: the
‘first sound speed’ is mechanical in nature and lies near the isothermal and isen-
tropic sound speeds of the material, while the ‘second sound speed’ is associated
with a predominantly thermal wave.

The interested reader can find in [3], on pp. 88–90, a history of second sound
literature from the beginning until 1990. A more detailed history is written in [15,
Sec. VIII], [16]. Among such papers, [12–14, 17–19] and [20] are very important.
The above theories, except the last two, are related with Cattaneo’s equation.

1.1.1. Thermodynamic theories for second sound with internal variables. Paper
Caviglia et al. [21], which extends Morro and Ruggeri [22] from the rigid
case to the deformable one, develops a thermoelasticity theory in which the
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Coleman–Noll procedure is followed, an internal vector variable together with
an evolution equation for it are used, and the classical Fourier law is postulated
under stationary conditions. Cimmelli [23] develops a thermoelasticity theory
in the framework of a gradient extension of thermodynamics with internal state
variables, and in [24] presents ‘a generalization of the classical Coleman–Noll
procedure in the presence of first-order non-local constitutive functions’, to model
nonlinear heat conduction in solids in the presence of a dynamical empirical
temperature.

We note that in the theory presented here, the heat flux can also be inter-
preted as an internal variable.

1.1.2. Second sound within extended irreversible thermodynamics. The analysis
of second sound phenomena has been successfully developed also in the frame
of extended irreversible thermodynamics [25, 26]). A variational principle, based
on extended irreversible thermodynamics, has been proposed by Lebon and
Dauby [27] to describe heat-wave propagation in dielectric crystals at low tem-
perature.

1.1.3. Second sound within the Green–Naghdi theory. Another approach is that
proposed in [28, 29]. It is based on an integral thermodynamic equality rather
than on entropy inequality and uses the notion of thermal displacement associ-
ated with empirical temperature.

1.2. Second sound in thermo-electroelastic media

Recently it has been shown that second sound, that is a temperature wave,
is accompanied by the appearance of electric induction; indeed, Rybalko [4] in
2004 studies the electric response induced by second sound in superfluid helium:
experimentally he shows that ‘the relative motion of the superfluid and normal
components of He II in a second-sound wave is accompanied by the appearance
of electric induction’. Hence Rybalko et al. [30] also perform experiments that
show the connections between the mechanical motion and electric induction.

Later Pashitskii et al. [31, 32] try to explain the experimantal data of
electric polarization of superfluid helium during the second-sound excitation as
the inertial polarization of a dielectric medium. They use Landau’s two-fluid
model [33], in which the liquid is regarded as a mixture of a ‘normal’ fluid
carrying entropy and a ‘superfluid’ carrying none.

Note that Atkin et al. [34, 35] criticize Landau’s two-fluid model and present
a continuum approach for a heat conducting elastic body that is not electrically
polarizable ‘in which an additional vector field is introduced to represent the flow
of the microscopic excitations, from which the effect is thought to originate’.
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Piezoelectric ceramics and composites are extensively used in many engineer-
ing applications such as sensors, actuators, intelligent structures, etc. Firstly,
Mindlin [36] proposed a thermo-piezoelectricity theory and also derived the
governing equations of a thermo-piezoelectric plate [37]. Nowacki [38, 39] has
studied the physical laws for the thermo-piezoelectric materials. A generalized
linear thermoelasticity theory for piezoelectric media has been developed by
Chandrasekharaiah [40], where ‘a theory of thermoelasticity for piezoelec-
tric materials, which includes heat flux among the independent constitutive vari-
ables, is formulated. It is found that the linearized version of the theory admits
a finite speed of the thermal signals.’

Even if [40] is concerned with the linear theory, it starts by considering the
non-linear theory (in Section 2, pp. 41–43), and uses the Coleman–Noll procedure
to deduce from the fundamental field equations the constitutive restrictions,
which the entropy production inequality imposes. Differently from the present
paper,

(i) it uses a different free-energy function (see Eq. (2.8) there),
(ii) it adopts an assumption ([40, Eq. (2.10)]), that is not justified there

and that is not needed here, since it is not necessary for the deduction of the
constitutive restrictions,

(iii) it does not use any restriction to the heat-flux evolution law similar to
the invertibility condition w.r.t. q, introduced by [3] and extended here,

(iv) it does not contain any consideration of frame-indifference.

1.3. On generalized thermo-magnetoelectroelasticity

There are several papers that study, or use for applications, generalized the-
ories for thermo-magneto-electro-elasticity. For instance, [41, 42, 43].

These papers explain a theoretic interest for such topic, motivated by techno-
logical applications; but they always use linear constitutive equations and thus,
put in evidence the need for more general non-linear theories.

1.4. On Coleman–Fabrizio–Owen and Öncü–Moodie papers

Coleman, Fabrizio and Owen in [1, 2] gave a derivation of implications
of the second law of thermodynamics for a rigid heat conductor, for which the
heat flux vector q and the temperature θ obey the relation

(1.4) T̂(θ)q̇ + q = −K̂(θ) grad θ,

with T̂(θ) and K̂(θ) being non-singular, which extends to anisotropic media the
well-known Cattaneo’s relationship (1.1).

Later Öncü and Moodie [3] extended Coleman et al. [1, 2] to the case of
a deformable thermoelastic body; in fact, the authors observed that [3, pp. 89–90])
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‘. . . it is apparent that the experimentally observed thermal effects, though at
varying degrees, are coupled with deformation. It is for this reason that in this
paper we extend the validity of the formulation of Coleman, Fabrizio and Owen
to the case when the role played by deformations is appreciable. . . . ’

Then, [3] shows that when the referential heat flux Q, the deformaton gra-
dient F and the temperature θ, obey the relation

(1.5) T(F, θ)Q̇ + Q = −K(F, θ) Grad θ,

with Grad θ = FT grad θ, and T(F, θ) and K(F, θ) being non-singular, then the
second law of thermodynamics requires that the specific internal energy ε and
the first Piola–Kirchhoff stress S should satisfy the relations

ρRε = ρRε̂o(F, θ) + Q · A(F, θ)Q,(1.6)

S = So(F, θ) + Q · PZ(F, θ)Q,(1.7)

where (i) ρR is the referential mass density, (ii) εo(F, θ) and So(F, θ) are, respec-
tively, the classical specific internal energy per unit mass and Piola–Kirchhoff
stress tensor, (iii) A(F, θ), PZ(F, θ) are defined by

A(F, θ) = −θ
2

2

∂

∂θ

[

Z(F, θ)

θ2

]

,

PZ(F, θ) =
1

2θ

∂

∂F
Z(F, θ), Z(F, θ) = K(F, θ)−1T(F, θ);(1.8)

lastly, (iv) Z is symmetric and K is positive-definite.

1.5. On the present paper

Recent papers by Rybalko [4] and [30] have pointed out that a ‘previously
unknown effect’ has been ‘observed experimentally: the appearance of an electric
field in superfluid helium during the propagation of second-sound waves or in
the presence of induced oscillations of the velocity of the normal component’
[31, p. 8]. In particular, Rybalko [4] experimentally confirms that a second-
sound wave can be accompanied by the appearance of electric induction in a re-
versible fashion; the author declares: ‘The idea of a possible relationship between
the internal electric field and undamped superfluid flows of liquid helium below
(the lambda point) Tλ is developed experimentally for the first time’.

Later, Pashitskii et al. [31, 32] have given a theoretical justification to such
effect, using the two-fluid Landau’s model [33] for helium II. Yet (i) Landau’s
model has been criticized, e.g., by Atkin et al. [35, p. 115]:

‘The superfluid and normal fluid cannot exist independently, and therefore
helium II may not be regarded as a mixture in the usual sense, although the
equations governing the motion are derived as if it were.’
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Moreover (ii) Pashitskii et al. [31, p. 9] recognize a limit in their theoretical
analysis:

‘However, quantitative estimates of the effect give a value substantially lower
than that observed experimentally’.

Hence a natural question arises: can the generalized thermo-elasticity theory
by Öncü and Moodie [3], be extended to thermo-electroelasticity? The present
paper gives a positive reply to this question: a generalized thermodynamic the-
ory of an electrically polarizable and finitely deformable heat conducting elastic
continuum, interacting with an electric field, is developed here. Unlike the clas-
sical theories, here the heat flux is an independent variable and it is ruled by
a rate-type constitutive equation, namely by a first-order (in time) differential
equation which, as a particular case, neglecting all electrical quantities, can re-
duce to the thermo-elasticity theory of Öncü and Moodie [3] and to the classi-
cal Maxwell–Cattaneo relationship (1.1). In this way, finite speed of propagation
of disturbances is guaranteed. The whole theory is developed within the frame
of Rational Thermodynamics with rate-type constitutive equations. Thermody-
namic restrictions are derived both in the spatial and referential configurations,
by applying the Coleman–Noll procedure [5], Truesdell [44]. A generalized
free energy is defined and it is proved that this function determines the entropy,
the first Piola–Kirchhoff stress tensor and the polarization vector. Compatibil-
ity with the Principle of Material Indifference is considered as well. The case in
which the rate equation for the heat flux can be put in the Maxwell–Cattaneo’s
form is investigated in Section 6, where the explicit form of the thermodynamic
potentials and of the first Piola–Kirchhoff stress tensor are derived. From this
general model the classical parabolic theory, where the heat flux is given by
a constitutive equation, is derived as a particular case.

The classical results of Tiersten’s paper [45] are discussed.
Lastly, it is pointed out that the rate equation for the heat flux can involve

also heat flux gradients (see Remark 2).

2. Preliminary definitions

Here we extend Öncü–Moodie [3] from thermo-elasticity to thermo-electro-
elasticity; we treat topics in parallel with the corresponding ones in [3] and
mainly using similar notations. By dropping any reference to electricity, the
present theory exactly reduces to the one in [3].

Following [3], here the heat flux is treated as an independent variable (as
well as e.g. the deformation gradient and the absolute temperature), which is
determined by a rate-type evolution equation.

We consider a body B whose particles are identified with the positions X ∈ E
they occupy in a fixed reference configuration B of a three-dimensional Euclidean
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point space E . A referential mass density ρR(.) : B → (0,∞) is given, so that
m(P) :=

∫

P
ρRdV is the mass of the part P of B. We assume that the material

filling B is characterized by a given process class P(B) of B as a set of ordered
10-tuples of functions on B × R:

(2.1) p =
(

x(.), θ(.), ϕ(.), ε(.), η(.), τ (.),P(.),q(.),b(.), r(.)
)

∈ P(B)

defined with respect to B, satisfying the balance laws of linear momentum, mo-
ment of momentum, energy, the entropy inequality, and the field equations of
electrostatics, where

x = x(X, t) is the motion,

θ= θ(X, t) ∈ (0,∞) is the absolute temperature,

ϕ=ϕ(X, t) is the electric potential,

ε= ε(X, t) is the specific internal energy per unit mass,

η= η(X, t) is the specific entropy per unit mass,

τ = τ (X, t) (S = S(X, t)) is the Cauchy (first Piola–Kirchhoff) stress tensor,

P = P(X, t) (IP = IP(X, t)) is the spatial (referential) polarization vector,

q = q(X, t) (Q = Q(X, t)) is the spatial (referential) heat flux vector,

b = b(X, t) is the external specific body force per unit mass,

r= r(X, t) is the radiation heating per unit mass.

The referential and spatial heat flux and polarization vectors are related by

(2.2) IP = JF−1P, Q = JF−1q.

Any motion x(., .), temperature field θ(., .) and electric potential field ϕ(., .) of
B are regular enough functions, in the sense that they have all the derivatives
needed for writing the local balance laws for B.

We use Grad and Div (grad and div) to denote material (spatial) gradient and
divergence, respectively; a superposed dot denotes the material time derivative.

The deformation gradient F at X at time t is given by

(2.3) F = F(X, t) = Gradx(X, t),

and the invertibility of the deformation is assured by the condition

J = detF > 0.

The velocity v of X at time t is given by

(2.4) v = v(X, t) = ẋ(X, t).

The local law of conservation of mass is expressed by

(2.5) ρR = ρJ, ρ̇+ ρdiv v = 0,

where ρ = ρ(X, t) is the mass density of X at time t.
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The electric potential ϕ, together with the polarization vector P, in Gaussian
units, determines the Eulerian electric displacement D by the equality

(2.6) D = EM + 4πP,

where EM = −∇xϕ is the (Maxwellian) spatial electric vector. Hence the refer-
ential electric displacement is

(2.7) ∆ = JF−1D = JF−1EM + 4πIP.

Any two corresponding referential and spatial ‘energy-flux’ vectors, that are re-
lated by

(2.8) IH = JF−1h,

have spatial and referential divergences which are related by

(2.9) Div IH = J div h.

The spatial and referential polarization vectors per unit volume are respec-
tively defined by

(2.10) π = P/ρ, Π = IP/ρR.

3. Spatial description

3.1. Local balance laws in spatial form

The total stress tensor σ is defined by

(3.1) σ = τ + TE ,

where

(3.2) TE =
1

4π

[

EM ⊗D − 1

2

(

EM · EM
)

I

]

,

is the Maxwell stress tensor (cf. [45, Eq. (3.19)], [46]). The use of σ allows to
write the field equations of momentum and angular momentum in a form as if
the electric fields were missing (see the equalities between brackets on the right
of Eqs. (3.3) and (3.4) below).

Under suitable assumptions of regularity and using (2.5), the usual integral
forms of the balance laws of linear momentum, moment of momentum, energy,
the field equations of electrostatics and the entropy inequality, are equivalent to
the spatial field equations

ρv̇ = div τ + P · ∇xE
M + ρb, (ρv̇ = div σ + ρb),(3.3)

skw τ + skw TE = O, (σ = σT ),(3.4)
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ρε̇ = τ · ∇v − div q + EM · ρπ̇ + ρr,(3.5)

EM = −∇xϕ, div D = 0,(3.6)

ρη̇ ≥ ρ(r/θ) − div(q/θ).(3.7)

We note that Eqs. (3.3), (3.5) and (3.7) respectively coincide with Eqs. (3.23),
(3.40) and (3.43) of [45]. In Eq. (3.3) the term P · ∇xE

M can be interpreted as
the portion of the body force due to the electric field quantities (e.g., see [47,
p. 10], [48, p. 33] and [45]).

Incidentally, note that, following [45], the additional power term EM · ρπ̇
in Eq. (3.5) can be obtained as follows: one postulates the integral equation of
conservation of energy in the form ([45, Eq.(3.30)]), that contains the contribu-
tion of a ‘rate of supply of energy to the material from the quasi-static electric
field’, σ; hence, by using the divergence theorem, the equation of balance of mass
and using the expression in [45, Eq. (3.39)] for σ, that is,

(3.8) σ = P · ∇xE
M · v + EM · ρπ̇,

one arrives at the local form (3.5) of the energy law.
Let ψ = ψ() be the specific free energy per unit mass defined by

(3.9) ψ = ε− θη − EM · π.

Note that the free energy (3.9) coincides with the ‘thermodynamic function’
χ defined in [45, Eq. (4.2)]; in an equivalent fashion, in a thermo-electroelasticity
theory it is customary to introduce the enthalpy G = ψ−EM ·P, with ψ = e−θη
(e.g., see [49, p. 90]).

Then, by using ψ defined in (3.9), Eqs. (3.5) and (3.7) yield the reduced
dissipation inequality

(3.10) ρ(ψ̇ + ηθ̇) − τ · ∇v +
1

θ
q · g + ρπ · ĖM ≤ 0,

where g = grad θ(X, t) is the spatial temperature gradient.

3.2. Spatial constitutive assumptions

Let D be an open and simply connected domain consisting of 5-tuples
(F, θ,EM ,q,g) and assume that

if (F, θ,EM ,q,g) ∈ D, then (F, θ,EM ,0,0) ∈ D.

Below we use the time derivative for the heat flux vector

(3.11)
o
q= q̇− Lq + (trL)q, L = gradv,
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which is used in [3] on page 97. The equality Q̇ = JF−1
o
q (see [3, Eq. (5.8)]),

where Q is the material heat flux vector, shows that the spatial counterpart of

the material derivative Q̇ is represented by
o
q rather than by q̇.

Assumption 1. For every p ∈ P(B) the specific free energy ψ(X, t), the
specific entropy η(X, t), the Cauchy stress tensor τ (X, t), the polarization vector

P(X, t), and the time rate of the heat flux
o
q (X, t) are given by continuously

differentiable functions on D such that

ψ = ψ(F, θ,EM ,q,g),(3.12)

η = η(F, θ,EM ,q,g),(3.13)

τ = τ (F, θ,EM ,q,g),(3.14)

P = P(F, θ,EM ,q,g),(3.15)

o
q = h(F, θ,EM ,q,g).(3.16)

Further, the tensors ∂qh(.) and ∂gh(.) are non-singular.

Of course, once ρ(.), ψ(.), η(.) and P(.) are known, then equality (3.9) gives
the continuously differentiable function ε(.) determining ε = ε(X, t) such that

(3.17) ε = ε(F, θ,EM ,q,g).

The assumed properties of the heat flux evolution function h(.) indicate that
it is invertible for q and also for g. The inverse of h(.) with respect to q is
denoted by

(3.18) q = h∗(F, θ,EM ,
o
q,g).

Note that

(3.19) ∂gh
∗(.) = −[∂qh]−1(.)∂gh(.),

so that the tensor ∂gh∗(.) is also continuous and non-singular.
Also note that the dependence upon X is not written for simplicity; it is

implicit and understood if the body is not materially homogeneous.

3.3. Coleman–Noll method and thermodynamic restrictions
in the spatial description

Given any motion x(X, t), temperature field θ(X, t) and electric potential
field ϕ(X, t), the constitutive equations (3.12)–(3.16) determine e(X, t), η(X, t),

τ (X, t), P(X, t),
o
q (X, t), and the local laws (3.3) and (3.5) determine b(X, t)
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and r(X, t). Hence, for any given motion, temperature field and electric potential
field, a corresponding process p is constructed.

The method of Coleman–Noll [5] is based on the postulate that every pro-
cess p so constructed belongs to the process class P(B) of B; that is, on the
assumption that the constitutive assumptions (3.12)–(3.16) are compatible with
thermodynamics, in the sense of the following

Dissipation Principle. For any given motion, temperature field and electric
potential field, the process p constructed from the constitutive equations (3.12)–
(3.16) belongs to the process class P(B) of B. Therefore the constitutive functions
(3.12)–(3.16) are compatible with the second law of thermodynamics in the sense
that they satisfy the dissipation inequality (3.7).

It is a matter of routine to extend to thermo-electroelasticity Coleman’s re-
mark for thermoelasticity written in [5], on page 1119, lines 8–30 from the top;
such extension, which includes the electric field, is written here just by para-
phrasing Coleman.

Remark 1. Let A(t) be any time-dependent invertible tensor, α(t) any time-
dependent positive scalar, a(t) any time-dependent vector, β(t) be any time-
dependent scalar, b(t) any time-dependent vector, and Y any material point
of B, whose spatial position in the reference configuration B is Y. We can always
construct at least one admissible electro-thermodynamic process in B such that

F(X, t), θ(X, t),g(X, t),EM (X, t)

have, respectively, the values A(t), α(t),a,b at X = Y.
An example of such a process is the one determined by the following defor-

mation function, temperature distribution and electric potential:

x = x(X, t) = Y + A(t)[X − Y],(3.20)

θ = θ(X, t) = α(t) + [AT (t)a(t)] · [X − Y],(3.21)

ϕ = ϕ(X, t) = β(t) + [AT (t)b(t)] · [X − Y].(3.22)

Thus, at a given time t, we can arbitrarily specify not only F, θ, g and EM but
also their time derivatives Ḟ, θ̇, ġ and ĖM at a point Y and to be sure that there
exists at least one electro-thermodynamic process corresponding to this choice.

The next theorem is proved following the Coleman–Noll procedure [5], that
is, by using Remark 1.

Theorem 1. The Dissipation Principle is satisfied if and only if the following
conditions hold:

(i) the free energy response function ψ(F, θ,EM ,q,g) is independent of the
temperature gradient g and determines the entropy, the Cauchy stress tensor,
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and the polarization vector through the relations

η(F, θ,EM ,q) = −∂ψ
∂θ

(F, θ,EM ,q),(3.23)

τ (F, θ,EM ,q) = ρF
∂ψ

∂F
(F, θ,EM ,q),(3.24)

π(F, θ,EM ,q) = − ∂ψ

∂EM
(F, θ,EM ,q);(3.25)

(ii) the reduced dissipation inequality

(3.26) ρθ
∂ψ

∂q
(F, θ,EM ,q) · q̇ + q · g ≤ 0,

where

(3.27) q̇ = h(F, θ,EM ,q,g) + [L − (trL)I]q,

is satisfied.

P r o o f. By the chain rule we have

(3.28) ψ̇ = ∂Fψ · Ḟ + ∂θψθ̇ + ∂EMψ · ĖM + ∂qψ · q̇ + ∂gψ · ġ.

Now, we have

(3.29)
∂vi

∂xj
=

∂vi

∂XK

∂XK

∂xj
=
∂XK

∂xj

d

dt

∂xi

∂XK
,

that is,

(3.30) ∇v = F−TḞ,

and thus

(3.31) τ · ∇v = F−1τ · Ḟ.

Thus by substituting Eqs. (3.28), (3.31) and the constitutive equations
(3.12)–(3.16) into the dissipation inequality (3.10), we obtain

(3.32) (ρ∂Fψ − F−1τ ) · Ḟ + ρ(∂θψ + η)θ̇ + ρ(∂EMψ + π) · ĖM

+ ρ∂qψ · q̇ + ρ∂gψ · ġ +
1

θ
q · g ≤ 0.

Now, by Remark 1, to the time derivatives Ḟ, θ̇, ĖM and ġ can be assigned
arbitrary values independently of the other variables; this implies theses (i)
and (ii).
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The next theorem extends Theorem 2 of [3].

Theorem 2. The frame-invariant time derivative of the heat flux,
o
q, vanishes

for all thermal equilibrium states (F, θ,EM ,0,0) ∈ D and the tensor

(3.33) K(F, θ,EM ) = ∂qh(F, θ,EM ,0,0)−1∂gh(F, θ,EM ,0,0)

is positive-definite.

P r o o f. Making, in the proof of Theorem 2 of [3, p.94], the three changes
below, transforms it in a proof for the present theorem:

1. insert the additional variable EM in each occurrence of H∗, H, f , K,K∗;
2. replace (F, θ,Q,G) with (F, θ,EM ,q,g);

3. replace H∗, H, and Q̇ with h∗,h and
o
q, respectively.

Remark 2. In certain theories it is assumed a dependence of the evolution
equation for the heat flux q on the gradients ∇q and ∇2q too. For instance, for
a rigid heat conductor [25] we obtain the balance equation

(3.34)
∂qi
∂t

+Nij,j
= − 1

τR
qi,

which specializes to the Guyer–Krumhansl equation [50, 51, 52]

(3.35) τR
∂qi
∂t

+ qi = −kθi + ℓ21(qi,jj
+ 2qj,ji

),

and which, in the linear case, has the following expression for Nij [53]:

(3.36) Nij =
k

τR
θδij − L1qi,j − L2qj,i

− L3qk,k
δij,

where Li are constants.
The exploitation of the entropy inequality through the Coleman–Noll pro-

cedure can be set up when in Assumption 1 the constitutive equations
(3.12)–(3.16) also have

∇q, . . . , ∇nq (n > 0)

as arguments.
Indeed, the proof of Theorem 1 uses Remark 1, that does not depend on the

function q = q(X, t). Thus such a proof can be repeated simply by replacing in
(3.28) the term ∂qψ · q̇ with

n
∑

j=0

∂(∇jq)ψ · (∇jq̇),
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where ∇0q = q and q̇ is given by (3.27) with h containing also ∇iq, i = 1, . . . , n,
as variables.

Hence, Theorem 1 remains valid also when the constitutive equations (3.12)–
(3.16) are of the type

(3.37) χ = χ(F, θ,EM ,∇iq,g), (i = 0, 1, . . . , n)

and the reduced dissipation inequality (3.26) in its thesis (ii) is replaced by

(3.38) ρθ
n

∑

j=0

∂ψ

∂(∇jq)
(F, θ,EM ,∇iq) · (∇j q̇) + q · g ≤ 0.

3.4. Use of invariant response functions

In order to satisfy the principle of material objectivity, the constitutive func-
tions must be scalar invariant under rigid rotations of the deformed and polarized
body. The invariance of ψ in a rigid rotation is assured when ψ is an arbitrary
function of the referential quantities ELM , θ,WL, QL, GL, where

ELM =
1

2
(xk,Lxk,M − δLM )

(

E =
1

2
(FTF − I)

)

,(3.39)

WL = − ∂ϕ

∂XL
= − ∂ϕ

∂xp

∂xp

∂XL
(W = FTEM ),(3.40)

QL = J
∂XL

∂xℓ
qℓ, GL =

∂xi

∂XL
gi (Q = JF−1q, G = FTg),(3.41)

where a comma denotes a partial derivative. Hence we assume that

(3.42) ψ = ψ̃(E, θ,W,Q,G).

Next we calculate the time derivatives in Eq. (3.28) by using ψ̃, that is, by
using the identity

(3.43) ψ = ψ(F, θ,EM ,q,g) = ψ̃(E, θ,W,Q,G),

where (F, θ,EM ,q,g) and (E, θ,W,Q,G) are related by (3.39)-(3.41); we find

(3.44)
∂ψ

∂F
· Ḟ =

[

∂ψ̃

∂ERS

∂ERS

∂(∂xi/∂XK)
+

∂ψ̃

∂WR

∂WR

∂(∂xi/∂XK)

+
∂ψ̃

∂QR

∂QR

∂(∂xi/∂XK)
+

∂ψ̃

∂GR

∂GR

∂(∂xi/∂XK)

]

d

dt

∂xi

∂XK
.
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Now, by (3.39)–(3.41),

(3.45)
∂ψ̃

∂ERS

∂ERS

∂(∂xi/∂XK)

d

dt

∂xi

∂XK
=

∂ψ̃

∂ERS

1

2

(

δRK
∂xi

∂XS
+

∂xi

∂XR
δSK

)

∂ẋi

∂XK

=
1

2

(

∂ψ̃

∂EKS

∂xi

∂XS
+

∂ψ̃

∂ERK

∂xi

∂XR

)

∂ẋi

∂XK
=

∂ψ̃

∂ERK

∂xi

∂XR

∂ẋi

∂XK
=

(

∂ψ̃

∂E
FT

)

· Ḟ,

(3.46)
∂ψ̃

∂WR

∂WR

∂(∂xi/∂XK)

d

dt

∂xi

∂XK
=

∂ψ̃

∂WR
δKRE

M
i

d

dt

∂xi

∂XK

=

(

∂ψ̃

∂W
⊗EM

)

· Ḟ,

and, similarly,

(3.47)
∂ψ̃

∂GR

∂GR

∂(∂xi/∂XK)

d

dt

∂xi

∂XK
=

∂ψ̃

∂GR
δKRgi

d

dt

∂xi

∂XK
=

(

∂ψ̃

∂G
⊗ g

)

· Ḟ.

Now, recall the well-known identities

(3.48)

∂J

∂(∂xp/∂XM )
= J

∂XM

∂xp
, QR = J

∂XR

∂xℓ
qℓ,

∂(∂XR/∂xℓ)

∂(∂xi/∂XK)
= −

(

∂XR

∂xi

)(

∂XK

∂xℓ

)

.

Hence we have

∂ψ̃

∂QR

∂QR

∂
(

∂xi

∂XK

)
=

∂ψ̃

∂QR

∂(J ∂XR

∂xℓ q
ℓ)

∂
(

∂xi

∂XK

)
=

∂ψ̃

∂QR

[

∂J

∂
(

∂xi

∂XK

)

∂XR

∂xℓ
+ J

∂(∂XR

∂xℓ )

∂
(

∂xi

∂XK

)

]

qℓ

= J
∂ψ̃

∂QR

(

∂XK

∂xi

∂XR

∂xℓ
− ∂XR

∂xi

∂XK

∂xℓ

)

qℓ.

Now, eliminating qℓ by

(3.49) qℓ = J−1 ∂xℓ

∂XM
QM ,

we find

∂ψ̃

∂QR

∂QR

∂
(

∂xi

∂XK

)
= J

∂ψ̃

∂QR

(

∂XK

∂xi

∂XR

∂xℓ
− ∂XR

∂xi

∂XK

∂xℓ

)

J−1 ∂xℓ

∂XM
QM

=
∂ψ̃

∂QR

(

∂XK

∂xi
δR
M − ∂XR

∂xi
δK
M

)

QM =
∂ψ̃

∂QR

(

∂XK

∂xi
QR − ∂XR

∂xi
QK

)

,
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thus in absolute notation, by (2.2)2, we have

∂ψ̃

∂Q
· ∂Q
∂F

=

(

∂ψ̃

∂Q
· Q

)

F−1 − F−T ∂ψ̃

∂Q
⊗ Q(3.50)

= J

[(

F−T ∂ψ̃

∂Q
· q

)

F−1 − F−T

(

∂ψ̃

∂Q
⊗ q

)

F−T
]

.

Hence, we can rewrite the terms in the right-hand side of (3.28) by the right-
hand sides of the equalities shown below:

∂ψ

∂F
· Ḟ =

[

∂ψ̃

∂E
FT +

∂ψ̃

∂W
⊗EM(3.51)

+J

((

F−T ∂ψ̃

∂Q
· q

)

F−1 − F−T

(

∂ψ̃

∂Q
⊗ q

)

F−T

)

+
∂ψ̃

∂G
⊗ g

]

· Ḟ,

∂ψ

∂EM
· ĖM =

(

F
∂ψ̃

∂W

)

· ĖM ,(3.52)

∂ψ

∂q
· q̇ =

(

∂ψ̃

∂Q

∂Q

∂q

)

· q̇ =

(

JF−T ∂ψ̃

∂Q

)

· q̇,(3.53)

∂ψ

∂g
· ġ =

∂ψ̃

∂GR

∂GR

∂gi

dgi

dt
=

∂ψ̃

∂GR
F i

R

dgi

dt
=

(

F
∂ψ̃

∂G

)

· ġ.(3.54)

Consequently, the dissipation inequality (3.32) becomes

(3.55)

[

∂ψ̃

∂E
FT +

∂ψ̃

∂W
⊗EM + J

((

F−T ∂ψ̃

∂Q
· q

)

F−1 − F−T

(

∂ψ̃

∂Q
⊗ q

)

F−T

)

+
∂ψ̃

∂G
⊗ g − ρ−1F−1τ

]

· Ḟ +

(

∂ψ̃

∂θ
+ η

)

θ̇

+

(

F
∂ψ̃

∂W
+ π

)

· ĖM +

(

JF−T ∂ψ̃

∂Q

)

· q̇ +

(

F
∂ψ̃

∂G

)

· ġ +
ρ−1

θ
q · g ≤ 0.

Now we apply Coleman–Noll’s procedure [5], that is, Remark 1: by the ar-
bitrariness of ġ we have ∂ψ̃/∂G = O and by the arbitrariness of the time
derivatives Ḟ, θ̇, ĖM , from (3.55) we obtain

(3.56) ρ−1F−1τ =
∂ψ̃

∂E
FT +

∂ψ̃

∂W
⊗ EM

+ J

[(

F−T ∂ψ̃

∂Q
· q

)

F−1 − F−T

(

∂ψ̃

∂Q
⊗ q

)

F−T

]

,

η̃ = −∂ψ̃
∂θ
,(3.57)
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π̃ = −F
∂ψ̃

∂W
,(3.58)

ρJF−T ∂ψ̃

∂Q
· q̇ +

1

θ
q · g ≤ 0,(3.59)

with q̇ given by Eq. (3.27) and where ψ̃ and its derivatives depend on (E, θ,W,Q).
We have proved the version of Theorem 1 that employs the objective free-energy
response function ψ̃:

Theorem 3. The Dissipation Principle is satisfied if and only if the following
conditions hold:

(i) the objective free energy response function ψ̃(E, θ,W,Q,G) is indepen-
dent of the temperature gradient G and determines the Cauchy stress tensor,
the entropy and the polarization vector per unit mass through the relations
(3.56)–(3.58);

(ii) the reduced dissipation inequality (3.59) is satisfied with q̇ given by (3.27).

We point out that Eqs. (3.56), (2.10) and (3.58) yield the expression for the
Cauchy stress

(3.60) τ = ρF
∂ψ̃

∂E
FT − P ⊗EM + ρR

(

F−T ∂ψ̃

∂Q
· q

)

I

− ρRFF−T

(

∂ψ̃

∂Q
⊗ q

)

F−T .

Hence, for the antisymmetric portion τA of τ we obtain the expression

(3.61) τA =
1

2

(

EM ⊗P − P ⊗EM

)

− ρR skw

[

FF−T

(

∂ψ̃

∂Q
⊗ q

)

F−T

]

,

where skwT = (T −TT )/2 denotes the skew part of a tensor T.
Note that when ∂ψ̃/∂Q = 0, Eqs. (3.60) and (3.61) respectively coincide

with Eqs. (4.19) and (4.22) of [45].

3.5. Internal dissipation and entropy equality

The local internal dissipation δo in a thermoelastic body is defined by Trues-
dell ([44, p. 112])

(3.62) δo = θη̇ − (r − 1

ρ
div q);

then one proves that δo ≡ 0 along every local thermoelastic process. Within
thermo-electroelasticity here we define the internal dissipation just by (3.62),
and hence we extend the afore-mentioned theorem by the
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Theorem 4. Along any local process of B we have

(3.63) δo = −∂ψ
∂q

· q̇ ≥ 1

ρθ
q · g.

P r o o f. By inserting the energy equation (3.5) in (3.62), we obtain the
equality

(3.64) δo = θη̇ − 1

ρ

(

ρε̇− τ · ∇v −EM · ρπ̇
)

;

now, taking the material derivative of (3.9) yields

(3.65) θη̇ = −ψ̇ + ε̇− θ̇η − ĖM · π − EM · π̇
and by replacing the latter into (3.64), we obtain

(3.66) δo = −ψ̇ − θ̇η − ĖM · π +
1

ρ
τ · ∇v;

substituting (3.31) and (3.28) in the latter, we find

(3.67) δo = −
(

∂Fψ · Ḟ + ∂θψ · θ̇ + ∂EMψ · ĖM + ∂qψ · q̇ + ∂gψ · ġ
)

− θ̇η − ĖM · π + ∂Fψ · Ḟ;

thus, the constitutive restrictions in Theorem 1 yield (3.63)1 and the the reduced
dissipation inequality (3.26) yields (3.63)2.

In thermoelasticity one shows that any thermoelastic process is locally re-
versible, in the sense that the entropy equality

(3.68) η̇ =
r

θ
− 1

ρθ
div q

holds. Here this result is extended to thermo-electroelasticity by the following

Theorem 5. Along any local process of B, the following entropy equality

(3.69) η̇ =
r

θ
− 1

ρθ
div q− ∂ψ

∂q
· q̇

holds.

P r o o f. Equalities (3.62) and (3.63)1 imply (3.69).

4. Referential description

4.1. Preliminaries

The referential description allows a more close comparison between the results
of the present paper and their analogs in [3], where it is used. Hence next we
adopt it and we use the first Piola–Kirchhoff stress tensor
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(4.1) S = JF−1τ ,

the Piola-transform

(4.2) Σ = JF−1σ

of the total stress tensor σ defined in (3.1), the well-known equalities (2.2),
(2.7)–(2.9), (2.10)2 and

(4.3) Div S = J div τ .

Now the process class P(B) of B in Section 2, containing the processes (2.1),
must be substituted for PR(B), that is the set of ordered 10-tuples of functions
on B × R

(4.4) pR =
(

x(.), θ(.), ϕ(.), ε(.), η(.),S(.), IP(.),Q(.),b(.), r(.)
)

∈ PR(B)

defined with respect to B, satisfying the material versions of the balance laws
of linear momentum, moment of momentum, energy, the entropy inequality and
the field equations of electrostatics.

4.2. Local balance laws in material form

The local field laws (3.3)–(3.7) in the referential description are written in
the form:

ρRv̇ = Div S + ρRb,(4.5)

FΣT = ΣFT ,(4.6)

ρRε̇ = S · Ḟ − DivQ + W · ˙IP + ρRr,(4.7)

W = −∇Xϕ (= −FT∇xϕ), Div∆ = 0,(4.8)

ρRη̇ ≥ ρR(r/θ) − Div(Q/θ).(4.9)

The specific free energy per unit mass is defined by

(4.10) ψ = ε− θη − W · Π.
For justification of the terms W · ˙IP in (4.7) and W · Π in (4.10), one may

read the comments between (3.7) and (3.10) in Section 3.1.
Then (4.7) and (4.9) yield the reduced dissipation inequality

(4.11) ρR(ψ̇ + ηθ̇) − S · Ḟ +
1

θ
Q · G + IP · Ẇ ≤ 0,

where G = Grad θ(X, t) is the referential temperature gradient.

Remark 3. Note that by the equalities

W · Π = W · IP/ρR = (FTEM ) · (JF−1P)/ρR = EM · P(J/ρR) = EM · π,
the spatial and material versions (4.10) and (3.9) of ψ agree.
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4.3. Referential constitutive assumptions

Let DR be the open, simply-connected domain consisting of 5−tuples
(F, θ,W,Q,G) such that (F, θ,EM ,q,g) ∈ D; hence

if (F, θ,W,Q,G) ∈ DR, then (F, θ,W,0,0) ∈ DR.

Assumption 2. For every p ∈ PR(B), the specific free energy ψ(X, t), the
specific entropy η(X, t), the first Piola–Kirchhoff stress tensor S(X, t), the spe-
cific polarization vector IP(X, t), and the time rate of the heat flux Q̇(X, t), are
given by continuously differentiable functions on DR such that

ψ = ψ̂(F, θ,W,Q,G),(4.12)

η = η̂(F, θ,W,Q,G),(4.13)

S = Ŝ(F, θ,W,Q,G),(4.14)

IP = ÎP(F, θ,W,Q,G),(4.15)

Q̇ = H(F, θ,W,Q,G).(4.16)

Further, the tensors ∂QH(.) and ∂GH(.) are non-singular.

Of course, once ρR(.), ψ̂(.), η̂(.) and ÎP(.) are known, then equality (4.10)
gives the continuously differentiable function ε̂(.) determining ε(X, t) such that

(4.17) ε = ε̂(F, θ,W,Q,G).

The assumed properties of the heat flux evolution function H(.) indicate that
it is invertible for Q and also for G. We denote the inverse of H(.) with respect
to Q by

(4.18) Q = H∗(F, θ,W,G, Q̇).

Note that

(4.19) ∂GH∗(.) = −[∂QH]−1(.)∂GH(.),

so that the tensor ∂GH∗(.) is also continuous and non-singular. The dependence
upon X is implicit and understood if the body is not materially homogeneous.

4.4. Coleman–Noll method and thermodynamic restrictions
in the material description

Given any motion x(X, t), temperature field θ(X, t) and electric potential
field ϕ(X, t), the constitutive equations (4.12)–(4.16) determine e(X, t), η(X, t),
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S(X, t), IP(X, t), Q̇(X, t), and the local laws (4.5) and (4.7) determine b(X, t)
and r(X, t). Hence for any given motion, temperature field and electric potential
field, a corresponding process p is constructed.

The method of Coleman–Noll [5] is based on the postulate that every pro-
cess p so constructed belongs to the process class PR(B) of B; that is, on the
assumption that the constitutive assumptions (4.12)–(4.16) are compatible with
thermodynamics, in the sense of the following

Dissipation Principle. For any given motion, temperature field and electric
potential field, the process p constructed from the constitutive equations (4.12)–
(4.16) belongs to the process class PR(B) of B. Therefore the constitutive func-
tions (4.12)–(4.16) are compatible with the second law of thermodynamics in the
sense that they satisfy the dissipation inequality (4.9).

Theorem 6. The Dissipation Principle is satisfied if and only if the following
conditions hold:

(i) the free energy response function ψ̂(F, θ,W,Q,G) is independent of the
temperature gradient G and determines the entropy, the first Piola–Kirchhoff
stress and the polarization vector through the relations

η̂(F, θ,W,Q) = −∂ψ̂
∂θ

(F, θ,W,Q),(4.20)

Ŝ(F, θ,W,Q) = ρR
∂ψ̂

∂F
(F, θ,W,Q),(4.21)

Π̂(F, θ,W,Q) = − ∂ψ̂

∂W
(F, θ,W,Q);(4.22)

(ii) the reduced dissipation inequality

(4.23) ρRθ
∂ψ̂

∂Q
(F, θ,W,Q) · Ĥ(F, θ,W,Q,G) + Q · G ≤ 0

is satisfied.

P r o o f. By the chain rule we have

(4.24) ψ̇ = ∂Fψ̂ · Ḟ + ∂θψ̂ · θ̇ + ∂Wψ̂ · Ẇ + ∂Qψ̂ · Q̇ + ∂Gψ̂ · Ġ.

Thus by substituting this equation together with the constitutive equations
(4.12)–(4.16) into the dissipation inequality (4.11), we obtain

(4.25) (ρR∂Fψ̂ − Ŝ) · Ḟ + (ρR∂θψ̂ + η̂)θ̇ + (ρR∂Wψ̂ + ÎP) · Ẇ

+ ρR∂Qψ̂ · H + ρR∂Gψ̂ · Ġ +
1

θ
Q · G ≤ 0.
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Now we follow the Coleman–Noll [5] method: by Remark 1, written in refer-
ential form, we can state that Ḟ, θ̇,Ẇ and Ġ can be assigned arbitrary values
independently of the other variables; thus the theorem is proved.

Simply by inserting the additional variable W in each occurrence of H∗, H,
f , K, K∗ in Theorem 2 of [3] and in its proof, we obtain the proof of the theorem
below.

Theorem 7. The time derivative of the heat flux Q̇ vanishes for all thermal
equilibrium states (F, θ,W,0,0) ∈ D and the tensor

(4.26) K(F, θ,W) = ∂QH(F, θ,W,0,0)−1∂GH(F, θ,W,0,0)

is positive-definite.

Of course, now Remark 2 should be formulated in the material description
too.

5. On Cattaneo’s equation

The results and considerations in Sections 4, 5 of [3] remain true also in the
context of the present theory, even if here we also have the referential electric
field W as variable in each constitutive quantity. Hence the following theorem,
which assumes the linearity of Ĥ(F, θ,W,Q,G) in Q and G, is true.

Theorem 8. Let the evolution equation of the heat flux be given by the fol-
lowing form of Cattaneo’s equation:

(5.1) T̂(F, θ,W)Q̇ + Q = −K̂(F, θ,W)G.

Then the Dissipation Principle is equivalent to the conditions:
(i) the tensor K̂(F, θ,W) is positive definite;
(ii) the tensor Ẑ(F, θ,W) is symmetric;
(iii) the response functions of the specific free energy, specific internal energy,

specific entropy and first Piola-Kirchhoff stress are given by

ρRψ̂(F, θ,W,Q) = ρRψ̂o(F, θ,W) +
1

2θ
Q · Ẑ(F, θ,W)Q,(5.2)

ρRε̂(F, θ,W,Q) = ρRε̂o(F, θ,W) + Q · Â(F, θ,W)Q,(5.3)

ρRη̂(F, θ,W,Q) = ρRη̂o(F, θ,W) + Q · B̂(F, θ,W)Q,(5.4)

Ŝ(F, θ,W,Q) = Ŝo(F, θ,W) + Q · P̂Z(F, θ,W)Q,(5.5)

where

ψ̂o(F, θ,W) = ψ̂(F, θ,W,0),(5.6)

ε̂o(F, θ,W) = ψ̂o(F, θ,W) − θ∂θψ̂o(F, θ,W),(5.7)
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η̂o(F, θ,W) = −∂θψ̂o(F, θ,W),(5.8)

Ŝo(F, θ,W) = ρR∂Fψ̂o(F, θ,W),(5.9)

Ẑ(F, θ,W) = K̂(F, θ,W)−1T̂(F, θ,W),(5.10)

Â(F, θ,W) = −θ
2

2

∂

∂θ

[

Ẑ(F, θ,W)

θ2

]

,(5.11)

B̂(F, θ,W) = −1

2

∂

∂θ

[

Ẑ(F, θ,W)

θ

]

,(5.12)

P̂Z(F, θ,W) =
1

2θ

∂

∂F
Ẑ(F, θ,W).(5.13)

We write the proof following the trace of the one of Theorem 3 in [3].

P r o o f. By Assumption 2, the tensors ∂QH(.) and ∂GH(.) are non-sin-
gular. Let us define

T(F, θ,W)−1 = −∂QH(F, θ,W,0,0),

Z(F, θ,W)−1 = −∂GH(F, θ,W,0,0).(5.14)

Hence, from (4.26) and (5.14) it follows that

(5.15) K(F, θ,W) = T(F, θ,W)Z(F, θ,W)−1.

Now, linearity of Ĥ(.) in Q and G, i.e. the equality

(5.16) Q̇ = ∂QH(F, θ,W,0,0)Q + ∂GH(F, θ,W,0,0)G,

is equivalent to the equality

(5.17) Q̇ = −T(F, θ,W)−1Q − Z(F, θ,W)−1G.

From the inequality (4.23) we find

(5.18) − ρRθ
∂ψ̂

∂Q
(F, θ,W,Q) · T(F, θ,W)−1Q

− ρRθ
∂ψ̂

∂Q
(F, θ,W,Q) · Z(F, θ,W)−1G + Q · G ≤ 0,

and by the arbitrariness of Q and G this inequality holds if and only if

(5.19)

∂ψ̂

∂Q
(F, θ,W,Q) =

1

ρRθ
Z(F, θ,W,Q)T Q,

ρR
∂ψ̂

∂Q
(F, θ,W,Q) · T(F, θ,W)−1Q ≥ 0.



248 A. Montanaro

The symmetry of ∂2
Qψ̂(F, θ,W,Q) implies that, for the Dissipation Principle

to hold, Z(F, θ,W,Q) must be symmetric:

(5.20) Z(F, θ,W,Q) = Z(F, θ,W,Q)T .

Hence (5.19)2 is equivalent to Q · K(F, θ,W)−1Q ≥ 0, since K(F, θ,W) is
positive-definite.

Now, from the equalities (4.10), (4.20), (4.21), (5.19), (5.20), by using Taylor’s
expansions, it follows that all equalities (5.2) through (5.13) hold.

Following [1] and [3] we may call K̂(F, θ,W) the steady-state conductivity,
T̂(F, θ,W) the tensor of relaxation times and Ẑ−1 the instantaneous conduc-
tivity.

6. Hint at the classical theory, where the heat flux

has a response function

For the electrically polarizable and deformable heat conducting elastic
body B, we consider the (classical) theory, where the heat flux is treated as
a dependent variable by a constitutive equation and there is no constitutive
equation for its rate. In parallel with [3], [54] we follow the method of Cole-
man and Noll [5] and find the thermodynamic restrictions on the constitutive
relations of B.

We refer to the spatial description and proceed by listing the results in Sec-
tions 2 to 5, by showing their reductions in the classical theory and how they
change. Sections 2 and 3.1 remain unchanged. Section 3.2 must be replaced by
the section below.

6.1. Spatial constitutive assumptions in the classical theory

LetD be an open, simply-connected domain consisting of 4-tuples (F, θ,EM,g),
and assume that if (F, θ,EM ,g) ∈ D, then (F, θ,EM ,0) ∈ D.

Assumption 3. For every p ∈ IP (B) the specific free energy ψ(X, t), the spe-
cific entropy η(X, t), the Cauchy stress tensor τ (X, t), the specific polarization
vector P(X, t), and the heat flux q(X, t), are given by continuously differentiable
functions on D such that

ψ = ψ(F, θ,EM ,g),(6.1)

η = η(F, θ,EM ,g),(6.2)

τ = τ (F, θ,EM ,g),(6.3)
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P = P(F, θ,EM ,g),(6.4)

q = q(F, θ,EM ,g).(6.5)

Of course, once ρ(.), ψ(.), η(.) and P(.) are known, then Eq. (3.9) gives the
continuously differentiable function ε(.) determining ε(X, t) such that

(6.6) ε = ε(F, θ,EM ,g).

The dependence upon X is not written only for brevity; when the body is not
materially homogeneous, it becomes active.

6.2. Coleman–Noll method and thermodynamic restrictions in the classical theory

In Sec. 3.2 the constitutive law (3.16) must be replaced by (6.5). Thus the
section rewrites as

Assumption 4. For every p ∈ P(B) the specific free energy ψ(X, t), the spe-
cific entropy η(X, t), the Cauchy stress tensor τ (X, t), the specific polarization
vector P(X, t), and the heat flux q(X, t) are given by continuously differentiable
functions on D such that

ψ = ψ(F, θ,EM ,g),(6.7)

η = η(F, θ,EM ,g),(6.8)

τ = τ (F, θ,EM ,g),(6.9)

P = P(F, θ,EM ,g),(6.10)

q = q(F, θ,EM ,g).(6.11)

Of course, once ρ(.), , ψ(.), η(.) and P(.) are known, equality (3.9) gives the
continuously differentiable function ε(.) determining ε(X, t) such that

(6.12) ε = ε(F, θ,EM ,g).

The dependence upon X is not written only for brevity.

The dissipation principle and Remark 1 must be understood here just as in
Section 3.3; then Theorem 1 becomes the theorem below, whose proof has the
same steps in the proof of the former by dropping there h.

Theorem 9. The Dissipation Principle is satisfied if and only if the following
conditions hold:

(i) the free energy response function ψ(F, θ,EM ,g) is independent of the
temperature gradient g and determines the entropy, the Cauchy stress and the
polarization vector through the relations

η(F, θ,EM ) = −∂ψ
∂θ

(F, θ,EM ),(6.13)
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τ (F, θ,EM ) = ρF
∂ψ

∂F
(F, θ,EM ),(6.14)

π(F, θ,EM ) = − ∂ψ

∂EM
(F, θ,EM ).(6.15)

(ii) the Fourier inequality

(6.16) q · g ≤ 0

is satisfied.

A consequence of the Fourier inequality (6.16) is that, just as in thermoelas-
ticity, the static heat flux vanishes:

Theorem 10. The heat flux q vanishes for all thermal equilibrium states
(F, θ,EM ,0) ∈ D, that is,

(6.17) q(F, θ,EM ,0) = 0.

6.3. Use of invariant response functions in the classical theory

The present section is rewritten following Sec. 3.4, by dropping in it each
occurrence of q̇ and also of q, when the latter appears as variable within a
response function, and by putting ∂ψ̃/∂q = 0 = ∂ψ̃/∂Q. Hence Theorem 3
reduces to the following

Theorem 11. The Dissipation Principle is satisfied if and only if the follow-
ing conditions hold:

(i) the objective free energy response function ψ̃(E, θ,W,G) is independent
of the temperature gradient G and determines the entropy, the Cauchy stress
tensor and the polarization vector per unit mass through the relations

ρ−1F−1τ =
∂ψ̃

∂E
FT +

∂ψ̃

∂W
⊗ EM ,(6.18)

η̃ = −∂ψ̃
∂θ
,(6.19)

π̃ = −F
∂ψ̃

∂W
,(6.20)

(ii) the Fourier inequality (6.16) is satisfied.

Note that Eqs. (6.18)–(6.20) respectively coincide with Eqs. (4.19)–(4.21)
of ([45]); moreover, (6.18), (2.10) and (6.20) yield the Cauchy stress expression
(3.60) and for its antisymmetric portion they yield

(6.21) τA =
1

2

(

EM ⊗P − P ⊗EM
)

,

that coincides with [45, Eq. (3.24)].
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6.4. Internal dissipation and entropy equality in the classical theory

Within thermo-electroelasticity, the internal dissipation is defined by (3.62).
Hence just the same proofs of Theorem 4 and Theorem 5 with no change yield
the proofs of the theorems below.

Theorem 12. Along any local process of B we have

(6.22) δo = 0.

Theorem 13. Along any local process of B the following entropy equality

(6.23) η̇ =
r

θ
− 1

ρθ
div q

holds.

7. Conclusions and discussion

(a) The analysis of the Colemann–Noll procedure made here for of an electri-
cally polarizable and finitely deformable heat-conducting elastic continuum, has
shown that free energy and constitutive equations cannot depend on the gradi-
ents of the unknown fields, with the only exception of the heat flux evolution
law, which can depend on heat flux gradients.

This implies that weak non-locality, i.e., the presence of the gradients of all
the unknown fields as arguments of the constitutive functions, is not allowed in
the present theory [24, p. 912]. Hence, a generalization of the classical Coleman–
Noll procedure in the presence of first-order non-local constitutive functions
seems to be useful in order to set up a weakly non-local theory for non-local
materials, such as the Korteweg fluids. This generalization might extend the
theory of Cimmelli et al. [24] for rigid heat-conducting bodies to an electrically
polarizable and finitely deformable heat-conducting elastic continuum.

(b) Yang [54] set up in a very general fashion the governing equations for
small amplitude incremental fields superposed on finite biasing or initial fields
in a thermoelectroelastic body in the classical theory with Fourier’s law of heat
propagation; he applied the linearization procedure referring to the (classical)
thermoelectroelasticity theory Tiersten [45]. So Yang could write many suc-
cessive papers devoted to thermo-electromechanic devices where the results in
[54] are used.

Now, in order to solve the analogous problem in a theory where heat prop-
agates at a finite speed, the preliminary task is to have at hand a generalized
thermoelectroelasticity theory like e.g. the one presented here. Hence this might
be a future work following the present paper.

(c) In agreement with Atkin et al. [34, 35] criticism to the two-fluid Landau’s
model, the present theory may constitute a preliminary task towards a general-
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ized thermo-electroelasticity theory which conceives helium as a unique contin-
uum and does not use the micropolar technique used in those papers.

(d) Bargmann et al. [55] paper uses the Green–Naghdi generalized ther-
moelasticity theory to model ‘cryovolcanism’, i.e. the icy counterpart of Hearth
volcanism. This phenomenon was discovered by the Cassini spacecraft in 2005
during its close fly-bys on Saturn’s moon Enceladus.

That is to say that new experiments could arise in the future within new
and non-intuitive contexts. And thus several theories, the more simple ones, are
needed for the experimentalists.

Why limit the theories to those that have already been fully justified by the
experiments already performed?
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